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A new nickel‑based co‑crystal 
complex electrocatalyst amplified 
by nio dope pt nanostructure 
hybrid; a highly sensitive approach 
for determination of cysteamine 
in the presence of serotonin
Hassan Karimi‑Maleh1,2,3*, Fatemeh Karimi4,5*, Yasin orooji6,7, Ghobad Mansouri8, 
Amir Razmjou9,10,11, Aysenur Aygun12 & fatih Sen12*

A highly sensitive electrocatalytic sensor was designed and fabricated by the incorporation of 

NiO dope Pt nanostructure hybrid (NiO–Pt–H) as conductive mediator, bis (1,10 phenanthroline) 
(1,10-phenanthroline-5,6-dione) nickel(II) hexafluorophosphate (B,1,10,P,1,10, PDNiPF6), and 
electrocatalyst into carbon paste electrode (cpe) matrix for the determination of cysteamine. the 

NiO–Pt–H was synthesized by one-pot synthesis strategy and characterized by XRD, elemental 
mapping analysis (MAP), and FESEM methods. The characterization data, which confirmed good 
purity and spherical shape with a diameter of ⁓ 30.64 nm for the synthesized NiO–Pt–H. NiO–
Pt–H/B,1,10, P,1,10, PDNiPF6/CPE, showed an excellent catalytic activity and was used as a powerful 
tool for the determination of cysteamine in the presence of serotonin. The NiO–Pt–H/B,1,10, P,1,10, 
PDNiPF6/CPE was able to solve the overlap problem of the two drug signals and was used for the 
determination of cysteamine and serotonin in concentration ranges of 0.003–200 µM and 0.5–260 µM 
with detection limits of 0.5 nM and 0.1 µM, using square wave voltammetric method, respectively. 
The NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE showed a high-performance ability for the determination 
of cysteamine and serotonin in the drug and pharmaceutical serum samples with the recovery data of 

98.1–103.06%.

Cysteamine is a simple aminothiol with a variety of medicinal applications used to treat various diseases such as 
cystinosis and  hypothyroidism1. Cysteamine is prescribed as a radiation-protective agent drug to treat radiation 
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 sickness2. Overdose of cysteamine brings about many side e�ects such as dizziness, rash, skin odor, headache, 
and tiredness. �erefore, the analysis of cysteamine should be monitored for administrated patients. On the other 
hand, taking cysteamine is e�ective in the serotonin neurotransmission level in  body3. Also, the use of cysteamine 
in the treatment of patients can change tissue serotonin in duodenal  ulceration4. �erefore, the simultaneous 
measurement of these two compounds is pivotal in the patients treated with cysteamine. Due to the impor-
tant analysis of these compounds, many researchers focused on the fabrication of analytical sensors for their 
determination in biological and clinical  samples5–9. Although there have been no reports on the simultaneous 
measurement of cysteamine and serotonin, various analytical methods such as chromatography, spectroscopy, 
and electrochemical sensors have been separately reported for each of these  compounds8,10–13. Due to simple 
operations and low-cost analysis systems, electrochemical sensors have been widely used for the analysis of 
pharmaceutical and biological  compounds14–21. Near over-potential oxidation of cysteamine and serotonin on 
the surface of a bare electrode is one of the most important problems in the simultaneous analysis of cysteamine 
and serotonin, using electrochemical  methods22. �erefore, the application of electro-catalyst is necessary for 
resolving this issue in the simultaneous  analysis23–30.  EC/ electrochemical mechanism is a suitable strategy for the 
determination of two analytes with near over-potential in electrochemical analysis  systems31–37. �e interaction 
of one analyte with a suitable electrocatalyst and remaining of another analyte at its potential is a very interest-
ing strategy based on electrocatalytic systems in the simultaneous  analysis37–41. Selecting a suitable catalyst with 
high selectivity is one of the most important steps in the design of electrocatalytic  sensors42–46. According to 
previous reports, inorganic complexes, especially complexes with nickel central atom can be used as a suitable 
electrocatalyst in the analysis of important pharmaceutical and biological  constituents47–52. Although nanomate-
rials such as carbon nanotubes and graphene with high-conductivity have been proposed for the preparation of 
electrochemical sensors, their high cost, hard synthesis methods, and high capacitive charging current are some 
of the most important criteria for their use in electrochemical  sensors53–61. Accordingly, the use of metal oxides 
has been used as a suitable alternative to this category of  materials62–66. Recent research suggests that modifying 
metal oxides with metal nanoparticles such as platinum could increase the electrical conductivity of the sensors 
and create the right conditions for the design of high-sensitivity  sensors67.

Therefore, in this study, we fabricated NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE as a first and highly 
sensitive electroanalytical sensor for simultaneous determination of cysteamine and serotonin. The 
NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE was successfully used for the determination of cysteamine and seroto-
nin in real samples.

experiment
instruments and materials. Electrochemical signals were recorded by Potentiostat/Galvanostat Electro-
chemical Instrument PGSTAT-302N (Netherlands). �e Field Emission SEM machine model Mira 3-XMU was 
used for morphological and EDS analysis of NiO dope Pt nanostructure hybrid. �e structural analysis of NiO 
dope Pt nanostructure hybrid was characterized by XRD machine model X’Pert Pro. �e Ag/AgCl/KClsat and 
electrochemical cell were purchased from Azar Electrode Company.

Cysteamine hydrochloride and serotonin hydrochloride were purchased from Sigma-Aldrich Company. �e 
0.01 M stock solution of cysteamine hydrochloride and serotonin hydrochloride was prepared by dissolving 
0.113 g and 0.212 g compounds in 100 mL phosphate bu�er solution (PBS) pH 7.0.

Nickel nitrate hexahydrate, sodium hydroxide, and platinum (II) chloride were purchased from Merck Com-
pany and used for one-pot synthesis of NiO dope Pt nanostructure hybrid. Phosphoric acid was purchased from 
Acros Company and used for the preparation of PBS.

Synthesis of nio dope pt nanostructure hybrid. �e 100-mL solution containing 16 mg platinum (II) 
chloride and 0.5 M nickel nitrate hexahydrate were stirred for 30 min at room temperature. �e 100-mL sodium 
hydroxide 1.0 M was added to the previous solution over a 1.5 h period. �e green precipitated sample was �l-
tered and then dried at 15 h at 100 °C. �e green powder was calcined at 400° C in a furnace for 3 h.

Preparation of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE. �e NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/
CPE was designed and made by using slurry composed of 0.95 gr of graphite powder 0.04 g + NiO–Pt–H and 
0.05 g of B,1,10,P,1,10,PDNiPF6 using 13 drops of para�n oil as binders into mortar and pestle in the presence 
of 10 mL ethanol. A�er evaporation of the ethanol solvent, the mixture was hand-mixed for 90 min to obtain a 
homogeneous paste.

preparation of real sample. Cysteamine capsules (150 mg) were purchased from a local pharmacy and 
a�er opening 10 capsules, the powder was dissolved into a 100-mL solution containing ethanol/PBS 1:1 and 
stirred for 1 h. Dilution was performed using phosphate bu�er solution.

Recommend procedure. Electrochemical behavior of cysteamine was investigated by recording 
cyclic voltammograms of 500  µM cysteamine on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE, 
B,1,10,P,1,10,PDNiPF6/CPE, NiO–Pt–H/CPE and CPE at pH 7.0 and scan rate 10 mV/s. �en, the recorded 
cyclic voltammograms were compared together for the investigation catalytic e�ect of the fabricated sensors.

Interference study was investigated by recording square wave voltammogram (SWV) of 20.0 µM cysteamine 
on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE. �e 20.0 µM in the electrochemical cell containing 
10 mL bu�er solution was equal to 2.2 × 10–6 g of cysteamine in solution. In the next step and a�er the addition 
of interference with a maximum acceptable value of 1,000 fold (w/w) into an electrochemical cell, the signal of 
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the solution containing cysteamine and interference was recorded. �e 5% error in current was acceptable and 
showed that interference did not have a signi�cant e�ect on the analysis signal.

Stability of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE as an electroanalytical sensor for determination of 
cysteamine was investigated by recording SWV of 100.0 µM cysteamine over a course of 60 days on the surface 
of the fabricated sensor. �e drug signal was recorded every ten days and the current obtained was compared 
with the initial current of the drug.

Results and discussion
characterization of nio–pt–H. �e purity and particle distribution of NiO–Pt–H were characterized 
by MAP analysis. �e results are presented in Fig. 1, showing good distribution and purity of the synthesized 
NiO–Pt–H. In addition, the FESEM �gure showed a spherical shape for synthesized NiO–Pt–H with good dis-
tribution in nanoparticle sizes (Fig. 2A). Furthermore, the XRD pattern of NiO–Pt–H showed planes with miller 
indexes of (1 1 1), (2 0 0), (2 2 0), (3 1 1), and (2 2 2) relative to NiO particle with a code No. 04-0835. On the 
other hand, due to the low concentration of Pt in a synthesized nano-hybrid, the Pt planes could not be detected 
in XRD pattern (Fig. 2B).

Electrocatalytic determination of cysteamine using NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/
cpe. �e cyclic voltammograms NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE (Fig. 3, curve a) was recorded in 
the phosphate bu�er solution (pH 7.0). Recording voltammogram showed a redox signal with quasi behavior 
(ΔE = 73 mV) relative to  Ni2+/Ni3+ in the absence of cysteamine. A�er the addition of 500 µM cysteamine on the 
surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE, the oxidation current of B,1,10,P,1,10,PDNiPF6 increased 
and the reduction signal of mediator was removed  (EOxidation ~ 120 mV). �is phenomenon exhibits a kind of 
electrocatalytic behavior between the intermediate (B,1,10,P,1,10,PDNiPF6 in this case) and the cysteamine (see 
Scheme 1). On the other hand, on the surface of B,1,10,P,1,10,PDNiPF6/CPE (Fig. 3, curve c), the same elec-
trocatalytic behavior with a weaker signal was observed, which can be attributed to the role of nanoparticles on 

Figure 1.  MAP analysis data for synthesized NiO dope Pt nanostructure hybrid.
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Figure 2.  (A) FESEM image and (B) XRD pattern of NiO dope Pt nanostructure hybrid.

Figure 3.  (a) Cyclic voltammogram of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE in the PBS (pH 7.0). (b) Cyclic 
voltammogram of B,1,10,P,1,10,PDNiPF6/CPE in the presence of 500 µM cysteamine. (c) Cyclic voltammogram 
of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE in the presence of 500 µM cysteamine. (d) Cyclic voltammogram of 
NiO–Pt–H/CPE in the presence of 500 µM cysteamine and (e) cyclic voltammogram of CPE in the presence of 
500 µM cysteamine (condition; pH 7.0, scan rate 10 mV/s).
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the electrode surface. In the same solution and on the surface of CPE (Fig. 3, curve e), a low oxidation signal at 
potential ~ 620 mV relative to electrooxidation of cysteamine can be observed.

A�er modi�cation of CPE with NiO–Pt–H and on the surface of NiO–Pt–H/CPE, the oxidation signal of 
cysteamine was increased, but a small decrease was observed in oxidation potential of cysteamine (Fig. 3, curve 
d). Comparison of curve “c” with curve “e” properly indicates that measurement of cysteamine at a potential of 
about 500 mV is less positive than its actual value at unmodi�ed electrode with greater sensitivity which can be 
possible on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE.

�e cyclic voltammograms 200 µM cysteamine on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE in 
the scan range of 3.0–20.0 mV/s was recorded and the results are presented in Fig. 4 inset. According to equation 
 Ipa = 0.607 ν1/2 − 0.6265  (R2 = 0.9969), a linear relation was observed between the oxidation signal of cysteamine 
and ν1/2 on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE (Fig. 4). �is linear relation con�rms a di�u-
sion  process68–70 for electro-oxidation of cysteamine on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE.

�e value electron transfer coe�cient (α) as a kinetic parameter, containing useful information about the 
rate-determining step, was calculated by the Tafel plot (Fig. 5). �e slope of the Tafel plot relative electrooxida-
tion 600 µM cysteamine on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE was equal to 2.3RT/n(1 − α)
F, which came up to 0.122 V  decade−1 for scan rates of 10 mV s−1. �e value of α for cysteamine was determined 
as ~ 0.52.

�e Electrochemical impedance spectroscopy (EIS) technique was used to con�rm the electro-catalytic 
process between B,1,10,P,1,10,PDNiPF6 and cysteamine on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/
CPE (Fig. 6). �e Nyquist diagrams of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE in the absence (curve a) and 
presence of 1.0 mM cysteamine (curve b) and 1.0 mM serotonin (curve c) are presented in Fig. 6, respec-
tively. As can be seen, the diameter of the semicircle (relative to charge transfer resistance) relative to 
NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE in the absence and presence of 1.0 mM serotonin are very similar, 
con�rming that no electrocatalytic reaction took place between serotonin and mediator on the surface of 
NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE. A�er the addition of 1.0 mM cysteamine (curve b), the diameter of 
the semicircle was decreased on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE. �is point is relative to 
the electrocatalytic reaction between mediator and cysteamine, increasing in oxidation signal of the mediator 
and decreasing in charge transfer resistance of electrode surface.

chronoamperometric investigation. �e value of di�usion coe�cient (D) and catalytic rate constant, 
kh were determined using chronoamperogram recording of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE in the 
absence of (Fig. 7A, curve a) and in the presence of 50 µM (Fig. 7A, curve b) and 100 µM (Fig. 7A, curve c) 
cysteamine, using applied potential − 0.1 and 0.2 mV. �e value of D was determined by recording Cottrell plots 
relative to chronoamperogram which was recorded in the presence of cysteamine (Fig. 7B). �e slopes and Cot-
trell equation (Eq. 1):

(1)I =

nFAD
1/2

C

π1/2
t
−1/2

Scheme 1.  Electrocatalytic mechanism for determination of cysteamine on the surface of NiO–Pt–H/
B,1,10,P,1,10,PDNiPF6/CPE.
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�e mean value of D for cysteamine was determined as ~ 2.45 × 10–5  cm2/s.
�e catalytic rate constant between B,1,10,P,1,10,PDNiPF6 and cysteamine can be determined according to 

the method of Galus equation (Eq. 2):

Figure 4.  �e plot of I vs. ν1/2 for electro-oxidation 200 µM cysteamine on the surface of NiO–Pt–H/
B,1,10,P,1,10,PDNiPF6/CPE in the scans (a) 3; (b) 5; (c) 8; (d) 12 and (e) 20 mV/s.

Figure 5.  Tafel plot for NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE in (pH 7.0) with a scan rate of 10 mV/s in the 
presence of 500 µM cysteamine.
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Figure 6.  Nyquist diagrams of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE in the absence (a) and in the presence 
(b) of 1.0 mM serotonin and (c) with 1.0 mM cysteamine.

Figure 7.  (A) Chronoamperograms obtained at NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE (a) in the absence, 
(b) in the presence of 50.0 µM and (c) in the presence of 100.0 cysteamine at pH 7.0. (B) Cottrell’s plot for 
cysteamine oxidation data on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE. (C) Dependence of 
 Ic/IL on the  t1/2 derived from the chronoamperogram data. (D) �e charge–time curves derived from the 
chronoamperogram data.
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Based on the slope reported from the  IC/IL  (IC is catalytic current in the presence of cysteamine and  IL oxida-
tion current in the absence of cysteamine) vs.  t1/2 and Eq. (2), the value of  kh can be determined 1.4732 × 104 mol−1 
L  s−1 (Fig. 7C).

Chronocoulometry technique (double potential step) was also used for the examination of electrode 
processes at NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE (Fig.  7D). Forward and backward charge on the 
NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE in a blank bu�er solution showed very symmetrical chronocoulo-
grams. �is recorded signal con�rms an equal charge consumed for redox reaction of the  Ni2+/Ni3+ system in 
NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE. However, a�er the addition of cysteamine, the value of oxidation charge 
value in chronocoulometric investigation was increased and the backward charge value in chronocoulometric 
investigation was decreased. �ese changes properly illustrate the electrocatalytic process.

Simultaneous determination of cysteamine and serotonin. �e square wave voltammograms (SWV) 
of cysteamine and serotonin were recorded separately on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE. 
�e results showed a linear relation between oxidation current of cysteamine and its concentration in the range 
of 0.003–200 µM with equation  Ipa = 0.0385  Ccysteamine + 0.9602  (R2 = 0.9978) and a linear range between 0.5 and 
260 µM with equation  Ipa = 0.0238  CSerotonin + 0.4139  (R2 = 0.9969) for the determination of serotonin on the sur-
face of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE. �e detection limit (LOD) was 0.5 nM cysteamine and 0.1 µM 
serotonin, according to the de�nition of LOD = 3sb/m.

On the other hand, the square wave voltammograms of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE in the solu-
tion containing di�erent concentrations of cysteamine and serotonin was recorded and the obtained signals 
were presented in Fig. 8A. As can be seen, we detected two separated oxidation signals relative to cysteamine 
and serotonin at potentials of 10 mV and 495 mV with ΔE = 485 mV that is very interesting for the simultaneous 
determination of the two compounds using NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE. On the other hand, the 
oxidation potential of cysteamine and serotonin is very close to each other on the surface of the carbon paste 
electrode (Fig. 9). �e linear relation between oxidation signal of cysteamine and serotonin and their concentra-
tion in this investigation are presented in Fig. 8B, C. Slopes of 0.0395 µA/µM and 0.0247 µA/µM for cysteamine 
and serotonin were obtained, respectively. �ese sensitivities are very similar to the sensitivity recorded for 

(2)
IC

IL
= γ 1/2π1/2

= π1/2(khCt)
1/2

Figure 8.  (A) SWVs of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE containing di�erent concentrations of 
cysteamine–serotonin in µM (from inner to outer): 4.0 + 10.0; 9.0 + 25.0; 15.0 + 45.0; 30.0 + 60.0 and 50.0 + 90.0, 
respectively. Insets: Plots of  Ip vs. (B) cysteamine and (C) serotonin concentrations.
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cysteamine and serotonin in linear dynamic range investigation, con�rming that the determination of cysteamine 
and serotonin can be done successfully without any interference in the mixed samples.

Stability and reproducibility. �e reproducibility and stability of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/
CPE were investigated by recording SWV of 100.0  µM cysteamine at pH 7.0. We detected a relative stand-
ard deviation of (RSD%) 2.1% for �ve successive recorded signals that con�rmed good repeatability for 
NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE as an electroanalytical sensor. Moreover, the stability of the NiO–
Pt–H/B,1,10,P,1,10,PDNiPF6/CPE was examined by the storage of the sensor in the lab. �en, NiO–Pt–
H/B,1,10,P,1,10,PDNiPF6/CPE was used for the determination of 100.0  µM cysteamine using SWV. �e 
recorded signal showed 93.2% of its initial response relative to 100.0 µM cysteamine a�er 60 days, using NiO–
Pt–H/B,1,10,P,1,10,PDNiPF6/CPE, indicating good stability for the suggested sensor. To study the reproducibil-
ity of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE in determination of 500 µM cysteamine, �ve modi�ed electrodes 
were prepared in the same condition and the oxidation signal of cysteamine was recorded on the surface of 
NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE with a scan rate of 10 mV/s. A relative standard deviation of (RSD%) 
3.33% was detected for the determination of cysteamine on the surface of these electrodes, con�rming good 
reproducibility for the fabrication of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE (Fig. 10).

Real sample and interference study. �e selectivity of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE as an 
electroanalytical sensor was checked in the solution containing 20.0 µM cysteamine with an acceptable error of 
5% in oxidation current. �e results are presented in Table 1 and the data obtained exhibit interesting selection 
of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE as an electroanalytical sensor for the determination of cysteamine.

In the �nal step, we check the ability of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE as a powerful electroanalyti-
cal sensor for determination of cysteamine and serotonin in capsule and pharmaceutical serum samples. �e 
recovery data between 98.5–103.06% for analysis of cysteamine and 98.1–101.68% for analysis of serotonin were 
observed on the surface of NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE (Table 2), con�rming the powerful ability of 
NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE as a novel and powerful analytical sensor.

conclusion
In this study, a novel and highly sensitive electroanalytical sensor was fabricated for the determination of 
cysteamine by modification of CPE with NiO–Pt–H and B,1,10,P,1,10,PDNiPF6 as two mediators. The 
NiO–Pt–H was synthesized by an one-pot procedure resulting in a spherical shape with diameter of 30.64 nm. 
�e NiO–Pt–H/B,1,10,P,1,10,PDNiPF6/CPE was used as the �rst electrochemical sensor for the simultaneous 
analysis of cysteamine and serotonin with detection limits of 0.5 nM and 0.1 µM, respectively. In addition, 

Figure 9.  SWVs of carbon paste electrode in the solution containing (a) 500 µM serotonin and (b) 500 µM 
cysteamine.
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NiO–Pt–H and B,1,10,P,1,10,PDNiPF6 showed a powerful ability for the determination of cysteamine and sero-
tonin in the drug and pharmaceutical serum samples with recovery data of 98.1–103.06%.
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