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length, i.e. XLA1L, XLA1S, XLA2L, XLA2S, and so on, in which 

the numbering of XLA chromosomes corresponds to that in 

 X. tropicalis  and the postfixes ‘L’ and ‘S’ stand for ‘long’ and 

‘short’ chromosomes in the homoeologous pairs, which can 

be distinguished cytologically by their relative size. The last 

chromosome set is named XLA9L and XLA9S, in which XLA9 

corresponds to both XTR9 and XTR10, and hence, to empha-

size the phylogenetic relationship to  X. tropicalis , XLA9_10L 

and XLA9_10S are also used as synonyms. 

 © 2015 S. Karger AG, Basel 

 

 Xenopus laevis  (XLA) is allotetraploid and has 36 chro-
mosomes (4x = 2n = 36), consisting of 2 sets of 18 chro-
mosomes, which are cytologically distinguished [Wick-
bom, 1945; Weiler and Ohno, 1962; Morescalchi, 1963; 
Tymowska and Kobel, 1972]. Its relative  X. tropicalis  
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 Abstract 

  Xenopus laevis  (XLA) is an allotetraploid species which ap-

pears to have undergone whole-genome duplication after 

the interspecific hybridization of 2 diploid species closely re-

lated to  Silurana/Xenopus tropicalis  (XTR). Previous cDNA flu-

orescence in situ hybridization (FISH) experiments have 

identified 9 sets of homoeologous chromosomes in  X. laevis , 

in which 8 sets correspond to chromosomes 1–8 of  X. tropi-

calis  (XTR1–XTR8), and the last set corresponds to a fusion of 

XTR9 and XTR10. In addition, recent  X. laevis  genome se-

quencing and BAC-FISH experiments support this physio-

logical relationship and show no gross chromosome translo-

cation in the  X. laevis  karyotype. Therefore, for the benefit of 

both comparative cytogenetics and genome research, we 

here propose a new chromosome nomenclature for  X. laevis  

based on the phylogenetic relationship and chromosome 
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(XTR) is diploid and has 20 chromosomes (2x = 2n = 20). 
The conventionally stained karyotypes of the genus  Xeno-
pus , including those of  X. laevis  and various other subspe-
cies, were presented and reviewed in detail by Tymowska 
[1977, 1991]. A high-resolution replication-banding 
karyotype of  X. laevis  was first published by Schmid and 
Steinlein [1991]. In that study, the chromosomes were ar-
ranged according to the karyotype system established by 
Tymowska and Kobel [1972] and Tymowska [1991], and 
the identification of homoeologous chromosomes (quar-
tets; each quartet consists of a homoeologous set of 2 ho-
mologous chromosomes) was attempted on the basis of 
similarities in morphology and banding patterns.

  In recent years, detailed analyses of the homoeologous 
chromosomes of  X. laevis  have been conducted at the mo-
lecular level. To investigate the process of genomic and 
chromosomal reorganization in  X. laevis  after allotetra-
ploidization, chromosome painting of  X. laevis  was car-
ried out using DNA probes made from microdissected  X. 
tropicalis  chromosomes [Krylov et al., 2010]. Subsequent-
ly, comparative cytogenetic mapping of functional genes 
between  X. tropicalis  and  X. laevis  was performed by chro-
mosome fluorescence in situ hybridization (FISH) using 
60 cDNA clones derived from  X. laevis , which covered all 
 X. tropicalis  chromosomes [Uno et al., 2013]. By these mo-
lecular cytogenetic analyses of chromosome homoeolo-
gies between the 2 species, all 9 pairs of homoeologous 
chromosomes were precisely identified at the molecular 
level. In parallel, the  X. laevis  genome project was pro-
gressed by the US-Japan  X. laevis  Genome Project Con-
sortium, further confirming the data of Uno et al. [2013] 
on the homoeologous  X. laevis  chromosomes (quartets). 
Therefore, this is the time to propose a new nomenclature 
of  X. laevis  chromosomes based on both molecular and 
cytogenetic data, which easily allows identifying the phy-
logenetic relationship of the homoeologous chromosome 
pairs of  X. laevis  and  X. tropicalis . In this new nomencla-
ture, the numbering of  X. laevis  chromosomes corre-
sponds to that in  X. tropicalis , and the postfixes ‘L’ and ‘S’ 
stand for ‘long’ and ‘short’ chromosomes in the homoeol-
ogous pairs of  X. laevis . We also propose a standard idio-
gram of BrdU-banded  X. laevis  chromosomes to indicate 
the position of the genes mapped by in situ hybridization.

  Materials and Methods 

 Late-replication banding with 5-bromodeoxyuridine (BrdU) 
and Hoechst 33258 staining of  X. laevis  chromosomes was per-
formed according to Uno et al. [2008, 2013]. For this chromosome 
banding, fibroblast cells derived from heart or kidney tissues were 

cultured at 26   °   C and treated in the late S-phase with 25 μg/ml 
BrdU for 6 h before harvesting. Chromosome preparations were 
made following a standard air-drying method. After staining with 
Hoechst 33258 (1 μg/ml) for 5 min, the slides were heated to 65   °   C 
for 3 min on a hotplate and then exposed to UV light for an addi-
tional 5–6 min at 65   °   C.

  Chromosome lengths were measured using 5 metaphase chro-
mosome spreads from 3 females, which were prepared as described 
above. Each chromosome or arm length was normalized by the 
total chromosome length of the respective metaphase.

  Results and Discussion 

 Recent  X. laevis  genome analyses and chromosome 
FISH experiments using about 800 BAC clones confirmed 
all 9 quartets of chromosomes, which were previously 
identified by cDNA FISH [Uno et al., 2013], and also 
demonstrated that there are no gross interchromosomal 
rearrangements [unpublished data of the US-Japan  X. 
laevis  Genome Project Consortium co-led by D.S.R. and 
M.T.].  Figure 1  shows the BrdU/Hoechst late-replication 

  Fig. 1.  Hoechst 33258-stained late-replication-banded karyotype 
of  X. laevis  chromosomes from cultured fibroblasts. The lightly 
stained bands correspond to G-positive bands produced by GTG-
banding (G-bands by trypsin using Giemsa) in mammalian and 
avian chromosomes. The homoeologous chromosomes are ar-
ranged in quartets and numbered according to the new nomencla-
ture system. The numbers in parentheses correspond to the chro-
mosome numbers used by Tymowska and Kobel [1972], Tymow-
ska [1991], Schmid and Steinlein [1991], and Uno et al. [2013]. 
Scale bar = 10 μm. Image modified from Uno et al. [2013]. 
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banding patterns that are unique to each  X. laevis  chro-
mosome and have been used for identification of chro-
mosomes and physical assignment of loci on the chromo-
somes. Based on this chromosome identification, we 
measured the lengths of short and long chromosome 
arms and compared the total lengths of the 2 homoeolo-
gous chromosome sets in each quartet.  Table 1  shows that 
the length ratio of shorter versus longer chromosome of 
each homoeologous pair ranges from 0.75 ± 0.01 to 0.94 
± 0.03. Therefore, in each of the quartets, homoeologous 
chromosome sets can be distinguished based on their 
overall lengths in addition to their specific banding pat-
terns, with one chromosome pair being long (L) and the 
other being short (S) ( fig. 1 ;  table 1 ).

  Based on the highly conserved synteny of  X. laevis  and 
 X. tropicalis  chromosomes [Uno et al., 2013], their unique 
chromosome banding patterns and length differences be-

tween homoeologous chromosomes, we propose a new 
nomenclature of  X. laevis  chromosomes that reflects the 
phylogenetic relationship with  X. tropicalis  chromo-
somes as shown in  figures 1  and  2 . In this nomenclature 
system, we used  X. tropicalis  as the reference, because it 
is the extant diploid species closest to  X. laevis , in which 
its 10 pairs of chromosomes are traditionally arranged by 
decreasing lengths and numbered consecutively from 1 
through 10 (XTR1–XTR10) [Khokha et al., 2009]. We 
designated  X. laevis  chromosomes as XLA1, XLA2, and 
so on for each homoeologous pair, where the XLA1 pair, 
for example, phylogenetically corresponds to XTR1. The 
designations L or S were further added to the chromo-
some numbers as postfixes (XLA1L, XLA1S, XLA2L, 
XLA2S, and so on) to distinguish the long and short chro-
mosomes of a homoeologous set in each quartet ( fig. 2;   
table 1 ).

Table 1. Numbering system of X. tropicalis and X. laevis chromosomes based on their homoeologies, chromo-
some lengths, centromere indices, and average length ratios of short to long chromosomes in each of the 9 chro-
mosome quartets of X. laevis

 Chromosome numbering system Chromosome length 
(p + q arm), %c

Centromere 
index, %d

S/L length 
 ratio ± SDe

X. tr opicalisa X. laevis new X. laevis oldb

XTR1 XLA1L 1 7.64 (3.38 + 4.26) 44.2 0.91 ± 0.01
XLA1S 2 6.96 (2.80 + 4.16) 40.2

XTR2 XLA2L 3 6.68 (2.61 + 4.07) 39.1 0.94 ± 0.03
XLA2S 8 6.28 (2.15 + 4.13) 34.2

XTR3 XLA3L 12 6.69 (1.70 + 4.99) 25.4 0.75 ± 0.01
XLA3S 16 5.05 (1.16 + 3.89) 23.0

XTR4 XLA4L 13 5.60 (1.36 + 4.24) 24.3 0.86 ± 0.03
XLA4S 17 4.79 (1.20 + 3.59) 25.1

XTR5 XLA5L 4 5.92 (2.28 + 3.64) 38.5 0.92 ± 0.04
XLA5S 5 5.46 (1.89 + 3.57) 34.6

XTR6 XLA6L 9 5.91 (2.74 + 3.17) 46.4 0.90 ± 0.03
XLA6S 6 5.34 (2.12 + 3.22) 39.7

XTR7 XLA7L 7 4.88 (2.08 + 2.80) 42.6 0.90 ± 0.04
XLA7S 10 4.37 (1.92 + 2.45) 43.9

XTR8 XLA8L 14 5.17 (1.28 + 3.89) 24.8 0.75 ± 0.05
XLA8S 11 3.87 (1.79 + 2.08) 46.3

XTR9 + XTR10 XLA9L (9_10L) 15 5.00 (1.10 + 3.90) 22.0 0.88 ± 0.03
XLA9S (9_10S) 18 4.41 (1.11 + 3.30) 25.2

 a Numbering used by Khohka et al. [2009]. b Numbering used by Tymowska and Kobel [1972], Tymowska 
[1991], Schmid and Steinlein [1991], and Uno et al. [2013]. c Ratio of individual chromosome length to the total 
length of all chromosomes. d Ratio of the short arm length to the total chromosome length. e Average ratio calcu-
lated for each of the 4 chromosomes in the quartets.
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  XTR1 to XTR8 phylogenetically correspond to pairs 
XLA1 to XLA8, respectively, with the same consecutive 
numbering. However, the last 2  X. tropicalis  chromo-
somes (XTR9 and XTR10) are homoeologous to the sin-
gle 9th chromosome pair of  X. laevis . It is likely that these 
chromosomes derived from a fusion event of 2 chromo-
somes that correspond to XTR9 and XTR10 in the ances-

tral lineage of  X. laevis  [unpublished data of the US-Japan 
 X. laevis  Genome Project Consortium]. Although each of 
these chromosomes corresponds to XTR9 and XTR10, we 
designated them as XLA9L and XLA9S. Alternatively, the 
9th  X. laevis  chromosomes can also be referred to as 
XLA9_10L and XLA9_10S as synonyms of XLA9L and 
XLA9S, respectively, because this designation is easily un-

  Fig. 2.  Idiogram of the late-replication banding patterns of  X. laevis  chromosomes stained with Hoechst 33258. 
The chromosomes are numbered according to the new nomenclature system. The numbers in parentheses cor-
respond to the chromosome numbers used by Uno et al. [2013]. The grey band (p12) in chromosome 3L is the 
nucleolus organizer region. 
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derstandable and takes into account the chromosome re-
arrangement that occurred in karyotype evolution (tan-
dem fusion of 2 chromosomes followed by centromere 
repositioning). Cytogeneticists might prefer XLA9L and 
XLA9S to prevent the confusion due to yet unidentified 
and undetectable chromosomal rearrangements that may 
have occurred in the ancestral genomes. However, the 
designation XLA9_10L and XLA9_10S is convenient for 
comparative genomics of  X. tropicalis  and  X. laevis,  which 
are used extensively as model organisms for biomedical 
research where easy direct genome/chromosome com-
parisons between the 2 species are extremely valuable. 
However, this system should be applied only to  Xenopus  
and its closely related species but not to any other far-
related species beyond Xenopodinae whose chromo-
somes might have been rearranged extensively [Mores-
calchi, 1968; Tymowska, 1991]. We note that this system 
is not suited to cope with complex chromosome reshuf-
flings, especially reciprocal translocations, in karyotypes 
of even closely related species.

  The designation of chromosomes in an allopolyploid 
karyotype should reflect the ancestral diploid genomes 
prior to hybridization, but need not indicate every chro-
mosome rearrangement that may have occurred before 
and after the hybridization event. However, in the present 

case of  X. laevis , there is no evidence of complex karyo-
type repatterning because the synteny of each chromo-
some is highly conserved in  X. tropicalis  and  X. laevis  
[Uno et al., 2013; the  X. laevis  genome sequence ver. 7.1 
at http://gbrowse.xenbase.org/fgb2/gbrowse/xl7_1/; un-
published BAC-FISH data of the US-Japan  X. laevis  Ge-
nome Project Consortium].

  The  X. laevis  chromosome nomenclature system 
 proposed here has been approved on September 9, 
2014 by the  Xenopus  Gene Nomenclature Committee 
chaired by A.M.Z. (http://www.xenbase.org/gene/static/
geneNomenclature.jsp). The complete  Xenopus  chromo-
some nomenclature guidelines can be found on Xenbase 
(http://www.xenbase.org/), the  Xenopus  model organism 
database [Karpinka et al., 2014].
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