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Abstract In this paper, an integrable generalization

of the Kadomtsev-Petviashvili (KP) equation in arbi-

trary spatial dimension is proposed. Firstly, the sin-

gularity manifold analysis is performed to prove that

the (n+1)-dimensional KP equation with general form

is Painlevé integrable. Secondly, combining the trun-

cated Painlevé expansion and binary Bell polynomial

approach, the integrable characteristics of the (n+1)-

dimensional KP equation are derived systematically,

including N-soliton solution, bilinear Bäcklund trans-

formation, the associated Lax pair as well as infinite

conservation laws. Moreover, various types of localized

solutions can be constructed starting from the N-soliton

solutions. The abundant interactions including over-

taking solitons, head-on solitons, one-order lump, two-

order lump, breather, breather-soliton mixed solutions

are analyzed by some graphs.
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1 Introduction

During the past decades, mathematical physicists have

devoted great efforts in developing a number of effec-

tive and efficient methods for solving integrable sys-

tems, including the inverse scattering transform (IST),

Bäcklund transformation, Darboux transformation and

Hirota’s bilinear method amongst many others [1–5]. As

is well known, many researches focus on the integrable

systems in (1+1)-dimensions and (2+1)-dimensions [6–

16]. Considering the fact that the real situation is in

(3+1)-dimensions, a number of (3+1)-dimensional equa-

tions have been proposed starting from the lower di-

mensional integrable models, and their various types

of exact solutions have been presented [17–22]. Among

these (3+1)-dimensional equations, most of them do

not pass the conventional integrability test. Therefore,

searching for more integrable models in 3+1 dimen-

sional or more higher dimensions, is a challenging and

significant research issue in nonlinear science.

The KP equation formulated by Kadomtsev and

Petviashvili in 1970 [23], as a two spatial dimensional

analog of the classic Korteweg-de Vries equation, can

well simulate nonlinear phenomena in fluid physics, plasma

physics, Bose-Einstein condensates, optics etc. Due to

the physical and mathematical significance, KP equa-

tion attracts much attention of scholars, its integrable

features and various exact solutions have been inves-

tigated by using different methods [24–31]. Consider-

ing that the real situation is in 3+1 dimensions, vari-
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ous higher dimensional extensions of KP equation have

been investigated from different viewpoints [32–37]. How-

ever, these higher dimensional extensions do not keep

their original integrable characteristics since the Painlevé

property, N-soliton, Lax pair, symmetry structure as

well as infinite conservation laws are no longer con-

served.

The question that naturally arises is whether the

well-known KP equation can be extended to three spa-

tial dimensions or more higher dimensional space. More

importantly, the extended KP equations in higher di-

mensions are expected to possess the same integrable

properties as the classic KP equation in 2+1 dimen-

sions. This paper aims to give an affirmative answer

to this question. For this purpose, we propose a new

generalized KP equation in n+1 dimensions

(ut+αuux1
+βux1x1x1

)x1
+γux2x2

+

n
∑

i=1

σi ux1xi
= 0, (1)

where n ≥ 2, u is a differentiable function with respect

to spatial variables x1, x2, · · · , xn and time variable t,

the subscripts represent the partial derivatives, and α,

β, γ and σi(i = 1, · · · , n) are constant parameters.

When α = 6, β = 1, γ = 3ǫ2 and λ = σ1 = σ2 = 0,

and x1 = x, x2 = y, equation (1) becomes [23]

(ut + 6uux + uxxx)x + 3ǫ2uyy = 0, ǫ2 = ±1. (2)

when ǫ = i and ǫ = 1, (2) is exactly the the KPI equa-

tion and KPII equation, respectively. The change in

sign of ǫ2 is related to the magnitudes of gravity and

surface tension.

When x1 = x, x2 = y, x3 = z, equation (1) may

be reduced to the (3+1)-dimensional generalized KP

equation

(ut + αuux + βuxxx)x + γuyy + σ1uxx

+ σ2uxy + σ3uxz = 0.
(3)

Note that another (3+1)-dimensional KP equation in-

vestigated in Ref. [32] fails the integrability test due to

the existence of second order dispersion term uzz.

The remaining parts of the paper are arranged as

follows. In Section 2, the singularity manifold analysis

is conducted to prove that equation (1) is Painlevé in-

tegrable based on the WTC method. Subsequently, we

employ the binary Bell polynomial approach to investi-

gate several integrable features of Eq. (1). The bilinear

form and N-soliton solution are constructed in Section

3, the bilinear Bäcklund transformation and Lax pair

are derived in Section 4. Section 5 is devoted to prove

that there exists infinite conservation laws for equation

(1). In Section 6, some localized solutions and interac-

tions of multiple waves are analyzed by graphs. Finally,

some brief conclusions are given in Section 7.

2 Painlevé property

The singularity manifold analysis is a very useful and

effective tool in the analysis of Painlevé property of non-

linear evolution models. According to the WTC method

[2], Eq. (1) is said to have the Painlevé property if its

solution can be written as Laurent series

u =

∞
∑

j=0

uj φ
j+k (4)

and it is “single-valued” in the neighborhood of singu-

larity manifold φ. Note that in (4), both φ and uj(j =

0, 1, · · · ) are analytic functions of {x1, x2, · · · , xn, t}.

To reduce the computational complexity, we take the

Kruskal’s ansatz about singular manifold, i.e., letting

φ = x1 + ψ(x2, · · · , xn, t).

First, substituting the series (4) into (1) and bal-

ancing the most dominant terms, yields the exponent

and the coefficient of leading term in (4), k = −2 and

u0 = −12β/α.

Subsequently, we need to determine the resonance

points at which the coefficients in (4) are arbitrary. To

this end, inserting u = u0φ
−2 + ujφ

j−2 into (1), and

vanishing the coefficients of φj−6, one obtains the gen-

eral recursion relation about uj . It easily follows from

the recursion relation that the four resonant points oc-

cur at j = −1, 4, 5 and 6.

Finally, one should verify the compatibility condi-

tions for each non-negative resonant point. For this pur-

pose, inserting the truncated series

u =

6
∑

j=0

uj φ
j−2 (5)
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into (1) and equating the coefficients of φ with different

powers, it is obtained as

u0 = −12β/α, u1 = 0,

u2 = −(σ1 + ψt + γψ2
x2

+
n
∑

i=2

σiψxi
)/α,

u3 = γψx2x2
/α.

(6)

The compatibility conditions corresponding to the re-

mained resonant points 4, 5, 6 are listed as follows,

u1,t + γu1ψx2x2
+ 2γu1,x2

ψx2
+

n
∑

i=2

σi u1,xi
= 0,

u1,x2x2
= 0,

u3,t + γu2,x2x2
+ 2u4ψt + γu3ψx2x2

+ 2γu3,x2
ψx2

+ 2αu1u5 + 2αu2u4 + αu23 + 2γu4ψ
2
x2

+ 2σ1u4

+
n
∑

i=2

σi(2u4ψxi
+ u3,xi

) = 0.

(7)

Combing the u0, u1, u2 and u3 values given by (6), the

above three compatibility conditions are proven to be

satisfied identically. In other words, u4, u5 and u6 in (5)

are arbitrary functions. Therefore, it is concluded that

the new (n+1)-dimensional KP equation (1) with gen-

eral form possesses the Painlevé property without any

constraints between the parameters α, β, γ and σi(i =

1, · · · , n).

3 N-soliton solutions

The binary Bell polynomial method [3] provides a direct

and effective framework to construct Bäcklund trans-

formation, Lax pair and other integrable characteristics

in a systematic way, which is widely applied in a great

number of NLEEs [38–42]. Starting from the above sin-

gularity manifold analysis, one obtains the truncated

Painlevé transformation u = 12β
α

(lnφ)x1x1
+ u1. Let-

ting q = 2 lnφ and u1 = 0, and integrating (1) with

respect to x1 twice yields

qx1t +3β q2x1x1
+ β qx1x1x1x1

+ γ qx2x2
+

n
∑

i=1

σiqx1xi
= 0,

(8)

which can be rewritten as the P-polynomial equation

with the form,

Px1t(q) + βPx1x1x1x1
(q) + γPx2x2

(q)

+
n
∑

i=1

σiPx1xi
(q) = 0.

(9)

With the assumption q = 2 lnφ, the above P-polynomial

equation is reduced to the bilinear representation of the

(n+1)-dimensional KP equation (1)

(Dx1
Dt + βD4

x1
+ γD2

x2
+

n
∑

i=1

σiDx1
Dxi

)φ · φ = 0.

(10)

Based on the bilinear form (10), and employing the

perturbation technique [5], one obtains the N -soliton

solutions of equation (1), which reads

u =
12β

α
·
∂2

∂x21
ln





∑

ρ=0,1

exp





N
∑

j=1

ρjηj +
N
∑

1≤j<s

ρjρs ajs







 ,

(11)

with

ηj =
n
∑

i=1

kji (xi + ωj t) + ηj0,

ωj = − (σ1 + βk2j1 + γk2j2 +
n
∑

i=2

σi kji),

ajs =
3β(kj1 − ks1)

2 − γ(kj2 − ks2)
2

3β(kj1 + ks1)2 − γ(kj2 − ks2)2
,

(12)

where
∑

ρ=0,1 means a summation of possible combina-

tions about ρj = 0, 1(j = 1, · · · , N). Note that kji and

ηj0 (j = 1, · · · , N ; i = 1, · · · , n) are arbitrary constants.

4 Bäcklund transformation and Lax pair

To construct the Bäcklund transformation, it is assumed

that q = 2 lnF and q̄ = 2 lnG are two different solu-

tions of equation (8). In addition, introducing w and v

such that w = (q̄ + q)/2, v = (q̄ − q)/2, we get

E(q̄)− E(q)

2
= vx1t + 6βvx1x1

wx1x1
+ βvx1x1x1x1

+ γ vx2x2
+

n
∑

i=1

σi vx1xi

=
∂

∂x1
(Yt(v) + βYx1x1x1

(v, w)) +R,

(13)

where R is given by

R = 3β vx1x1
wx1x1

− 3βvx1
wx1x1x1

− 3βv2x1
vx1x1

+ γvx2x2
+

n
∑

i=1

σi vx1xi
.

(14)
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Then, to write (14) as the Y -polynomial, we sup-

pose

wx1x1
+ v2x1

+ δ vx2
= λ, (15)

where λ and δ are constant parameters. Then, after

some calculations, Eq. (14) can be rewritten as

R = 3λβvx1x1
− γ

δ
(wx1x1x2

+ (2− 3δ2β
γ

)vx1
vx1x2

+ 3δ2β
γ
vx1x1

vx2
) +

n
∑

i=1

σi vx1xi
.

(16)

By setting δ2 = γ/(3β), equation (16) is equivalent to

R =
∂

∂x1
( (3λβ + σ1)Yx1

(v)−
γ

δ
Yx1x2

(v, w)

+
n
∑

i=2

σi Yxi
(v)).

(17)

Finally, combining (13), (15) and (17), one obtains

Yx1x1
(v, w) + δYx2

(v) − λ = 0,

∂

∂x1
(Yt(v) + βYx1x1x1

(v, w) + (3λβ + σ1)Yx1
(v)

−
γ

δ
Yx1x2

(v, w) +
n
∑

i=2

σi Yxi
(v)) = 0.

(18)

With proper transformation, the Y -polynomials can

be reduced to Hirota’s differential operators. Based on

this, the above Y -polynomial system (18) yields the

bilinear BT of Eq. (1), which reads

(D2
x1

+ δ Dx2
− λ)F · G = 0,

( Dt + β D3
x1

+ (3λβ + σ1)Dx1
−
γ

δ
Dx1

Dx2

+
n
∑

i=2

σiDxi
)F ·G = 0.

(19)

where δ2 = γ/(3β).

To derive the Lax pair, we take

w = v + q, v = lnϕ. (20)

Starting from the bilinear Bäcklund transformation (18),

through the linearizing technique, the Lax pair of (1) is

as follows,

ϕx1x1
+ δϕx2

+ qx1x1
ϕ− λϕ = 0,

ϕt − (
γ

δ
+ βδ)ϕx1x2

− (βqx1x1x1
+
γ

δ
qx1x2

)ϕ

+ (2βqx1x1
+ 4λβ + σ1)ϕx1

+
n
∑

i=2

σi ϕxi
= 0,

(21)

where δ2 = γ/(3β), and λ is an arbitrary constant pa-

rameter. The two equations in (21) are compatible pro-

vided that q satisfies Eq. (8), i.e., ϕx1x1t = ϕtx1x1
. In

other words, the system (21) is just the Lax pair of

equation (1).

As a particular case of equation (1) in 3+1 dimen-

sions, its bilinear Bäcklund transformation and the as-

sociated Lax pair may be easily derived. Here, we de-

note x1 = x, x2 = y, x3 = z, (19) yields the bilinear

Bäcklund transformation of equation (3) with the form,

(D2
x + δ Dy − λ)F · G = 0,

( Dt + β D3
x −

γ

δ
DxDy + (3λβ + σ1)Dx

+ σ2Dy + σ3Dz )F ·G = 0.

(22)

The corresponding Lax representation of (3) is given by

ϕxx + δϕy + qxx ϕ − λϕ = 0,

ϕt − (
γ

δ
+ βδ)ϕxy + (2βqxx + 4λβ + σ1)ϕx

− (βqxxx +
γ

δ
qxy)ϕ+ σ2 ϕy + σ3 ϕz = 0.

(23)

Under the constraint δ2 = γ/(3β), the compatibility

condition ϕxxt = ϕtxx implies that

qxt+βqxxxx+3βq2xx+γqxy+σ1qxx+σ2qxy+σ3qxz = 0,

which indicates that the system (23) is exactly the Lax

pair of equation (3).

5 Infinite conservation laws

As discussed in Section 3-4, equation (1) is both Painlevé

integrable and Lax integrable. The existence of infinite

conservation laws is also an essential and significant

integrable property. In this section, starting from the

coupled Y -polynomials system (18), we will derive the

infinite conservation laws of equation (1) in arbitrary

spatial dimension.

First, by introducing η = (q̄x1
−qx1

)/2, the functions

v and w are related by

vx1
= η, wx1

= qx1
+ η. (24)
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Inserting it into the coupled Y -polynomials system (18)

leads to

qx1x1
+ ηx1

+ η2 + δ ∂−1
x1
ηx2

− λ = 0,

∂

∂t
(η) +

∂

∂x1
[βηx1x1

+ 3β η(qx1x1
+ ηx1

)

−
γ

δ
(qx1x2

+ ηx2
+ η∂−1

x1
ηx2

))

+ (3λβ + σ1)η + βη3] +
n
∑

i=2

∂

∂xi
(σiη) = 0.

(25)

Suppose that η = η̄+ ǫ and λ = ǫ2, equation (25) is

reduced to

η̄x1
+ η̄2 + 2ǫ η̄ + δ ∂−1

x1
η̄x2

+ qx1x1
= 0, (26)

∂

∂t
(η̄) +

∂

∂x1
[4ǫ2βη̄ + (2βqx1x1

+ 2βη̄x1

− βδ∂−1
x1
η̄x2

−
γ

δ
∂−1
x1
η̄x2

)ǫ− (βδ −
γ

δ
)η̄∂−1

x1
η̄x2

+ 2βη̄η̄x1
−
γ

δ
(qx1x2

+ η̄x2
) + 2βqx1x1

η̄

+ βη̄x1x1
+ σ1η̄] +

n
∑

i=2

∂

∂xi
(σi η̄) = 0.

(27)

Next, we expand the function η̄ as the series with

the form,

η̄ =

∞
∑

j=1

Ij (q, qx1
, · · · ) ǫ−j . (28)

Inserting the series (28) into (26) and collecting the co-

efficients with the same power of ǫ, we have the explicit

recursion formulae for the conversed densities In

I1 = −qx1x1
/2 = −αu/(12β),

I2 = (αux1
+ αδ∂−1

x1
ux2

)/(24β),

Ij+1 = −
Ij,x1

+δ∂−1

x1
Ij,x2

+

j∑

k=1

IkIj−k

2
, j ≥ 2.

(29)

Finally, combining (27) and (28), one obtains the in-

finite conservation laws of the (n+1)-dimensional gen-

eralized KP equation (1),

Ij,t + Fj,x1
+

n
∑

i=2

Gij,xi
= 0, j = 1, 2, · · · , (30)

where Ij is presented by (29). Moreover, the recursion

formulae of the fluxes Fn is obtained as

F1 = −(2αβux1x1
+ 2αγ

∫ ∫

ux2x2
dx1dx1

+ α2u2 + 2ασ1u)/(24β)

Fj = 4βIj+2 + 2βIj+1,x1
− (βδ + γ

δ
)∂−1

x1
Ij+1,x2

+2β
j
∑

k=1

IkIj−k,x1
+ βIj,x1x1

+ (2βqx1x1
+ σ1)Ij

−γ
δ
Ij,x2

− (βδ + γ
δ
)β

j
∑

k=1

Ik∂
−1
x1

Ij−k,x2
, j ≥ 2.

Other fluxes Gn are given by

G21 = −
ασ2
12β

u, G22 =
σ2(αux1

+ αδ∂−1
x1
ux2

)

24β
,

G31 = −
ασ3
12β

u, G32 =
σ3(αux1

+ αδ∂−1
x1
ux2

)

24β
,

Gij = σi Ij , i = 2, · · · , n; j = 2, 3, · · · .

In conclusion, equation (1) has N-soliton solutions,

and it also possesses the Painlevé property, Lax pair,

bilinear BT as well as infinite conservation laws, thus

it is concluded that the proposed (n+1)-dimensional

generalized KP equation (1) is completely integrable.

6 Multiple solitons and localized solutions of

equation (3)

In this part, the (3+1)-dimensional KP equation (3)

is chosen to illustrate the interactions between multi-

ple solitons and localized solutions more intuitively. For

convenience, we set x1 = x, x2 = y, x3 = z, kj1 = kj ,

kj2 = lj , kj3 = mj , combining (11)-(12), the N-soliton

solution of equation (3) is written as

u =
12β

α
· (ln φ)xx, (31)

with

φ =
∑

ρ=0,1

exp

(

N
∑

j=1

ρjηj +
N
∑

1≤j<s

ρjρs ajs

)

,

ηj = kj(x + ljy + mjz + ωj t) + ηj0,

ωj = − (σ1 + βk2j + γl2j + σ2lj + σ3mj),

ajs =
3β(kj − ks)

2 − γ(lj − ls)
2

3β(kj + ks)2 − γ(lj − ls)2

(32)

where
∑

ρ=0,1 means a summation of possible com-

binations for ρj = 0 and 1. The remained parame-

ters kj , lj ,mj and ηj0(j = 1, · · · , N) are arbitrary con-

stants.
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6.1 Two solitons and localized solutions

Taking N = 2 in (32), equation (31) with (32) leads to

the two-soliton solution. Due to the existence of arbi-

trary parameters kj , lj and mj(j = 1, 2) in (32), there

are various types of interactions of multiple waves.

Case 1. Two-soliton solution

In (32), we take the parametric choices

k1 = 0.8, k2 = l1 = m1 = σ1 = β = −γ = 1.0,

l2 = 0.7,m2 = 0.6, σ2 = 0.5, σ3 = 1.2, α = 6,
(33)

the overtaking interactions between two solitons are

shown in Figure 1. Fig. 1a depicts the evolution of

two solitons along x direction. It is easily observed that

these two solitons move along the positive x direction

with different speeds, and the soliton with smaller am-

plitude moves faster and it overtakes the soliton with

larger amplitude. In Fig. 1b and Fig. 1c, two solitons

move along the positive y and z direction with differ-

ent speeds, and the soliton with larger amplitude moves

faster and it overtakes the soliton with smaller ampli-

tude.

For the parametric choices

k1 = 0.8, k2 = m1 = γ = −1, l1 = 0.5, l2 = 0.3,

m2 = 0.6, σ1 = σ2 = β = 1, σ3 = 1.2, α = 6,
(34)

Figure 2 shows the head-on collisions between two soli-

tons. In Fig. 2a, the smaller amplitude soliton prop-

agates along the positive x direction, and the larger

amplitude soliton moves along the negative x direction,

they still keep their original wave speeds and shapes af-

ter the head-on interactions. Similarly, Fig. 2b and Fig.

2c display the evolutions of two solitons along with y

and z directions, and there also exist head-on interac-

tions between two solitons.

Case 2. One-order lump solution

By employing the long wave limit method, the lump

solutions can be constructed from solitons with even

orders. Starting from the above two soliton solution,

one can obtain the one-order lump solution. Taking the

limit kj → 0, eηj0 = −1 and k1/k2 = O(1) (j = 1, 2),

along with (32), we have

φ = ϑ1 ϑ2 +
12β

γ(l1 − l2)2
(35)

where

ϑj = x+ ljy +mjz + ωj t,

ωj = − (σ1 + γl2j + σ2lj + σ3mj), j = 1, 2.
(36)

In order to rewrite (35) as quadratic functions, we

set l1 = ρ1 + iν1, l2 = ρ1 − iν1, m1 = κ1 + iλ1, m2 =

κ1 − iλ1. Then we have

φ = (x+ρ1y+κ1z+τ1t)
2+(ν1y+λ1z+θ1t)

2−
3β

γ ν21
. (37)

where

τ1 = γν21 − γρ21 − κ1σ3 − ρ1σ2 − σ1,

θ1 = −2γρ1ν1 − λ1σ3 − ν1σ2.
(38)

Together with the transformation (31), we get the one-

order lump solution of Eq. (3) as displayed in Fig. 3.

Case 3. One-order breather solution

If taking k1 = k2 = µ1, l1 = l∗2 = ρ1 + iν1, m1 =

m∗
2 = κ1 + iλ1, η10 = η20 = 0, (32) is reduced to

φ = 1 + 2eξ1 cos(ξ2) +
γν21

3βµ2
1 + γν21

e2ξ1 (39)

where

ξ1 = µ1(x+ ρ1 y + κ1 z + τ1 t),

ξ2 = µ1(ν1 y + λ1 z + θ1 t),

τ1 = γν21 − βµ2
1 − γρ21 − κ1σ3 − ρ1σ2 − σ1,

θ1 = −2γρ1ν1 − λ1σ3 − ν1σ2.

(40)

Substituting (39) into (31), one may obtain the pe-

riodic soliton solution of equation (3). Figure 4(a)-(c)

depicts the evolution of one-order breather solution in

x− y plane, x− z plane and y − z plane, respectively.

6.2 Three solitons and localized solutions

Taking N = 3 in (32), (31) is exactly the three-soliton

solution of equation (3). Compared with the two-soliton

solutions, there are more abundant interactions between

three solitons. In what follows, we focus on two different

cases.

Case 1. Three-soliton solution
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Fig. 1 (Color online)The overtaking collisions between two solitons given by (31), (32) and (33). a. y = 0, z = 0. b.x = 0, z = 0.
c.x = 0, y = 0.

Fig. 2 (Color online)The head-on collisions between two solitons given by (31), (32) and (34). a. y = 0, z = 0. b.x = 0, z = 0.
c.x = 0, y = 0.

Fig. 3 (Color online)The one-order lump solution given by (31),(37) and (38) with parametric choices ρ1 = 0.2, ν1 = 1.2,
κ1 = 0.5, λ1 = σ1 = 1, σ2 = 0.8, σ3 = −1, α = 6, β = 1, γ = −1. a. In x-y plane. b. In x-z plane. c. In y-z plane.

Selecting proper values for parameters in (32),

k1 = l2 = 0.8, k3 = 1.3, l3 = 1.2,m2 = 0.6,

k2 = l1 = m1 = β = −γ = σ1 = σ3 = 1.0,

m3 = 0.7, σ2 = 0.5, α = 6,

(41)

one can observe the overtaking collisions among three

solitons propagating in the same direction. In Fig. 5a,

three solitons propagate along the positive x direction.

Among these three solitons, the one with the tallest am-

plitude is the lowest. Thus after interaction, the soliton

with the shortest amplitude overtakes other two soli-

tons. Fig. 5b and Fig. 5c depict the overtaking inter-

actions of three solitons in y-direction and z-direction.

In (32), we take the parametric choices

k1 = 0.8, k2 = m1 = γ = −1.0, l1 = σ2 = 0.5,

k3 = 1.3, l2 = 0.3, l3 = −0.4,m3 = 0.7, α = 6,

m2 = −l4 = 0.6, β = σ1 = σ3 = 1.0,

(42)

As observed in Fig. 6a, there exists both head-on and

overtaking interactions between three solitons. Two soli-

tary waves travel along positive x-direction and one

travels along negative x-direction. Note that the taller

soliton overtakes the shorter soliton when both of them

propagate along positive x direction. Fig. 6b and Fig.

6c depicts the collisions of three solitons propagating

along y and z directions.

Case 2. Soliton-breather mixed solution
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Fig. 4 (Color online)The one-order breather given by (31), (39) and (40) with the parameter choices µ1 = 0.4,ρ1 = 0.75,ν1 =
1.2,κ1 = 0.25,λ1 = 1.5, σ1 = σ2 = σ3 = β = 1,γ = −1,α = 6. a. In x-y plane. b. In x-z plane. c. In y-z plane.

Fig. 5 (Color online)The overtaking collisions among three solitons given by (31), (32) and (41). a. y = 0, z = 0. b.x = 0, z = 0.
c.x = 0, y = 0.

Fig. 6 (Color online)The head-on collisions among three solitons given by (31), (32) and (42). a. y = 0, z = 0. b.x = 0, z = 0.
c.x = 0, y = 0.

For the particular choices

k1 = k2 = µ1, l1 = l∗2 = ρ1 + iν1,m1 = m∗
2 = κ1 + iλ1,

k3 = µ2, l3 = ρ2,m3 = κ2, η10 = η20 = η30 = 0,

(32) is reduced to

φ = 1 + 2 eξ1 cos(ϑ) + B12 · e
2ξ1 + [B12L

2e2ξ1 ,

+ 2Leξ1 cos(ϑ+ Λ) + 1] eξ2

ξj = µj(x + ρj y + κj z + τj t), j = 1, 2,

ϑ = µ1(ν1 y + λ1 z + θ1 t),

τ1 = γν21 − βµ2
1 − γρ21 − κ1σ3 − ρ1σ2 − σ1,

τ2 = − (σ1 + βµ2
2 + γρ22 + σ2ρ2 + σ3κ2),

θ1 = −2γρ1ν1 − λ1σ3 − ν1σ2,

(43)

where B12 and L are given by

B12 =
γν21

3βµ2
1 + γν21

,

LeiΛ =
3β(µ1 − µ2)

2 − γ(ρ1 + iν1 − ρ2)
2

3β(µ1 + µ2)2 − γ(ρ1 + iν1 − ρ2)2
.

(44)

Substituting (43)-(44) into (31), one may obtain the

soliton-breather mixed solution of equation (3). Figure

7(a)-(c) depicts the interactions between one soliton

and one breather in x − y plane, it can be observed

that both the solitary wave and the breather wave keep

their velocity and profile after interactions. Their inter-

actions are elastic. Due to the limited space, the inter-

actions between one soliton and one breather in x − z

plane and y − z plane are omitted here.
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Fig. 7 (Color online)The soliton-breather mixed solution given by (31), (43) and (44). The parameters are selected as
µ1 = 0.4, ρ=0.75, ν1 = 1.2, κ1 = 0.25, λ1 = 1.5, µ2 = −1.5, ρ2 = 0.3, κ2 = 0.6, σ1 = σ2 = σ3 = β = −γ = 1,
α = 6. a. t = −20, z = 0. b. t = 0, z = 0. c. t = 20, z = 0.

6.3 Four solitons and localized solutions

Taking N = 4 in (32), equation (31) leads to the four-

soliton solution of the (3+1)-dimensional generalized

KP equation (3). Compared with the two-soliton so-

lutions, there are more abundant interactions between

three solitons. For the sake of simplicity, we only con-

sider two different cases.

Case 1. Four-soliton solution

In (32), we take the parametric choices

k1 = l2 = m2 = 0.8, k2 = m1 = σ1 = σ3 == 1.0,

k3 = l3 = 1.2, k4 = l4 = 1.5, l1 = m3 = σ2 = 0.5,

m4 = 0.3, α = 6, β = 1, γ = −1,

(45)

the overtaking collisions between four solitons are shown

in Figure 8. Fig. 8a depicts the evolution of four solitons

propagating along x direction. It is easily observed that

the shortest soliton moves fastest and overtakes three

other soliton. After interactions, both of these four soli-

tons keep their original speed and profile. Fig. 8b and

Fig. 8c depicts the evolution of four solitons propagat-

ing along y and z directions.

In (32), we take the parametric choices

k1 = −k4 = 0.8, k2 = m1 = γ = −1.0, k3 = 1.3,

l1 = σ2 = −m4 = 0.5,m2 = −l4 = 0.6,m3 = 0.7,

l2 = 0.3, l3 = −0.4, β = σ1 = σ3 = 1.0, α = 6,

(46)

the interactions between four solitons are shown in Fig-

ure 9. Fig. 9a depicts the head-on collision between two

left-going solitons and two right-going solitons along

positive x direction. Fig. 9b and Fig. 9c depicts the

evolution of four solitons propagating along y and z

directions.

Case 2. Two-order lump solution

By using the long wave limit method, the four-soliton

solution can be transformed into

φ = ϑ1 ϑ2ϑ3 ϑ4 +B12ϑ3 ϑ4 +B13ϑ2 ϑ4

+B14ϑ2 ϑ3 +B23ϑ1 ϑ4 +B24ϑ1 ϑ3

+B34ϑ1 ϑ2 +B12B34 +B13B24 +B14B23,

(47)

where

ϑj = x + ljy + mjz + ωj t,

ωj = − (σ1 + γl2j + σ2lj + σ3mj), j = 1, · · · , 4,

Bjs =
12β

γ(lj − ls)2
, 1 ≤ j < s ≤ 4.

(48)

By setting l2 = l∗1,m2 = m∗
1, l4 = l∗3,m4 = m∗

3, we

obtain the two-order lump solution of equation (3). Fig-

ure 10(a)-(c) depicts the evolutions of two-order lump

waves in the x− y plane, x− z plane and y − z plane,

respectively.

7 Conclusions

Searching for higher dimensional integrable models is

a significant and challenging issue in nonlinear math-

ematical physics. Our previous work presented some

novel integrable models in 3+1 and 4+1 dimensions,

and their integrable features as well as exact solutions

are explored from different viewpoints. This paper aims

to extend the classic lower dimensional integrable modes

to arbitrary spatial dimension. Due to the physical and

mathematical significance, we investigate the celebrated

KP equation and propose its (n+1)-dimensional inte-

grable extension. By employing the singularity manifold

analysis, the (n+1)-dimensional KP equation is shown

to be Painlevé integrable without any constrains of pa-

rameters. The binary Bell polynomial method is suc-

cessfully used to the proposed (n+1)-dimensional KP
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Fig. 8 (Color online)The overtaking collisions among four solitons given by (31), (32) and (45). a. y = 0, z = 0. b.x = 0, z = 0.
c.x = 0, y = 0.

Fig. 9 (Color online)The head-on collisions among four solitons given by (31), (32) and (46). a. y = 0, z = 0. b.x = 0, z = 0.
c.x = 0, y = 0.

Fig. 10 (Color online)The two-order lump solution given by (31), (47) and (48). The parameters are chosen as l1 = l∗
2
=

0.5+ 1.2i, l3 = l∗
4
= 0.4− 1.5i, m1 = m∗

2
= 0.4+ i, m3 = m∗

4
= 0.8+ 1.2i, σ1 = 1.0, σ2 = 0.8, σ3 = −1, α = 6, β = 1, γ = −1.

a. t = −6, z = 0. b. t = 0, y = 0. c. t = −3, x = 0.

equation, and as a result, the N-soliton, Bäcklund trans-

formation, Lax pair and infinite conservation laws are

explicitly constructed systematically. Therefore, the ex-

tended KP equation in arbitrary spatial dimensions also

possesses the same integrable properties as the classic

KP equation in 2+1 dimensions. In addition, abundant

interaction structures like overtaking and head-on soli-

tons, one-order lump, two-order lump, breather, and

breather-soliton mixed solutions are analyzed by some

graphs. The research framework developed in this work

may be applicable to some other lower dimensional in-

tegrable models with great physical interests. Future

research is expected to construct more and more inte-

grable models in arbitrary spatial dimension.
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