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A New Nawaz–Enscore–Ham based Heuristic for Permutation 

Flowshop Problem with Bicriteria of Makespan and Machine Idle-time 

A new heuristic based on Nawaz–Enscore–Ham (NEH) algorithm is proposed for 

solving permutation flowshop scheduling problem in this paper. A new priority 

rule is proposed by accounting for the average, mean absolute deviation, 

skewness and kurtosis, in order to fully describe the distribution style of 

processing times. A new tie-breaking rule is also introduced for achieving 

effective job insertion for the objective of minimizing both makespan and 

machine idle-time. Statistical tests illustrate better solution quality of the 

proposed algorithm, comparing to existing benchmark heuristics. 

Keywords: heuristic; flow shop; scheduling; makespan; idle-time 

1 Introduction  

Flow shop scheduling is an active research area in manufacturing, as it has many 

interesting industrial applications and is also an attractive field of theoretical study 

(Yenisey and Yagmahan 2014). Industrial applications can be found in automotive 

manufacturing (Xu and Zhou 2009; Framinan et al. 2014), integrated circuit fabrication 

(Liu and Chang 2000), photographic film production (Aghezzaf and Van Landeghem 

2002), pharmaceutical and agro-food industries ( Boukef, Benrejeb, and Borne 2007). 

The Flow shop scheduling problem has been proved as NP-hard when the machine 

number is larger than 2 (Garey, Johnson, and Sethi 1976). It has become a rather 

challenging problem not only in research, but also for industrial practice. To simplify 

the problem, permutation flow shop scheduling problem (PFSP), in which the order of 

jobs passing through every machine is always kept the same, is often used as it is a 

special case of flow shop problem. PFSP is also proved to be NP-hard (Garey and 

Johnson 1979) and many methods have been proposed to solve PFSP with a criterion of 

minimizing makespan or maximum job lateness. Some successes have been obtained 



(Allahverdi 2004; Chandra, Mehta, and Tirupati 2009). 

The NEH (Nawaz, Enscore Jr., and Ham 1983) heuristic has been regarded as 

the best algorithm to solve PFSP and many heuristics based on NEH have been 

proposed with the objective of minimizing makespan or total flow time, and have 

demonstrated improved performance. NEHKK1 (Kalczynski and Kamburowski 2008), 

NEH-D (Dong, Huang, and Chen 2008), NEHKK2 (Kalczynski and Kamburowski 

2009) and NEHFF (Fernandez-Viagas and Framinan 2014) are currently popular 

constructive heuristic algorithms, representing the state of the art in the field. Single 

objective scheduling is employed in most existing heuristics and the objectives only 

focus on makespan (Gao and Pan 2011; Liu, Fang, and Lin 2013), total flow time (Pan 

and Ruiz 2013; Msakni et al. 2015), or total tardiness (Yenisey and Yagmahan 2014). 

However, a single objective may not be good enough to represent reality as most of real 

life scheduling problems naturally involve multiple objectives. The current trend is to 

apply multiple objectives while further improving existing heuristics by new 

approaches. To start to address this problem, this paper studies the PFSP with two 

objectives, i.e., minimization of both makespan and machine idle-time. Minimizing 

makespan is to deliver orders as soon as possible, while minimizing idle-time could 

help improve machine utilization. In the past, minimizing makespan has been 

mistakenly regarded as equivalent to minimizing machine idle-time, but recent research 

by (Liu, Jin, and Price 2014) has shown that although they are related, they are clearly 

different and in fact can be in conflict with each other. Herein, a novel heuristic 

algorithm based on NEH approach is proposed by utilizing a new priority rule and a 

new tie breaking method with the two objectives. Its effectiveness is validated through 

statistical tests with common benchmarks (Taillard 1993; Vallada, Ruiz, and Framinan 



2015) by comparing to existing dominating algorithms including NEH, NEHKK1, 

NEH-D, NEHKK2 and NEHFF. 

In literature, many heuristic methods have been introduced to solve PFSP. Early 

examples can be found in (Johnson 1954; Palmer 1965; Gupta 1971; Campbell et al. 

1970; Gupta 1976; Dannenbring 1977). Nawaz et al. (1983) proposed a ground-

breaking algorithm on which many heuristics were introduced for PFSP (Framinan et al. 

2004; Ruiz and Maroto 2005; Gupta and Stafford 2006). Recent advance lies in the 

proposition of NEHKK1 (Kalczynski and Kamburowski 2008), NEH-D (Dong et al. 

2008), NEHKK2 (Kalczynski and Kamburowski 2009) and NEHFF (Fernandez-Viagas 

and Framinan 2014), all of which demonstrated improved performance. 

Typically, two key steps are required in these NEH-based heuristic algorithms. 

The first step is to sort all jobs with one priority rule to form the initial partial sequence, 

and the second step is to insert the rest jobs one by one to the existing sequence for 

achieving certain objective. Since ties often occur in the second step, the tie-breaking 

method is also crucial to the performance of the heuristic algorithm. In NEH algorithm, 

the priority rule is based on the non-increasing sum of processing times, and job 

insertion is with the objective to minimize makespan, but no tie-breaking method is 

used. Once a tie occurs, usually the first feasible position is selected. Based on the first 

or the second step, many improved NEH heuristics were developed. Nagano and 

Moccellin (2002) developed a priority rule according to the non-increasing difference 

between total processing times and job waiting time, and it was competitive compared 

to NEH. Low et al. (2004) developed the MNEH algorithm by introducing a priority 

rule according to the descending sum of artificial processing times and a tie-breaking 

rule that chose the position with the least idle-time on the bottleneck machine. 

Kalczynski and Kamburowski (2007) developed a series of NEH modifications 



including NEHKK, NEHKK1 and NEHKK2 based upon the concept of Johnson’s rule. 

Dong et al. (2008) introduced the NEH-D heuristic, which includes a priority rule by 

taking account of processing time variation combined with mean value and a tie-

breaking rule choosing the position with the least machine utilization variation. 

Fernandez-Viagas and Framinan (2014) proposed a tie-breaking rule aiming to 

minimize total idle-time in system in his NEHFF heuristic. Table 1 summarizes some 

recent popular heuristic algorithms. 

Table 1. Some NEH-based heuristics in terms of priority rule and tie-breaking rule 

Heuristics  Priority rule Tie-breaking rule 

NEH 

(1983) 

Descending sum of operation times Usually the first 

position is selected 

when ties exist 

NEHNM 

(2002) 

Descending difference between total 

processing time and lower bound of job 

waiting time 

Same as NEH 

MNEH 

(2004) 

Descending sum of artificial processing 

times 

The position with the 

least idle-time on 

bottleneck machine is 

selected 

NEHKK 

(2007) 

Same as NEH The position is selected 

with the least maximum 

completion time of the 

sequence between two 

tie positions 

NEHKK1 

(2007) 

Non-increasing sum of weighted 

processing times min(ai, bi) where  ai = ∑ [(m−1)(m−2)2 + m − k]mk=1 ti,k ,  bi = ∑ [(m−1)(m−2)2 + k − 1]mk=1 ti,k 

Job x is inserted into 

the first (or last) 

position if  ax ≤  bx  (or  ax ≥  bx) 

NEH-D 

(2008) 

Descending sum of mean and standard 

deviation of processing times 

The position with more 

balanced machine 

utilization is selected 

NEHKK2 

(2009) 

Non-increasing sum of weighted 

processing times min(ai, bi) where  ai = ∑ ti,kmk=1 + ∑ (h−34s−34 −sh=1
Same as NEHKK1 with 

corresponding  ax  and  bx 



ε) (ts+1−h,i − tt+h,i) ,  bi = ∑ ti,kmk=1 −
∑ (h−34s−34 − ε)sh=1 (ts+1−h,i − tt+h,i)  and s = ⌊m/2⌋, t = ⌈m/2⌉ 

NEHFF 

(2014) 

Same as NEH Choose the position 

with the least front 

delay and idle-time 

 

Machine idle-time has been rarely utilized in the literature for PFSP, but it is an 

important performance measure in manufacturing enterprises, and many companies are 

using it to drive their operators’ behaviour on the shop floor. As shown in Fig.1, apart 

from machine operations, the empty space is categorized as front delay, idle-time (IT), 

and back delay (Spachis 1978). Front delay could be occupied by production prior to the 

current batch, while back delay could be filled in by the subsequent operations, but the 

idle-time is a real waste, which should be minimized. The idle-time on machine k 

generated by the ith job can be computed by IT[i],k = max{C[i],k−1 − C[i−1],k, 0}. In the 

literature, minimizing machine idle-time was adopted as a strategy to minimize 

makespan instead of the objective. The most widely accepted objective is to minimize 

idle-time on the last machine with a makespan criterion. Jobs which do not generate 

idle-time on last machine are chosen and added to schedule one by one (Sarin and 

Lefoka 1993), which is similar to MINimum Idle-time (MINT) algorithm which intends 

to minimize idle-time on the last machine (Gupta 1972). Liu and Reeves (2001) 

introduced an idle-time based index for composite heuristics for PFSP by calculating 

the fitness of unscheduled jobs to the last job of partial schedule. Few studies have 

focused on idle-time minimization directly. 

 



Figure 1. Front delay, idle-time (IT) and back delay of schedule (i.k indicates the 

processing time of job i on machine k) 

A single criterion has been widely used in the heuristics for PFSP, but a single 

criterion is not good enough for describing complex practical problems. Therefore, 

researchers have begun to consider applying multiple criteria to solve many real-world 

scheduling problems (T’kindt and Billaut 2006). Framinan et al. (2002) developed two 

constructive heuristics by using the NEH search strategy for the two-objectives of 

makespan and flowtime. Braglia and Grassi (2009) developed a heuristic MOGI by 

integrating the technique for ordered preference by similarity of ideal solution 

(TOPSIS) with NEH for the objective of makespan and maximum tardiness. The multi-

criteria decision making technique TOPSIS is adopted for each step of the NEH 

heuristic. Chandra et al. (2009) proposed a heuristic procedure for PFSP with objective 

of earliness and tardiness for a bulk-drugs manufacturer with wide range of due date. In 

the recent literature review (Yenisey and Yagmahan 2014) the consideration of PFSP 

with multiple objectives concluded that much attention was paid to multi-objective 

heuristics for PFSP but idle-time criterion has rarely been taken into account for multi-

objectives scheduling. Therefore, herein we consider idle-time minimization together 

with makespan criterion for PFSP. 

The remainder of this paper is organized as follows. In section 2, the example 

problem studied is described. The newly proposed heuristic is developed in Section 3. 

In section 4, test cases and computational results are presented, assessing the 

effectiveness of the proposed algorithm. Final conclusions are presented in section 5. 

2. Problem definition 

In this example ofa permutation flowshop, n jobs are to be processed consecutively on 

m machines and the order of jobs on every machine keep the same. Since the 



movements of jobs are not in the same pace, buffers exist between machines when jobs 

wait, and machines may be idle if no job is ready. In order to complete jobs as soon as 

possible and maximize machine utilization, makespan and machine idle-time are to be 

minimized. Following convention (T’kindt and Billaut 2006) the problem can be 

categorized as Fm|prmu|Cmax,IT, where Fm represents an m machine flow shop, prmu 

stands for permutation, and Cmax,IT represent makespan and idle time. Table 2 shows 

the notation used in this paper. 

Table 2. Notation adopted in this paper 

Parameter Description  

n Total number of jobs 
m Total number of machines 
i Index for job, 1≤ i ≤n 
k Index for machine, 1≤ k ≤m 
[i] The ith job of schedule 
ti,k Processing time of job i on machine k 
IT[i],k Idle-time of machine k generated by the ith job 
C[i],k Completion time of the ith job on machine k  

The objective function can be expressed as 

 Min: F = 𝑤1 ∗ C[n],m + (1 − 𝑤1) ∑ ∑ IT[i],jmj=1ni=1  (1) 

where w1 is the weight of C[n],m. The assumptions used in this paper are described 

below.  

(1) All jobs are available at time zero and start as soon as possible. 

(2) Processing time is known and deterministic. 

(3) Setup time is included in processing time. 

(4) Machines are continuously available but cannot process two or more jobs 

simultaneously. 

(5) Job pre-emption is not permitted. 

(6) Buffers’ capacity between machines is infinite. 



(7) Only permutation schedules are allowed. 

3. The proposed algorithm 

3.1 PRLJP: New priority rule 

All jobs are sorted according to the descending sum of  

(AVGi + MADi + abs(SKEi)1/3 + 1/KURi1/4), 

where AVGi represents the average processing time of job i on all machines, MADi is 

the mean absolute deviation of processing times of job i, SKEi and KURi represents 

skewness and kurtosis of processing times of job i respectively. Mathematically, they 

are expressed as follows. 

 AVGi 1m ∑ ti,kmk=1 , (2) 

 MADi = 1m ∑ |ti,k − AVGi|mk=1 , (3) 

 SKEi = 1𝑚 ∑ (ti,k−AVGi)3mk=1(√ 1𝑚 ∑ (ti,k−AVGi)2mk=1 )3, (4) 

 KURi = 1𝑚 ∑ (ti,k−AVGi)4mi=1( 1𝑚 ∑ (ti,k−AVGi)2mk=1 )2. (5) 

The general idea of the new priority rule is the same as NEH, i.e., priority is 

given to the job with the largest total processing time. But further components are added 

to more accurately describe the distribution of processing times on every machine, 

which would have far more effect on the scheduling solution. In the literature, STDi is 

used for this purpose in NEH-D (Dong, Huang, and Chen 2008), which demonstrated 

improved performance. But the square effect of the difference between sample values 



and mean value in computing STDi could not be eliminated after taking the square root 

and it can easily enlarge data deviation. To overcome the shortcoming of standard 

deviation, herein, the mean absolute deviation, MADi, is considered. 

Although the average AVGi and the MADi are considered, they are not sufficient 

to describe the whole distribution of processing times. The average is used to measure 

central tendency and the deviation MADi  depicts the degree of variation from the 

average. However, as shown in Fig. 2 and Fig. 3, different distributions may share the 

same average and deviation. But they should be differentiated when scheduling. For this 

purpose, skewness and kurtosis are proposed to allow this differentiation. A large 

skewness (positive and negative) indicates high frequency of operation times deviated 

from the average. Therefore the corresponding job should be given a higher priority. 

Kurtosis defined in Eq. (5) measures the relative peakedness of a distribution. Low 

kurtosis means high processing time dispersion. So the job with a large kurtosis of 

processing times on each machine should be allocated high priority. Therefore, two new 

hypotheses are proposed here:  

1. a job with a large skewness of processing times should be given a higher 

priority;  

2. a job with a low kurtosis should be given a higher priority. 

 



Figure 2. Distributions A, B and C with the same average and deviation but different 

skewnesses 

 

 

Figure 3. Distributions A, B and C with the same average, deviation and skewness but 

different kurtoses 

Actually, the average is the first moment of a set of data while the mean absolute 

deviation is used to stand for the second central moment. The skewness and kurtosis 

represent the 3rd and 4th central moments respectively. To make them dimensional, the 

3rd order root of SKEi and 4th order root of  KURi are adopted together with AVGi  and MADi when allocating priorities.  

3.2 TBLJP: New tie-breaking for job insertion 

In the new tie-breaking rule, named as TBLJP, the average and standard deviation of job 

flow times are used to choose the position for the newly inserted job. Mathematically, 

the position associated with the largest P = (f̅ − std(f))/Cmax , where f̅ = 1n ∑ fini=1  

represents the mean dynamic flow times of all jobs,  fi = C[i],m − C[i−1],1 , C[0],1 = 0, 

and std(f) = √ 1n−1 ∑ (fi − f)̅2ni=12
 represents the standard deviation of flow times. 

Usually minimizing flow times leads to makespan minimization and machine 

idle-time increase, and vice versa. The example in Fig. 4 illustrates this point. In Fig. 



4(b), the average dynamic flow time is lower than the one in Fig. 4(a) but it has more 

idle-time in the schedule. Given the same sum of idle time and makespan, a large 

average flow time makes the schedule tight with less idle-time in schedule at the cost of 

makespan. In order to balance the two objectives, large average flow time divided by 

makespan is pursued. Notably, small flow time variation keeps the schedule smooth. 

Consequently, large average and low variation of job flow time are adopted as a 

combined tie-breaking rule while keeping small makespan. 

 

Figure 4. Tie-breaking rule: (a) job 1 added into the 1st position; (b) job 1 added into the 

2nd position 

For example in Fig. 4, job 1 is going to be inserted into partial sequence 3-2 and 

two new partial sequences with the same objective value 24 are generated, (a) 1-3-2 and 

(b) 3-1-2. From Fig. 4 (a) it can be seen that the flow times of job 1, 3 and 2 are 13, 13 

and 15. The average is 13.67, maximum completion is 21 and standard deviation is 1.15 

while in sequence (b) the flow times are 9, 13 and 13 respectively with average of 

11.67, maximum completion time of 19 and deviation of 2.31. Therefore, sequence 1-3-

2 is selected with P of (13.67-1.15)/21=0.60, larger than that of sequence 3-1-2 with P 

of (11.67-2.31)/19=0.49 according to the new tie-breaking method. 



 

3.3 NEHLJP: New heuristic based on PRLJP & TBLJP 

Based on the above proposed rules, a new heuristic named NEHLJP is proposed as 

follows. 

(1) Sort all jobs according to descending sum of 

(AVGi+MADi+abs(SKEi)1/3+1/KURi1/4); 

(2) Take the first two jobs and determine the 2-job partial sequence; 

(3) For the rest of jobs, insert it into each possible position and retain the partial 

sequence associated with the least objective value, as defined in Eq. (1). If ties 

exist, tie-breaking method is applied; 

(4) Repeat step 3 until every job is scheduled. 

4. Tests and results 

To evaluate the performance of the new proposed heuristic, Taillard (Taillard 1993) test 

bed, VRF benchmark (Vallada, Ruiz, and Framinan 2015) and a randomly generated 

test bed were used. The test bed presented by Taillard includes 120 instances, 12 

different size problems ranging from small size problem, n=20 and m=5 to large size 

problem n=500 and m=20. Each problem includes 10 instances. It is widely used for 

PFSP with the makespan criterion, and it has also been applied to criterion of total or 

mean flow time (Sarin and Lefoka 1993). VRF benchmark is the newest hard test bed 

including 480 instances ranging from n=10 and m=5 problem to n=800 and m=60 

problem. Apart from these two benchmarks, a set of randomly generated instances were 

also used due to the fluctuated performance of each exiting heuristics on different test 

beds. There are 450 instances randomly generated with n ∈ {10, 20, 40, 80, 120, 160, 



200, 300, 400} and m ∈ {10, 20, 30, 40, 50}, 10 replications for each combination. The 

processing times are set uniformly distributed in the range of [1, 99]. So three test beds 

were used and 1050 instances were tested in total. The Relative Percentage Deviation 

(RPD) is employed as a performance measure where RPDq = HSq−RSqRSq ∙ 100%, HSq 

represents the value obtained by heuristic of problem instance q and RSq is the objective 

function value of the best approach of the instance. All algorithms are run in Matlab 

R2013b on a PC with CORE i5 -3210M CPU 2.50 GHz and 4.00GB memory.  

To fully depict the performance of the new proposed heuristic NEHLJP, 11 sets 

of tests were conducted under different weights of makespan with w1 = 0, 0.1, 0.2, … ,1 

respectively. Figure 5 shows performance of each heuristic under different weights of 

objectives in terms of average RPD (ARPD) on Taillard test bed. As the weight of 

makespan varyies in the objective, the ARPD values of reference heuristics fluctuate. 

For example, NEH-D is better than the others when only one criterion is applied, but it 

is worse when bicriteria is given. When idle-time and makespan carry equal weight, 

NEHLJP, NEHKK1 and NEHKK2 show better performance than NEH-D. This 

indicates that idle-time and makespan are different although they may be related.  

To coordinate the two objectives, it is reasonable to define w1 as 0.5. Because 

makespan and idle-time are both measures of time which are limited resource for 

industry. Taking the results of NEH-D heuristic on 20 jobs, 50 jobs and 100 jobs of 

Taillard test bed as examples, the average of makespan and idle-time are 1868, 3491, 

6096 and 1853, 2873, 3944 respectively. Makespan and idle-time have the same 

magnitude in the objective function. Therefore the weighted objective function is 

feasible. 



 

Figure 5. Performance of each heuristic with different w1 on Taillard test bed 

To further verify the effectiveness of the proposed NEHLJP heuristic, the new 

sorting rule and tie-breaking rule were tested in the following sections respectively by 

comparing to existing heuristics on Taillard benchmark. 

4.1 Test results of using the new priority rule 

The new priority rule is adopted in NEH heuristic combined with other four existing 

priority rules. As shown in Table 3, the new priority rule in PRLJP was superior to that of 

existing heuristics in terms of ARPD, 22.41%, 10.34%, 7.04% and 13.85% better than 

NEH, PRD, PRKK1 and PRKK2 respectively. 

Table 3. ARPDs of each priority rule adopted in NEH heuristic (%) 

Instance NEH PRD PRKK1 PRKK2 PRLJP 
20|5 2.07 2.51 1.47 1.95 2.15 
20|10 4.80 5.38 3.67 6.18 3.11 
20|20 4.04 4.37 4.32 2.44 4.09 
50|5 0.79 1.36 0.55 0.55 1.16 
50|10 3.69 3.66 3.33 3.79 3.08 
50|20 3.52 2.03 2.10 4.33 2.14 
100|5 0.80 0.45 0.54 0.66 0.70 
100|10 2.30 2.06 2.05 1.60 1.72 
100|20 3.73 2.05 2.89 3.44 2.33 



200|10 1.12 1.10 0.92 0.76 0.57 
200|20 3.45 1.66 2.77 2.93 2.53 
500|20 2.00 1.34 2.36 0.48 1.49 
AVG 2.69 2.33 2.25 2.42 2.09 

4.2 Test results of using the tie-breaking rule 

The test results of tie-breaking rule are shown in Table 4. Each tie-breaking rule is 

adopted in NEH heuristic. The ARPDs of reference heuristics are 0.95, 0.92, 0.90, 0.97, 

0.78 and 0.89. The results show that TBFF outperforms the others, followed by TBLJP, 

TBKK1,TBKK2, TBD and NEH. Significant differences between TBLJP and other four tie-

breaking rules can be observed. However, the tie-breaking rule TBLJP achieves better 

performance with the new proposed priority rule PRLJP than TBFF. Due to the superiority 

of the new priority rule, every tie-breaking rule is applied together with the new priority 

rule and tested on Taillard benchmark. As depicted in Table 5, by adopting the new 

priority rule, the new tie-breaking rule TBLJP resulted in the best solution quality with an 

ARPD value of 0.87, better than TBFF. 

Table 4. Tie-breaking rule adopted in NEH heuristic (%) 

Instance NEH TBD TBKK1 TBKK2 TBFF TBLJP 
20|5 0.31 0.35 0.52 0.53 0.78 0.65 
20|10 0.55 0.14 0.55 0.55 0.29 0.22 
20|20 0.00 0.10 0.00 0.00 0.10 0.10 
50|5 0.10 0.57 0.13 0.16 0.40 0.42 
50|10 2.66 3.06 3.11 3.11 1.03 2.67 
50|20 0.14 0.18 0.16 0.16 0.13 0.20 
100|5 0.23 0.20 0.21 0.22 0.28 0.29 
100|10 1.31 0.76 0.77 0.78 1.07 0.59 
100|20 1.73 0.84 1.09 1.09 1.12 0.60 
200|10 1.04 0.74 0.73 0.60 0.91 0.96 
200|20 1.87 2.36 1.77 1.86 2.02 2.57 
500|20 1.50 1.79 1.78 2.63 1.25 1.39 
AVG 0.95 0.92 0.90 0.97 0.78 0.89 

Table 5. Each tie-breaking rule implemented with PRLJP (%) 

Instance NEH TBD TBKK1 TBKK2 TBFF TBLJP 
20|5 0.42 0.29 0.16 0.15 0.60 0.18 
20|10 0.53 0.42 1.26 1.26 1.02 1.10 



20|20 0.07 0.00 0.00 0.00 0.05 0.22 
50|5 0.17 0.28 0.13 0.08 0.07 0.16 
50|10 2.21 1.32 1.75 1.75 1.54 0.68 
50|20 0.70 1.54 0.59 0.59 0.52 0.82 
100|5 0.29 0.31 0.46 0.53 0.11 0.29 
100|10 0.97 1.12 0.69 0.50 0.91 1.17 
100|20 1.94 3.27 1.04 1.04 2.53 2.15 
200|10 0.79 0.99 0.99 0.90 0.95 0.88 
200|20 1.74 1.90 2.79 3.26 1.34 1.88 
500|20 1.69 1.75 1.34 1.50 1.40 1.70 
AVG 0.89 1.04 0.90 0.92 0.88 0.87 

4.3 Test results of the new heuristic algorithm with the new priority and tie-

breaking rule 

Table 6 shows the test results of each heuristic with respect to bicriteria of makespan 

and idle-time on Taillard benchmark. The ARPD of NEHLJP is 2.09, the best among all 

reference heuristics, followed by NEHKK1, NEH-D, NEHKK2, NEHFF and NEH. The 

ARPD results of all reference heuristics on VRF benchmark are 3.18, 2.46, 3.12, 2.56, 

3.06 and 2.41 respectively. NEHLJP demonstrates that the best solution quality is that 

with the lowest ARPD value. It can be seen from Table 6 and 7, that the performance of 

existing heuristics fluctuates largely, indicating that the two objectives makespan and 

machine idle-time conflict sometimes. It can be concluded that the new heuristic 

NEHLJP performs the best on both test beds. 

Table 6. ARPD of each heuristic with bicriteria using Taillard benchmark (%) 

Instance NEH NEH-D NEHKK1 NEHKK2 NEHFF NEHLJP 
20|5 2.12 2.44 1.67 2.22 2.61 1.96 
20|10 5.10 5.31 4.04 6.16 4.82 4.04 
20|20 3.96 4.28 4.23 2.35 4.06 4.16 
50|5 0.66 1.51 0.43 0.55 0.96 1.02 
50|10 3.80 3.30 3.37 3.81 2.15 1.66 
50|20 3.61 1.87 2.38 4.25 3.59 2.36 
100|5 0.77 0.41 0.52 0.72 0.83 0.68 
100|10 2.02 1.33 0.90 0.47 1.78 1.65 
100|20 4.65 3.32 3.48 4.22 4.04 3.46 
200|10 1.15 1.06 0.81 0.95 1.02 0.68 
200|20 2.48 2.19 1.71 1.77 2.64 1.72 
500|20 2.16 1.33 2.78 2.09 1.90 1.64 



AVG 2.71 2.36 2.19 2.46 2.53 2.09 

Table 7. ARPD of each heuristic with bicriteria on VRF benchmark (%) 

Problem NEH NEH-D NEHKK1 NEHKK2 NEHFF NEHLJP 

S L S L S L S L S L S L S L 
10×5 100×20 0.76 3.61 2.05 2.32 0.67 4.32 0.07 2.43 1.09 4.47 1.37 4.08 

10×10 100×40 2.10 2.38 1.09 0.60 1.80 2.34 2.72 1.69 2.10 2.29 1.55 2.81 
10×15 100×60 4.28 3.23 1.54 1.58 3.09 3.42 3.01 2.66 4.28 3.23 2.13 2.24 
10×20 200×20 3.90 3.82 2.41 2.88 4.17 2.91 1.97 3.03 3.90 2.88 2.46 2.23 
20×5 200×40 3.07 3.06 5.30 2.43 3.33 3.31 4.23 2.49 3.63 3.15 2.21 2.68 

20×10 200×60 4.88 3.31 5.11 2.80 5.17 2.69 1.74 2.47 5.02 3.29 4.79 2.14 
20×15 300×20 5.94 3.20 2.30 1.85 6.64 2.14 4.92 3.00 5.88 2.67 4.66 1.61 
20×20 300×40 3.54 3.21 3.49 2.45 2.97 3.13 2.77 2.21 3.54 2.24 3.34 1.98 
30×5 300×60 2.65 1.83 1.51 2.23 1.19 1.63 2.38 1.24 2.56 2.11 2.82 1.05 

30×10 400×20 5.59 3.10 4.24 1.68 6.48 3.04 4.61 2.20 5.37 2.53 2.87 1.93 
30×15 400×40 4.27 2.45 4.75 0.65 3.41 1.79 7.21 1.99 4.17 2.15 5.32 0.84 
30×20 400×60 4.06 2.12 3.17 1.55 4.22 2.57 2.36 1.67 4.06 2.24 2.74 2.61 
40×5 500×20 2.20 3.30 2.21 1.38 2.21 3.17 2.24 1.35 2.42 2.04 2.29 2.76 

40×10 500×40 4.67 2.82 2.56 1.98 5.12 3.10 5.90 2.69 6.35 1.77 2.38 2.60 
40×15 500×60 4.84 2.40 5.67 1.68 4.61 1.70 3.82 1.89 4.14 1.79 3.41 2.02 
40×20 600×20 3.80 2.23 5.46 1.14 6.45 2.20 3.11 0.34 4.46 2.13 3.28 2.03 
50×5 600×40 1.28 2.52 0.90 1.29 0.90 1.59 1.82 0.75 0.51 1.23 1.29 0.92 

50×10 600×60 3.65 2.41 1.58 1.60 3.85 2.45 4.08 1.10 2.57 1.44 2.15 1.96 
50×15 700×20 3.02 1.57 4.15 1.27 4.55 1.86 3.76 1.12 3.03 1.87 5.00 2.00 
50×20 700×40 4.60 2.44 5.96 1.81 5.01 1.95 5.16 1.57 5.20 3.00 2.41 1.71 
60×5 700×60 1.91 2.02 1.97 1.21 1.53 2.20 1.65 1.11 3.26 2.03 1.77 1.95 

60×10 800×20 3.28 1.80 2.86 1.20 2.31 1.96 2.30 0.51 2.64 1.74 2.44 1.23 
60×15 800×40 3.83 3.11 1.97 1.53 4.19 2.36 4.11 1.64 4.69 2.62 3.13 1.52 
60×20 800×60 5.62 2.93 5.40 1.17 6.22 1.89 3.88 1.85 5.20 1.88 2.73 0.44 

AVG 3.18 2.46 3.12 2.56 3.06 2.41 

 

In order to further confirm the superiority of NEHLJP, the test on randomly 

generated instances is conducted and the results are shown in Table 8. The ARPD value 

of NEHLJP was 2.02, ascendingly followed by NEH-D, NEHKK2, NEHFF, NEHKK1 

and NEH.  

Table 8. ARPD of each heuristic with bicriteria on randomly generated benchmark (%) 

Instance NEH NEH-D NEHKK1 NEHKK2 NEHFF NEHLJP 
10|10 3.27 1.65 4.37 5.05 3.27 1.88 
10|20 2.67 3.53 2.67 2.60 2.67 3.07 
10|30 1.78 1.23 3.41 3.44 1.78 0.82 
10|40 3.44 1.29 2.19 3.05 3.44 1.80 
10|50 1.46 3.21 1.46 1.64 1.46 2.20 
20|10 3.55 3.17 3.28 4.52 3.38 2.02 
20|20 5.10 5.01 5.32 2.60 5.10 2.79 
20|30 3.78 3.90 4.37 5.07 3.78 3.10 
20|40 3.88 2.60 3.67 2.86 3.88 2.20 
20|50 2.22 4.50 2.46 3.61 2.35 4.21 



40|10 3.07 3.27 1.69 3.75 2.54 2.43 
40|20 3.58 2.90 1.89 4.31 3.29 3.58 
40|30 4.28 3.09 4.86 3.12 4.28 2.94 
40|40 3.09 2.03 3.77 3.31 3.33 1.78 
40|50 2.57 2.98 2.34 2.79 2.58 0.96 
80|10 1.52 1.61 1.99 2.12 1.23 2.34 
80|20 5.73 2.85 3.26 1.79 5.04 2.53 
80|30 4.85 3.90 4.08 4.51 4.84 1.84 
80|40 3.51 3.24 3.14 3.54 3.26 1.57 
80|50 1.79 1.80 2.85 1.88 1.79 2.20 
120|10 1.18 1.52 1.16 1.41 1.15 1.42 
120|20 4.82 2.56 3.49 2.62 4.66 3.10 
120|30 2.23 2.42 2.86 2.73 2.33 3.75 
120|40 2.37 2.46 2.47 3.19 2.51 1.75 
120|50 1.86 2.96 3.03 2.23 1.64 2.13 
160|10 1.48 1.19 1.46 0.63 0.97 1.09 
160|20 3.37 3.33 2.72 3.37 2.62 0.77 
160|30 3.23 2.14 3.15 3.15 2.46 2.05 
160|40 3.46 2.35 3.02 2.41 2.15 2.08 
160|50 2.88 1.15 3.10 2.07 2.74 2.03 
200|10 0.91 0.86 0.92 0.70 0.50 0.91 
200|20 2.67 2.11 2.37 1.79 2.84 2.84 
200|30 2.72 2.16 3.24 1.41 2.20 2.30 
200|40 2.18 1.65 2.99 2.90 2.06 1.14 
200|50 2.19 1.52 1.79 1.81 1.72 1.16 
300|10 0.59 0.21 0.62 0.45 0.38 0.72 
300|20 2.82 0.94 2.15 2.44 1.92 1.08 
300|30 2.43 3.13 1.27 2.79 2.88 3.44 
300|40 1.88 1.44 2.06 1.83 2.58 1.84 
300|50 2.21 1.80 2.12 1.99 2.97 1.65 
400|10 0.36 0.23 0.37 0.22 0.50 0.18 
400|20 1.96 1.09 1.61 1.74 1.75 1.57 
400|30 3.77 2.61 3.50 1.35 3.90 2.06 
400|40 2.37 2.03 1.52 1.14 2.08 2.13 
400|50 2.37 2.73 2.22 1.41 1.67 1.40 
AVG 2.74 2.32 2.63 2.52 2.59 2.02 

 

In order to check if the differences of ARPD between heuristics are statistically 

significant, a multifactor analysis of variance (ANOVA) was carried out. All three 

hypotheses (normality, homocedasticity and independence of the residuals) were 

carefully checked but were not found to be suitable. The normality is rejected since all 

variables focus on the right side of zero according to the adopted performance measure. 

Therefore a non-parametric Mann-Whitney test was conducted. 



When the confidence level was set as 0.05, no significant differences were 

observed on Taillard benchmark among all reference heuristics. The reason is due to the 

small size of benchmark (Kalczynski and Kamburowski 2008), (Fernandez-Viagas and 

Framinan 2014). While on VRF benchmark, NEHLJP showed no significant difference 

from other heuristics except for NEH. The reason is both benchmarks are developed for 

makespan criterion instead of bicriteria of makespan and idle-time. No significant 

performance differences among all heuristics can be observed. While on the randomly 

generated test bed, it can be concluded that NEHLJP is significant better than existing 

heuristics. The non-parametric test results can be seen in Table 9. 

Table 9. Non-parametric test of Mann-Whitney on the new random test bed 

Algorithm P 
NEH – NEH-D 0.003 
NEH – NEHKK1 0.315 
NEH – NEHKK2 0.034 
NEH – NEHFF 0.319 
NEH – NEHLJP 0.000 
NEH-D – NEHKK1 0.064 
NEH-D – NEHKK2 0.497 
NEH-D – NEHFF 0.059 
NEH-D – NEHLJP 0.022 
NEHKK1 – NEHKK2 0.277 
NEHKK1 – NEHFF 0.964 
NEHKK1 – NEHLJP 0.000 
NEHKK2 – NEHFF 0.245 
NEHKK2 – NEHLJP 0.005 
NEHFF – NEHLJP 0.000 

 

With respect to computation times of each heuristic, extra computation time is 

needed for calculating two objectives comparing to with single criterion of makespan. 

For example, it will take 0.3 secs to complete the computation for a 50 jobs 20 

machines problem, and 240 secs for 200 jobs and 20 machines problem for NEHLJP. 

The computational time is relatively small, within the manageable scale even for a large 



size problem, given the computer’s average speed. In practice, the schedule quality is 

the key factor to be considered for industry instead of computation time. 

5. Conclusions 

In this paper, a new heuristic named NEHLJP is proposed by incorporating one new 

priority rule and one new tie-breaking rule, with bicriteria of both makespan and idle-

time. In order to validate the NEHLJP performance,  the Taillard test bed, Vallada test 

bed and a randomly generated test bed are used. The test results show that NEHLJP 

heuristic can provide a high quality solution on all test beds, outperforming all existing 

heuristics.  

The main contribution of this paper lies in the new proposed priority rule PRLJP 

taking account of skewness and kurtosis representing the 3rd and the 4th moment of a 

distribution. By this new rule, processing time distribution can be differentiated so as to 

be sequenced. Additionally, a new tie-breaking mechanism TBLJP for minimizing 

makespan and idle-time simultaneously is introduced. The effectiveness of both PRLJP 

and TBLJP are validated through statistical tests. 
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Figure 1. Front delay, idle-time (IT) and back delay of schedule (i.k indicates the 

processing time of job i on machine k) 

Figure 2. Distributions A, B and C with the same average and deviation but different 

skewnesses 
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different kurtoses 

Figure 4. Tie-breaking rule: (a) job 1 added into the 1st position; (b) job 1 added into the 

2nd position 

Figure 5. Performance of each heuristic with different w1 on Taillard test bed 
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