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Abstract

A Smooth Transition ARCH Model for Asset
Returns

In the classical ARCH model of Engle [1982] the conditional variance is a

linear function of lagged squared residuals. In this paper I introduce non

linearity, by adding a term that consists of a constant parameter multiplied

by a transition function. Two different transition functions are considered,

a logistic and an exponential. Furthermore, following Bollerslev [1986], I

extend the model by introducing lagged conditional variances in the condi

tional variance equation. This specification reduces the number of parame

ters in the model, which proves to be important for successful estimation.
The paper also describes a number of specification tests, that can deter

mine if the smooth transition GARCH model can be the data generating

process of a times series. The techniques proposed are illustrated on data

from four stock index series.

Specification Tests for Asymmetric GARCH

In this paper I present two new Lagrange multiplier test statistics designed

for testing the null of GARCH(l,l), against the alternative of asymmet

ric GARCH. For one test the alternative is the generalized QARCH(l,l)

model of Sentana [1995], and for the other the alternative is the logistic

smooth transition GARCH{l,l) model of Hagerud [1996], and Gonzalez-
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Rivera [1996]. In the study I present small sample properties for the two
statistics. The empirical size is show to be equal to the theoretical for rea
sonable sample sizes. Furthermore, I show that the power of both tests is
superior to that of the asymmetry tests proposed by Engle and Ng [1993].
This is true even if the true data generating process is not the GQARCH
or LSTGARCH model, but any of the models, EGARCH, GJR, TGARCH,
A-PARCH, and VS-ARCH. Thus, the two tests are in fact tests for general
GARCH asymmetry.

Modeling Nordic Stock Returns with Asymmetric
GARCH Models

This paper investigates the presence of asymmetric GARCH effects in a
number of equity return series, and compare the modeling performance of
seven different conditional variance models, within the parametric GARCH
class of models. The data consists of daily returns for 45 Nordic stocks,
during the period July 1991 to July 1996. The models investigated are:

EGARCH, GJR, TGARCH, A-PARCH, GQARCH, VS-ARCH, and LST
GARCH. In all these models the conditional variance is a function of the
sign of lagged residuals. Thus, the models can capture the often reported
negative correlation between lagged returns and conditional variance. The
paper also introduces three new procedures for asymmetry testing. The

proposed LM tests, which are based on the results of Wooldridge [1991],
allow for heterokurtosis under the null. Asymmetries are detected for only
12 of the 45 series. The specifications GJR, TGARCH, and GQARCH ap
pear to be superior for modeling the dynamics of the conditional variance.
Furthermore, it is shown that the use of robust test statistics is advisable.

Discrete Time Hedging of OTC Options in a
GARCH Environment: A Simulation Experiment

This paper examines the effect of using Black and Scholes formula for pric

ing and hedging options in a discrete time heteroskedastic environment.
This is done by a simulation procedure where asset returns are generated

from a GARCH(1,1)-t model. In the simulation a hypothetical trader writes
an option and then delta-hedges his position until the option expires. It ia
shown that the variance of the returns on the hedged position is consider
ably higher in a GARCH(1,1) environment than in a homoskedastic envi
ronment. The variance of returns depends greatly on the level of kurtosis in

the returns process and on the first-order autocorrelation in centered and

squared returns.
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Overview of the GARCH Literature

One of the most established characteristics of financial time series is the

presence of non-constant and time dependent volatility in returns. The four
papers published in this thesis are all concerned with issues regarding the

modeling of asset returns with Autoregressive Conditional Heteroskedas
ticity (ARCH) models. Since Engle [1982] introduced the ARCH model,
specifications within this class of models have become very popular in de

scribing the dynamics of volatility in asset returns. This chapter gives the
reader a short introduction to the ARCH class of models. I formulate the
standard GARCH model, and describe how the model has been extended to
capture more complex patterns of returns. Furthermore, I present a num
ber of examples of applications where ARCH/GARCH models are used.
By doing so, I hope that the reader will gain a clear understanding of how
the four papers in this thesis relate to previous work in the econometrics

and finance literature, and how they are related to practical considerations

of econometric modeling.
The purpose of this introductory chapter, however, is not to provide a

survey of the ARCH literature. The interested reader is referred to the

comprehensive surveys by Bera and Higgins [1992], Bollerslev, Chou, and
Kroner [1992], Bollerslev, Engle, and Nelson [1994], Diebold, and Lopez
[1995], and Palm [1996]. A short and less technical introduction to the use
of GARCH models in finance can be found in Engle [1993]. Furthermore,
technical details concerning the statistical properties of the time series mod
els will not be discussed.

The ARCH class of models is not alone in trying to characterize the
dynamics of financial returns. A well- known alternative specification is the



2 1. Overview of the GARCH Literature

class of stochastic volatility models. However this thesis will not compare

ARCH models and stochastic volatility models. For an overview of the

literature on stochastic volatility models, a well written survey by Ghysels,

Harvey, and Renault [1996] is recommended .

1.1 GARCH Models

GARCH models are designed to capture the dynamics of the conditional

second moment of a time series. However, before saying anything about

the second moment, it is natural to first specify the first moment, Le. the

conditional mean. By way of introduction, it is assumed that the data

generating process of asset returns is

where Ct is an error term following a discrete-time stochastic process. In all

GARCH models it is assumed that the residual has the form

h
1/ 2

Ct = Zt t ,

where Zt rv iid(O, 1), and ht is the conditional variance of the return at time

t. It is the dynamics of the ht that the GARCH models wish to capture.

The seminal work in the GARCH literature is Engle [1982], where the

author introduces the standard ARCH model. In this model, the condi

tional variance is a deterministic function of lagged squared residuals. In

the ARCH(q) model the conditional variance is given by

q

ht = 1+ L ajCr_j·
j=l

Bollerslev [1986] further develops the ARCH model into the generalized

ARCH (GARCH) model. Bollerslev extends Engle's specification by intro

ducing lagged conditional variances in the conditional variance equation.

With this representation the number of parameters in the model can be

reduced considerably. The GARCH model is commonly used in its most

simple form, the GARCH(l,l) model, in which the conditional variance is

given by

h t = I + aCr-1 + {3ht - 1 .

Both Engle [1982] and Bollerslev [1986] used their specifications for mod

eling the time series pattern of inflation rates. It is, however, for modeling

high frequency financial data that the model class has found popular use. In

my view, the reason for this is threefold. First, the model captures the often

detected and well documented volatility cluster of financial data. Volatility



1.1 GARCH Models 3

clustering refers to the fact that large changes in asset prices tend to be fol

lowed by more large changes, in either direction, and small changes in prices

tend to be followed by more small changes. The fact that implied volatil

ities for option prices vary with the time to expiration, is evidence that

participants in the financial markets agree on the presence of time-varying

volatility. Second, since the conditional variance equation is a deterministic

function of past realizations of the time series, the parameters of the model

can be estimated by maximum-likelihood estimation. Third, in many of the

GARCH models proposed in the literature, making multi-step forecasts of

the conditional variance is straightforward.

To my knowledge, at least fifteen different univariate GARCH models are

currently in existence. Several of these models will presented below along

with a description of the kinds of characteristics of financial time series

that they are designed to capture.

Particularly in equity return series, empirical investigations have de

tected a negative correlation between lagged returns and the current con
ditional variance. Thus, the volatility seems to increase in bear markets.

This mechanism is sometimes termed the "leverage effect" , since a ceteris

paribus decrease in the stock price will increase the financial leverage of

the company. A number of GARCH models that try to capture the lever

age effect have been proposed. In the GARCH literature, models with this

feature are often termed asymmetric volatility models. In my view this is

a more appropriate term, since the reason for the detected negative cor

relation is not considered in the models. The asymmetry is introduced by
letting the conditional variance be a function of not only lagged squared

residuals, but also of the sign of lagged residuals.

The first asymmetric model presented in the literature is the exponential

GARCH (EGARCH) model of Nelson [1991]. In the EGARCH(l,l) model

the natural logarithm of the conditional variance is a function of C ~ - l '

ct-l, and the natural logarithm of the lagged conditional variance. Since the

conditional variance is dependent on Ct-l, positive and negative residuals of

the same magnitude will have a different impact on the level of conditional

variance, which allows for asymmetry.

Another often used asymmetric specification is the GJR model of Glosten,

Jagannathan, and Runkle [1993]. In the GJR model, the standard GARCH

(1,1) model is augmented by S t - l C ~ - l ' where St-l takes the value one if
ct-l is negative and zero otherwise. The model's very simple structure

makes estimation easy, and empirical investigations have proven that the

GJR model has good modeling performance. In Chapter 2 of this thesis, I

introduce a new asymmetric model, termed the logistic smooth transition

GARCH (LSTGARCH) model, which constitutes a generalization of the

GJR model. In the LSTGARCH model" not only the sign of a residual de
cides the residual's influence on the level of the conditional variance, but

the relative size of the residual is also influential.
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In chapter 3, I derive two new tests that can be used to detect the pres

ence of asymmetry in time series. In connection with this, a short review
of previous asymmetric GARCH models is given. In the following paper, in
Chapter 4, I compare the in sample performance of seven different asym

metric GARCH specifications. The investigation is performed on return
observations from a number of Nordic stocks.

In the standard ARCH and GARCH models the conditional variance
is a linear function of past squared residuals and lagged conditional vari
ances. Asymmetric GARCH models can therefore be regarded as non-linear
GARCH specifications. A number of other non-linear GARCH models,
without the asymmetry feature also exists. Among the first to introduce
non-linearities in the ARCH framework were Engle and Bollerslev [1986].
They propose a model where the dynamics of the conditional variance
change with the magnitude of squared residuals. The transition between dif
ferent conditional variance states is controlled be a normal cumulative dis

tribution function. Higgins and Bera [1992] introduce the Non-linear ARCH
(NARCH) model, which encompasses various functional forms for the con
ditional variance. Chapter 2 present a new non-linear symmetric GARCH
model, the Exponential Smooth Transition GARCH (ESTGARCH) model.
The ESTGARCH model is inspired by the Smooth Transition Autoregres
sive (STAR) model of Luukkonen, Saikkonen, and Terasvirta [1988]. In
the STAR, model the conditional mean is a non-linear function of lagged
realizations of the series.

Apart from asymmetry, empirical investigations have found other factors
that are correlated with the conditional variance of asset returns. For ex

ample, one has detected a day-of-the-week effect in the volatility, in which
Mondays in particular seem to more volatile than other days. This issue is
addressed by BailIe and Bollerslev [1989], when they model the dynamics
of a number of exchange rates series. Nothing prevents us for also including

explanatory variables in the conditional variance equation. Thus, if it is be
lieved that the nominal interest level can in some way explain the level of
volatility, a proxy for the interest level can easily be included in the model.

If GARCH models are to be used for forecasting volatility for option pric
ing, a univariate model such as those presented above is adequate. How
ever, in many applications of finance, the area of interest is asset pricing
and portfolio allocation. In these cases, not only the dynamics of the condi
tional variance is of interest, but also in the correlation between the returns

of different assets. For such purposes, the multivariate ARCH model, intro
duced by Bollerslev, Engle, and Wooldridge [1988], can be applied. Assume
that the returns of N assets is given by

where the N x 1 vector of residuals €t is specified as

H1/ 2
€t = Zt t ,
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where the innovations Zt are independently identically distributed, with
expected value 0 and variance IN. The N x N matrix H t will therefore be
the covariance matrix of the returns. The aim of the multivariate ARCH
models is to find a structure for H t that can explain the time varying

pattern of variances and covariances. A major problem in these models is

the number of parameters. For a useful specification, the dimensionality
of the parameter space must necessarily be restricted. One representation

of the covariance matrix that has received acceptance in the literature is

the BEKK specification of Baba, Engle, Kraft, and Kroner [1991]. Their
parameterization guarantees that the covariance matrix is positive definite.

To simplify the exposition, we assumed above that the residual, Ct, is
equal to the observable return of an asset. This assumption, however, can

be relaxed without any major consequences. In most applications, Ct, is the
unobservable error term in a regression model

rt = f(Xt-l; l/J)+ct,

where f(.) denotes a function of lagged endogenous and exogenous vari

ables known at time t - 1, Xt-l, and l/J is a vector of parameters in the
conditional mean specification. Since, in a number of empirical investiga
tions autocorrelation has been detected, a frequently used functional form

for f(.) is a standard linear AR-model, in which Xt-l consists of lagged
returns. In the finance literature, the current level of the conditional vari
ance often enters the mean equation. Models with this feature are termed

ARCH-in-Mean (ARCH-M) models, and was introduced by Engle, Lilien,
and Robins [1987].

I have not yet addressed to issue of the distributional assumption made

for the innovations {Zt}. This subject is extensively debated in the lit
erature. In the original article by Engle [1982] residuals are assumed to

be distributed conditionally normal. Bollerslev [1987] introduces Student-t

distributed innovations with his GARCH-t model. In Nelson [1991] inno
vations are assumed to be drawn from a Generalized Error Distribution.

Terasvirta [1996] shows that a GARCH(1,1) model with normal errors can
not generate data with high excess kurtosis and low first-order autocorre

lation in squared residuals often detected in financial time series. Based on

Terasvirta's results, it is clear that for a successful modeling, Zt should be
assumed to be drawn from a distribution which allows for leptokurtosis. In
the empirical investigation of Nordic stock returns, presented in Chapter

4, it is shown that an assumption of normally distributed innovations is
inappropriate. An alternative to making an explicit assumption about the
distribution of innovations is to employ a non-parametric approach. This is

a method employed by Engle and Gonzalez-Rivera [1991], amongst others.
Estimation of GARCH models is usually done with maximum likeli

hood (ML) methods, and in some cases with the general method of mo
ments (GMM). For maximum likelihood estimation, a distributional as

sumption for the innovations must is made. This is complicated to do prior
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to the estimation. However, Bollerslev and Wooldridge [1992] show that
to estimate the parameters of a GARCH model a quasi-maximum likeli
hood (QML) approach can be used. In the QML method, the innovations
Zt are assumed to be distributed independently normal, and the normal

log-likelihood function is maximized, using standard numerical methods.
Bollerslev and Wooldridge show that when normality is violated, the QML
estimators are generally consistent and have a limiting normal distribu
tion. Bollerslev and Wooldridge also present asymptotic standard errors
of the estimators valid under non-normality. In this thesis all estimations
presented are performed with ML or QML methods. Readers interested in
GMM estimation are referred to Rich, Raymond, and Butler [1991].

If the residuals {et} are from a regression model, the parameters of
the conditional mean model should, generally, be estimated simultaneously

with the conditional variance model. However, Engle [1982] and Bollerslev
[1986] show that when the GARCH model is symmetric with respect to
lagged returns, the two models can be estimated separately without loss of
asymptotic efficiency. This result can simplify estimations considerably.

To estimate the unknown parameters of a model in the ARCH/GARCH
class, iterative numerical methods are most often required. These proce
dures are time consuming, and furthermore, if the model in question ex
plains the data badly, the estimation might not converge. It is therefore es
sential to use reliable specification tests in an estimation procedure. These
tests give the econometrician indications of which models can be the data
generating process of a time series. Many such tests have been presented
in the literature. Since one of the objectives for using the tests is to avoid

estimating the model under the alternative hypothesis, the tests are often
formulated as Lagrange multiplier (LM) tests. The most commonly used
test is Engle's [1982] test of no ARCH. In Chapter 3 of this thesis, I de
velop specification procedures that can be used to test the null hypothesis

of GARCH(1,1) against the alternative of an asymmetric GARCH model.
A review of the specification tests previously proposed in the literature is

also included.
A majority of the GARCH specification tests are developed under the

assumption that residuals are distributed conditionally normal. From the

above, we know that such an assumption is unlikely to be fulfilled in a
financial time series. In two articles by Wooldridge [1990] and [1991], the
author describes a general method that can be used to make LM tests ro

bust to non-normality. In Chapter 4 , the methods proposed by Wooldridge
are used to robustify the specification tests presented in Chapter 3.
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1.2 Applications of GARCH Models in Finance

This section describes a number of different cases in which GARCH mod

els can be used for modeling and forecasting the conditional variance and

covariance of financial data. The applications are both of practical and 'aca
demic nature, and the description is relatively brief. Interested readers are
recommended to consult the survey papers mentioned above, 'or the articles
referred to below, for more exhaustive descriptions.

1.2.1 Option Pricing and Hedging

Forecasting volatility for option pricing purposes is probably the most wide
spread application of GARCH models. The availability of relatively sim
ple and reliable forecasting methods was limited in the 1970s and 1980s.
It is therefore not surprising that the interest in GARCH models grew
enormously when the models were introduced to practitioners in the early
nineties.

The price of an option depends on the expected variance of the underlying
asset during the life of the option. In many option valuation methods,
volatility is the only explanatory variable that is uncertain. For participants
in the option markets, reliable volatility predictions are therefore essential,
and much effort is put into forecasting. As was noted above many, empirical
investigations have shown that the variance of returns can be modeled
with GARCH processes. Furthermore, volatility forecasts performed with
GARCH models have shown to be superior to other forecasting methods
in a number of studies. The evidence in favor of GARCH, however, is not

unanimous. In some studies, the stochastic volatility models have show to
outperform the GARCH models in volatility prediction.

The procedure for making a volatility forecast for option valuation is the

following. First, the parameters of the model are estimated on a times series

for the underlying asset. Most often daily observations are used, and a suit
able sample size is 1000 observations, corresponding to four years of data.

Second, based on the estimated parameters and on the sample data, the
conditional variance at the valuation time, ht , is computed. Third, a fore
cast for the conditional variance at each trading day is calculated up to the
expiration date of the option. Depending on which GARCH model is used,
the formula for calculating the forecast differs. If the standard GARCH(l,l)

model is chosen, the one-day-ahead conditional variance forecast, ht+1It, is
calculated as

- 2 -
ht+1lt = 9+ aCt + (3ht ,

where a , ~ , and 9 are the estimated parameters of the GARCH(l,l) model.
The s-day-ahead forecast is

ht+slt = ::y + (a + ~) ht+s-1It '
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where ht+s-1It is the forecasted conditional variance for the day prior to
day s, made at day t. The series of forecasted daily conditional variances
can now be used in the option valuation formula chosen.

Practitioners calculating prices of European options often use formulas
where the variance is assumed to be constant during the life of the op
tion, e.g. the Black and Scholes [1973] formula. This practice is followed
even though the agents believe that the return process is conditionally het
eroskedastic. The customary procedure is to use the average variance over
a specific time interval as a dependent variable in the in Black and Scholes'
formula. The average predicted variance during the period from t + 1 to

t + T is simply calculated as

The practice of using Black and Scholes' formula in a non-constant vari
ance environment obviously constitutes a logical inconsistency. However,
the procedure is used primarily because of calculational convenience. In
other words, practitioners know that they are using the wrong model, but
do so because they believe that the Black and Scholes formula gives them a
good approximation to the option value calculated under an assumption of
non-constant volatility. Chapter 5 of this thesis examines the effect of using
this practice. This is done in a simulation procedure, where it is assumed
that the agent knows the true data generating process.

For practitioners in the option markets, the value of options is not the
only important factor. It is equally important to know how option prices
react to changes in the price of the underlying security, measured by delta

and gamma, and to changes in the volatility, measured as vega. These is
sues have been investigated by Engle and Rosenberg [1994] and [1995]. In
Chapter 5, these issues are considered in some detail. The customary prac
tice is that the option trader calculates the risk factors, delta, gamma and
vega, using Black and Scholes formula, and the volatility plugged into the
formula is the average conditional variance predicted, for example, with a
GARCH model.

The pricing of options when returns of assets are generated by GARCH
processes is a complicated subject. The major valuation problem is that
the model is not complete in the sense that options cannot be replicated
by portfolios of the underlying asset and a risk-free bond. However, this is
a general problem for all discrete time models where the price of an asset,
in the next period, can take more than two values. Duan [1995] develops a
method for 'pricing options in GARCH(1,1) environment, but to do this he
has to make assumptions about the risk preferences of agents. This will be
discussed further in Chapter 5.
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1.2.2 Deriving Optimal Hedge Ratios

The previous section discussed the hedging of options with the use of the
underlying security of the option. This is, at least fundamentally, an un

complicated problem. Investors who wish to eliminate the market risk in
an equity position can do this by buying

the number of stocks in the portfolio

delta for the option

put options on the stock. The delta on the put option can be computed
with for instance the Black and Scholes formula, and as the volatility

plugged into the formula, they can use an average volatility forecasted with

a GARCH model. In this case, the hedging procedure is relatively simple,
since the value of the equity position and the value of the hedge will have

a correlation almost equal to minus one, at least over a short time interval.

In many cases, however, it is impossible for investors to find a instrument,
at a reasonable cost, that will give an almost perfect hedge. This can be a
problem for example in the commodity markets. In such cases, the agents
must accept that the best they can do is to hedge its position in a contract

that has the highest correlation with the asset they wish to hedge.

Let us, for the sake of simplicity, assume that we wish to hedge an asset
with a financial future that has a high, but not perfect, correlation with the
asset. The amount of futures contracts that should be sold to achieve the
best possible hedge is commonly expressed by the optimal hedge ratio. The
optimal hedge ratio is calculated as the share of contracts that minimizes

the variance of the hedged portfolio. The standard textbook recipe for
computing the optimal hedge ratio is

where (1A is the estimated constant standard deviation in the price change

of the assets during a time equal to the life of the hedge, (1A is the same

quantity for the future, and PAF is the estimated constant coefficient of
correlation between the two price series. However, knowing that the vari

ances and covariances of asset returns are non-constant, and that they can
be modeled with GARCH specifications, it is natural to try to compute

an optimal hedge ratio with a multivariate GARCH model. By employing
such a procedure, the agent can hopefully minimize the cost of hedging.

This issue has been considered by BailIe and Myers [1991], who use a

bivariate GARCH model of the form
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where hf and h[ are the conditional variances for the asset and future
respectively, hfF is the conditional covariance between the asset and the

future, and cf and c[ represent the returns. BailIe and Myers estimate
the parameters of the model on spot and futures series for six different

commodities. Based on the estimates, they then compute time-dependent
optimal hedge ratios. They show that an assumption of a time-invariant
optimal hedge ratio is inappropriate. This finding should be of major in

terest to all practitioners involved in hedging with financial futures and
options.

1.2.3 Asset Pricing and Asset Allocation

The fundamental issue in almost all models of financial economics is the
relation between risk and return of assets. This section gives several exam

ples of how GARCH models have been employed to model and capture this
relationship.

A central position in the field of financial economics is taken by the lit
erature on asset pricing. The ARCH-M model of Engle, Lilien and Robins

[1987] constitutes a framework for testing empirical implications of theo

retical asset pricing models. As noted above, in an ARCH-M model, the

conditional mean of a return process is a function of the conditional vari

ance of the return

Tt = g(Xt-l' ht ; l/J)+ct,

where g(.) is a function of Xt-l and ht , Xt-l is a vector of predetermined
variables, ht is the conditional variance of Ct, and l/J is a parameter vector.

In the article by Engle, Lilien and Robins, the conditional variance of ct
is given by an ARCH(q) model, but the customary procedure is to assume

that ht follows a GARCH model, in which the model is denoted GARCH-M.

The intertemporal capital asset pricing model (ICAPM) of Merton [1973]
is one of the most well-known theories in the field. Merton [1980] makes

an approximation of the ICAPM model in which the excess return of the
market portfolio is a linear function of the variance. This model is studied

empirically by French, Schwert, and Stambaugh [1987]. Their investigation

was performed on the daily values of Standard and Poor's composite port
folio from 1928 to 1984. This portfolio is regarded as a proxy for the aggre

gate wealth in the economy. French, Schwert, and Stambaugh estimate an

ARCH-M model and a GARCH-M model on the excess return on the port
folio. The conditional mean equation is considered when the excess return

is both a linear function of the conditional variance and a linear function of
the conditional standard deviation. They find a positive relation between

the expected risk premium and the predictable level of volatility. Their esti
mates of volatility and expected risk premiums indicate that these variables
have fluctuated over the sample period. The authors also report a strong

negative correlation between the unpredictable component of volatility and
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excess holding period returns, indicating the existence of a leverage effect.

However, they show that the magnitude of the detected negative correlation

is too large to be explained solely by increased financial leverage.

A large number of articles have been written following the work of French,

Schwert, and Stambaugh. One often cited article in this tradition is the

paper by Glosten, Jagannathan, and Runkle [1993]. They estimate the

GARCH-M on data from the CRSP value-weighted index of NYSE equi

ties from 1951 to 1989. When the conditional variance is modeled with a
symmetric GARCH model, they find a positive but insignificant relation

between the conditional mean and the conditional variance of the excess re

turns. However, they empirically show that the standard GARCH-M nlodel

is misspecified. Based on this finding they introduce a new specification for

the conditional variance equation, in which the sign of excess returns is

made an explanatory variable of the conditional variance. This is the GJR

model mentioned in Section 1.1. When they estimate this model on the

data they detect a negative relation between the conditional mean and

the conditional variance of excess returns. The authors also introduce sea

sonal dummies in both the conditional mean and the conditional variance

equation. Furthermore, the nominal risk-free interest rate is used as an ex

planatory variable in the equation for the conditional variance. When this

augmented model is estimated on data, the negative relation between the

conditional mean and the conditional variance of excess returns is shown

to increase.

The two applications discussed above consider both the relation between

the excess return on an aggregate portfolio for the economy and its risk

measured as the conditional variance of the market return. When an ag

gregate market portfolio is considered, the analysis can be performed with

a univariate GARCH model. But as soon as individual securities or sub

portfolios of the aggregate portfolio are studied, the correlation between

the returns on assets has to be modeled, in which a multivariate specifi

cation has to be employed. We will below briefly describe two studies in

which multivariate GARCH models have been used to model the relation

ship between risk and returns on assets.

The pioneering work in this field is by Bollerslev, Engle, and Wooldridge

[1988]. They consider the empirical implications for excess return on assets

given by a conditional CAPM model. Assume that rt is the vector of excess

returns in the economy, and that J.tt and H t are the conditional mean vector

and the conditional covariance matrix of rt, given the information known

at time t - 1, It-I. Using this notation CAPM will require that

J.tt = 6'Ht Wt-I,

where 6' is a scalar which in equilibrium will be an aggregate measure of the

relative risk aversion in the economy, and Wt-l is the vector of value weights
of assets in the previous period. Bollerslev, Engle, and Wooldridge assume

that H t follows a multivariate GARCH model. Since the conditional mean
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vector is a function of the conditional covariance matrix, the econometric

model will be a multivariate version of the ARCH-M model of Engle, Lilien

and Robins [1987]. The econometric model estimated by Bollerslev, Engle,
and Wooldridge has the general form

rt

et IIt - l

vech(Ht)

b+8HtW t-l + et,

N(O,H t ),

C + A l vech(et-le~_l) + B l vech(Ht-l),

where vech() denotes an operator that stacks the lower portion of a N x N

matrix as a N(N + 1) x 1 vector, b is a vector of constants, and C, A l ,

and B l are constant parameter matrices. The econometric model should

be viewed as a parsimonious approximation of the model derived from
economic theory.

The estimation of the multivariate GARCH-M model is performed on

quarterly US return data from 1959 to 1984. The aggregate market port

folio is assumed to be composed of three assets, 6-month 'freasury bills,

20-year 'freasury bonds, and stocks. Thus, the GARCH-M model investi

gated will be trivariate. The NYSE value-weighted equity index is used as

a proxy for the stock portfolio. To simplify the estimation, the matrices A l
and B l are assumed to be diagonal. The estimation results show that the

conditional covariance matrix is highly autoregressive, and n o n - c o n s ~ a n t .

There is evidence that the risk premia of the different asset classes are bet
ter represented by covariances with the market than by their own variances.

But, contrary to the implications of the CAPM, information in addition to

past innovations of the return series is important in explaining premia and
heteroskedasticity. The growth rate in aggregate consumption expenditures

and lagged excess returns seems to have additional explanatory power over

the non-diversifiable risk.

Since the model considered by Bollerslev, Engle, and Wooldridge [1988]

only considers three classes of assets, the specification is very simple in

its structure. Naturally, it would be interesting to consider more complex

portfolio constellations. However, as discussed in Section 1.1, computational

difficulties arise when the dimension of the multivariate GARCH model

increases. For a successful estimation additional assumptions are required

that can simplify the structure on the conditional covariance matrix. A

possible candidate for this purpose is the factor-ARCH model presented

by Engle, Ng, and Rothschild [1990]. This model incorporates the idea

that the risk of assets can be decomposed in a limited number of common

factors and in an asset specific part. The model can therefore be viewed as

an empirical formulation of the Arbitrage Pricing Theory (APT) model of

Ross [1976] and Chamberlain and Rothschild [1983].

Ng, Engle, and Rothschild [1992] use the factor-ARCH model to estimate

a dynamic market model on stock return data. In the dynamic market
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model, the N x 1 vector of excess returns of assets, rt, can be written as

K s

rt = #Lt + ~mfmt + L~j . fjt + e:t,

j=l

where #Lt is the N x 1 vector of expected excess returns (or risk premia),
fmt is the unanticipated component of stock returns, ~ m is the vector of
market betas, fjt is the static factor j, ~ j is the vector of factor loadings for
the factor j, Ks is the number of static factors, and e:t is the vector of idio
syncratic noises. The term dynamic factor model stems from the fact that

in the model the market excess return is assumed to be a so-called dynamic
factor. A dynamic factor will have a time-varying conditional variance, and

the risk premium associated with the factor will be time-varying. The dy
namic factor will therefore determine the time series behavior of individual
asset risk premia. A static factor has constant conditional variance and a

constant risk premia, and therefore no effect on the dynamic behavior of
individual asset risk premium. Using an arbitrage argument similar to that
in Ross [1976], the vector of asset risk premia, #Lt, should, if the dynamic
market model is correct, be given by

where 7rmt(hmt ) is the time-varying market risk premium, which is a func

tion of the conditional variance of the market excess return, hmt . #Ls is the
static component of the vector of asset risk premia, which is related to the

risk premia of the K s static factors and the betas of the assets with respect

to the static factors.
The questions asked by Bollerslev, Engle, and Wooldridge are: (i) whether

the market is in fact a dynamic factor, (ii) whether the market is the sole
dynamic factor, and (iii) whether there are likely to be any static factors af
ter the dynamic nature of the model has been taken into account. The data

used to evaluate the dynamic market model is a vector of monthly excess
returns of ten decile portfolios of stocks traded at NYSE and AMEX. As a

proxy for the market the value weighted NYSE+AMEX is used. The sample

period is 1964 to 1985. Since the number of parameters in the model is large
relative to the number of observations, a two-step estimation procedure is

used, rather than the more efficient full maximum likelihood method.

Ng, Engle, and Rothschild find evidence that the market is a dynamic

factor. However, a three-dynamic-factor model, with the market as one of

the dynamic factors, seems to model excess returns better than the dynamic
market model. One additional factor is related to a January dummy, and

another is related to the rate of change in industrial production and a
recession dummy. After accounting for the systematic risk corresponding
to the three dynamic factors, Bollerslev, Engle, and Wooldridge found no
clear evidence of a static component of asset risk premium.
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1.3 Concluding Remarks

The survey article of the ARCH literature by Bollerslev, Engle and Nelson
[1994] makes reference to approximately 200 articles, and since 1994 a large
number of both theoretical and empirical papers which concern ARCH

model have been published. It is therefore inevitable that this chapter can
only constitute a very brief introduction to the ARCH/GARCH literature.
It is hoped however, that the presentation has helped to explain how the
four papers in this thesis relate to previous work within the research field.
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2

A Smooth 'fransition ARCH Model
for Asset Returns

2.1 Introduction

In this paper I introduce a new class of ARCH/GARCH models. This new
class allows for non-linearity in the equation for the conditional variance.

Two forms of non-linearity are considered. First, asymmetry regarding the
sign of the error term is considered. This specification allows positive and

negative shocks of equal size to have different degrees of impact on the con

ditional variance. Second, non-linearity regarding the size of error terms is
considered. The dynamics of the conditional variance will then differ de

pending on whether the market is relatively volatile or not. Even though
models that allow for different forms of non-linearity have been presented

before, these new models are believed to have novel features, that are advan

tageous in a modeling situation. One major advantage is that specification
tests can easily be developed from this model class. These specification

tests substantially simplify the procedure of finding a suitable model for
representing a financial time series.

In his seminal work, Engle [1982] introduces the ARCH (Autoregres

sive Conditional Heteroskedasticity) model, in which the conditional vari
ance is a linear function of lagged squared residuals, analogous to an MA

model for the conditional mean. Bollerslev [1986] introduces the General
ized ARCH (GARCH) model and extends Engle's MA specification into
an ARMA model by introducing lagged conditional variances in the con
ditional variance equation. With this representation, the number of pa
rameters in the model can be reduced considerably. Note, however, that
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a stationary GARCH model can always be rewritten as an ARCH model

with an infinite number of lags.

Among the first to introduce non-linearities in the ARCH framework were

Engle and Bollerslev [1986]. They propose a model where the dynamics of

the conditional variance change with the magnitude of squared residuals.

The transition between different conditional variance states is controlled
be a normal cumulative distribution function.

Higgins and Bera [1992] introduce the Non-linear ARCH (NARCH) model,
which encompasses various functional forms for the conditional variance.

Their model therefore provides a framework for testing the linear ARCH

model against different non-linear alternatives. In their article, the authors

derive a Lagrange multiplier statistic for such a test. This test is further

developed and analyzed in Bera and Higgins [1992].

In Nelson's [1991] Exponential GARCH (EGARCH) model, the natural
logarithm of the conditional variance is modeled as an ARMA process. This

solves some problems concerning parameter restrictions in the GARCH
model. Furthermore, Nelson introduces a term that makes the conditional
variance depend on the sign of lagged residuals. This is motivated by the

empirical observation that in some time series there is a correlation between
the current conditional variance and lagged returns. Models with this fea
ture are often denoted "asymmetric" or "leverage" volatility models.

Another asymmetric model is the GJR model, proposed by Glosten, Ja

gannathan, and Runkle [1993]. In the GJR model, the standard GARCH

model is extended by letting the parameter for the squared residual have
one value when the residual is positive, and another when the residual is

negative.

Zakoran [1994] introduces the Threshold ARCH (TARCH) model. In this
model the functional form is the same as in the GJR model, but instead

of modeling the conditional variance, Zakoran models the conditional stan

dard deviation. The TARCH model is developed further in Rabemananjara

and Zakoran [1993].

Ding, Granger, and Engle [1993] present the Asymmetric Power ARCH, a
model characterized by a large degree of flexibility. In fact, ARCH, GARCH,

NARCH, GJR and TARCH are included in the model as special cases.

A recent asymmetric model is the volatility switching (SV) model pre

sented by Fornari and Mele [1996b]. In the SV model, the GARCH equation
is augmented by a term that captures mean reversion in conditional vari

ance. Mean reversion refers to the observation that when the conditional

variance is high and the residual is smaller than expected, the conditional

variance will tend to decrease, and when the conditional variance is low
and the residual is larger than expected, the conditional variance often

increases.
The model class presented in this paper is inspired to a large extent by the

Smooth Thansition Autoregressive (STAR) model of Luukkonen, Saikko
nen, and Terasvirta [1988]. In the STAR model, the conditional mean is
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a non-linear function of lagged realizations of the series introduced via a
transition function. Two commonly used transition functions are the logis
tic (LSTAR) and the exponential (ESTAR) ( see Terasvirta [1994]). In the
non-linear ARCH model presented in this paper, the conditional variance

is a non-linear function of lagged residuals. As in the STAR models, the
non-linearity is, introduced via either a logistic or an exponential transi
tion function. This gives rise two to different models: the logistic and the
exponential snl00th transition ARCH model.

In the logistic smooth transition ARCH model, the conditional variance
will have dynamics similar to those of the GJR model. The GJR model
will obtain as a limiting case of the logistic model. In fact, the GJR model
will result if the logistic function is replaced by the Heaviside function. The
extra flexibility in the model presented in this paper is accomplished with
the introduction of one more parameter.

In the exponential smooth transition ARCH model, the dynamics of the
conditional variance are independent of the sign of lagged residuals. Instead,
the magnitude of lagged squared residuals control the conditional variance.
This specification is similar to that proposed in Engle and Bollerslev [1986]
(eq. 36). However, the transition function in Engle and Bollerslev's model
is the normal cumulative distribution function. In my model it is the expo
nential function which means that specification tests are easier to derive.

A much debated subject in the ARCH/GARCH literature is the distri
butional assumptions for the innovations (see e.g. Terasvirta [1996]). In
the ARCH model of Engle [1982], residuals are assumed to be normally
distributed. Bollerslev [1987] introduces Student-t distributed innovations
with his GARCH-t model. In Nelson [1991], innovations are assumed to
be drawn from a Generalized Error Distribution. However, this paper will
not focus on these issues. For simplicity, innovations will be assumed to be

normally distributed.

The empirical analysis of stock index series should not be considered
as a complete investigation of the possible data generating processes; it is

included only as an illustrative example. A empirical comparison of some
of the asymmetric models mentioned above is given in Fornari and Mele

[1996a].
In Section 2.2 the model is described, and parameter restrictions are

given to guarantee stationarity of the return series and non-negativity of
the conditional variance. Section 2.3 considers specification tests. In Section
2.4 parameter estimation is briefly discussed. Empirical examples of both
the specification tests and estimation are given in Section 2.5, and Section
2.6 presents the conclusions.
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2.2 The Model

The return of an asset is assumed to be generated by the process

Tt = Ct. (2.1)

The error term, or the residual, is assumed to have the following form

(2.2)

with Zt rvnid(O,l), and ht being the conditional variance at time t. In the
ARCH(q) model of Engle [1982], the conditional variance is given by the

process
q

ht = ,+ L aj€~_j' (2.3)
j=l

where, and aj (j = 1, .. ,q) are non-negative constants, with at least one

ai > O. The return process will be stationarity if 2:1=1 aj < 1, in which

case the unconditional variance is ,/(1- 2:1=1 aj), MilhflSj [1985].
In the standard ARCH model (2.3), the conditional variance is a linear

function of lagged squared error terms. In this study, this linearity condition
is relaxed, and the consequences of such an extension of the ARCH model
are investigated. As will be clear below, I focus on a fairly narrow class of

models, which is believed have attractive features.

Assume that {aj}]=l in (2.3) are not constants, but functions of lagged

error terms, according to aj = aj (€t-j). This implies the following equation

for the conditional variance
q

ht = ,+ Laj(€t-j)€~-j'
j=l

The functional form proposed for aj(€t-j) is

aj (€t-j) = a1j + a2j F (€t-j) ,

where a1j and a2j are constants, and F(.) is a transition function. The
proposed smooth transition ARCH model will therefore have the form

q

ht = ,+ L [a1j +a2jF (€t-j)] € ~ _ j . (2.4)
j=l

Below, two specific transition functions will be considered, one logis
tic and one exponential. Both these functions have simple expressions for
the derivatives with respect to the innovations €t-j. This will prove to be
advantageous when specification tests are derived. The logistic function
considered has the form

, -1 1
F(€t-j) = (l+exp[-O€t-j]) -2,0>0, (2.5)
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and the exponential function is

(2.6)

The two functions will generate quite different dynamics for the conq.i
tional variance. The logistic function (2.5) will generate a return process

where the dynamics of the conditional variance differ depending on the sign

of innovations. A related non-linear model is the model of Glosten, Jagan
nathan, and Runkle [1993]. In the GJR model, the conditional variance

follows one process when the innovations are positive and another process
when the innovations are negative. In this model, however, the transition

between states is smooth. For €t-j ~ -00 the transition function will b/e

equal to -1/2, and when €t-j ~ +00 the transition function will be equal

to 1/2.
The exponential function (2.6) is symmetric with respect to the sign

of the error term. This transition function will generate data for which
the dynamics of the conditional variance depend on the magnitude of the

innovations. For I€t-j I ~ 00 the transition function will be equal to unity,
and when €t-j = 0 the transition function is equal to zero.

To derive conditions for non-negativity of the conditional variance and

stationarity of the return series, results of MilhfZSj [1985] and TjfZSstheim
[1986] are used and it is noted that for (2.5), -1/2 ~ F(.) ~ 1/2, and for
(2.6), 0 ~ F(.) :::; 1. Sufficient conditions for strictly positive conditional

variance in the logistic smooth transition ARCH model are

, > 0

a1j ~ 0 (j=1, .. ,q)

1
(j = 1, .. ,q).a1j ~ 2!a2jl

For stationarity of the return process it is required

q 1
L[alj - 21a2jl +max(a2j,O)] < 1.
j=l

Sufficient conditions for strictly positive conditional variance in the expo
nential smooth transition ARCH model are

, > 0

a1j > 0 (j = 1, .. ,q)

a1j + a2j ~ 0 (j = 1, .. ,q).

For stationarity of the return process it is required

q

L[a1j + max(a2j,O)] < 1.
j=l
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For the smooth transition ARCH process to be defined, it is required that

at least one aij > o.
A natural extension of the smooth transition ARCH model is to in

clude lagged conditional variances in the equation for the conditional vari
ance, as is done by Bollerslev [1986] for the ARCH(q) model. The standard

GARCH(q,p) model of Bollerslev is in our notation equal to

q p

ht = 1 + L aljC~_j +L {3i ht-i,
j=l i=l

where the inequality conditions 1 > 0, a1j ~ 0 (j = 1, .. ,q), and {3i ~ 0
(i = 1, .. ,p), are imposed to ensure that the conditional variance is strictly

positive. The return process will be stationary if

q p

Lalj + L{3i < 1,
j=l i=l

in which case the unconditional variance is 1/(1 - 2:3=l a j - 2:~=1 (3i),
Bollerslev [1986]. The smooth transition GARCH(q,p) model proposed is
given by

q p

ht = 1 + L [alj + a2jF (ct-j)] C ~ _ j + L{3iht-i, (2.8)
j=l i=l

where F(.) is either of the form (2.5) or (2.6). The two resulting models
will be termed the logistic and the exponential smooth transition GARCH
model. A model similar to the logistic smooth transition GARCH model

has been i ~ d e p e n d e n t l y proposed by Gonzalez-Rivera [1996].
The GARCH model can parsimoniously represent a higher order ARCH

model. Therefore, specification (2.8) has the advantage that it will generally

require fewer parameters than the smooth transition ARCH model. Using

the parameter restrictions of the GARCH model (2.7), in conjunction with

the properties that for (2.5), -1/2:5 F(.) :5 1/2, and for (2.6), 0 :5 F(.) :5
1, sufficient parameter restriction in model (2.8) can be derived. For positive
conditional variance in the logistic smooth transition GARCH model it is

required that

, > 0

alj ~ o (j = 1, .. , q)

{3i ~ o (j = 1, .. ,p)

1
alj ~ 21a2jl.

For stationarity of the return process it is required

q 1 p

L[al; - 21a2;1 + max(a2; ,0)] + LI1i < 1.
j=l i=l
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For positive conditional variance in the exponential smooth transition GAR
CH model it is required that

, > 0

alj > o (j = 1, .. ,q)

{3i > o (j = 1, .. ,p)

alj + a2j > O.

For stationarity of the return process it is required

q p

~[alj +max(a2j,0)] + ~{3i < 1.
j=l i=l

For the smooth transition GARCH process to be defined it is required that

at least one aij > O.

2.3 Specification Tests

The main purpose of this section is to present procedures for testing the
null of linear conditional variance against the alternative of non-linear con
ditional variance. However, before testing such a hypothesis, it is natural
to first test the null of constant variance against the alternative of smooth
transition ARCH or smooth transition GARCH,. as specified in (2.4) or
(2.8). This section therefore begins with a description of a test of no smooth
transition ARCH. The test procedure is similar to Engle's [1982] test of no

ARCH. Following that, a test procedure that can discriminate between a
linear and a non-linear ARCH model is presented. Finally, tests are de
rived which are to be used when the smooth transition GARCH model is
considered. As will be clear below the test statistics presented will differ,
depending on the functional form chosen for the transition function.

Suppose we have an observed time series r-q+l, .. , ro, rl, ... , rT. Let w ~ =
(l,e~_l, ... ,e~_q, F(et-l)e~_l' ... , F(et_q)e~_q), and 0.'= (y,all, ... ,alq,
a2l, ... , a2q). Using this notation the conditional variance equation (2.4)
can be written

ht = w~o.. (2.9)

To detect ARCH effects, it is necessary to test the null hypothesis that in

(2.9) Ho : alj = a2j = 0 (j = 1, .. , q), against HI : at least one aij # O.
Because (2.9) is constant under the null, it is natural to apply the Lagrange
multiplier principle. The Lagrange multiplier test of no smooth transition

ARCH is

(2.10)
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where 0'2 = T- 1 E'[=l c~. For a derivation of equation (2.10), see the ap
pendix.

However, the vector Wt in (2.10) is dependent on the transition function,
which under the null has an unidentified parameter O. Therefore, the test

statistic is not operational as stated in equation (2.10). Following Luukko

nen, Saikkonen, and Terasvirta [1988], this problem is solved by making
a Taylor expansion of the transition function around zero. The obtained

approximation of F(.) is then inserted into the vector Wt.

If the transition function is logistic, as specified in (2.5), it is possible to

approximate F(x) by

T, = F'(O)x = ~x.
4

The vector w ~ can therefore be approximated by

Substituting w ~ into (2.9) yields

(2.11)

Furthermore, equation (2.11) can be reformulated and reparameterized as

(2.12)

(2.13)

whereWt = (l,C~_l, ... ,C~_q,C~_l, ... ,C~_q) and Ci = ("O:ll, ... ,O:lq, 0:21B/4,

... ,0:210/4). The null hypothesis of no ARCH is reformulated as H0 : O:lj =
0:2jO/4 = 0 (j = 1, .. ,q), against HI : at least one O:lj or one 0:2jO/4 is
different from zero. This hypothesis can now be tested with the Lagrange

multiplier principle. The test statistic is derived using the same techniques

as above, and is equal to

{
T 2 }'{T }-1 {T 2 }~ t; [ ; ~ -1] Wt 8WtW~ t; [ ; ~ -1] Wt ·

Following the arguments of Engle [1982], it is more convenient however to

perform the following test procedure that yields an asymptotically equiva

lent statistic:

1. Compute the residual sum of squares SSRo = E'[=l c~.

2. Regress c ~ on Wt, and compute the residual sum of squares from ~ h e

regression, S SR3 .

3. Compute the test statistic

LM =T. SSRo-SSR3

1 SSRo'
(2.14)
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When Ho is valid, LM1 has an asymptotic X2 distribution with 2 . q

degrees of freedom. 1 The statistic (2.14) can alternatively be written as

T . R~, where R ~ denotes the coefficient of multiple correlation from an
OLS estimation of the artificial model

e ~ = w~a+et.

If the transition function is exponential, as specified in (2.6), F(x) can

be approximated by

Te = F"(O)x2 == 2Bx2
.

The vector Wt can therefore be approximated by

w ~ == (1, e~-l' ... , e~_q, 2fJet_l' ... ,2fJet_q).

This suggests the following test procedure:

1. Compute the residual sum of squares SSRo == E;=l e ~ .

2. Regress e; on Wt = (l,e;_l' ... ,e;-q,ei-l, ... ,et-q), and compute the
residual sum of squares from the regression, SSR4.

3. Compute the test statistic

LM == T . SSRo - SSR4 = T . R 2 (2.15)
2 SSRo u'

which under the null is asymptotically X2 distributed with 2· q degrees

of freedom.

Again, it can be shown that the two test statistics (2.10) calculated with

Wt replaced by Wt, and (2.15) are asymptotically equivalent. R ~ in (2.15)

is the coefficient of multiple correlation from an OLS estimation of the

artificial model

e ~ == w~a+et.

Below is a description of a procedure to test the null hypothesis that

in (2.9) Ho : (};2j = 0 (j = 1, .. ,q), against HI :' at least one (};2j =1= o. A
Lagrange multiplier statistic for this test would have the form

{ }'{ }-l1 T 1 e~ T 1 ,
2 L h [h -1] Wt L "'h,2WtWt

t=l Ot Ot t=l Ot

X {t ~ [e; - 1] Wt} ,
t=l hot hot

(2.16)

IThe asymptotic equivalence of (2.13) and (2.14) is shown by noting that under

normality

T [2 ]2
plimL ~~ - 1 = 2T.

t=l u
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where hot is the conditional variance under the null. Under the null the
conditional variance equation will be given by an ARCH(q) model. hot can
therefore be obtained by estimating an ARCH(q) on the data. Following

the same arguments as above, (2.16) can be made operational by replacing

the transition function in Wt by a Taylor expansion of F(.). If the transition
function is logistic, the test statistic is equal to

{
T }'{T }-l1 1 c~ _ 1 __,

2 L h [h - 1] Wt L h2WtWt

t=l at at t=l Ot

x{t ~ [ c ~ -1] Wt} .
t=l hot hot

(2.17)

The statistic (2.17) will under the null be asymptotically distributed as X2

with q degrees of freedom. In a similar way to what was shown above, it is
possible to derive a regression based test statistic, which is asymptotically
equivalent to (2.17). This statistic would be calculated as T . R~ from the
regression of

{
c~ -I}
hot

on

{1 2 2 3 3}Ct-l Ct-q Ct-l Ct-q

hot' hot , ... , hot ' hot , ... , hot ·

The statistic for the test of ARCH(q) against the alternative of expo

nential smooth transition ARCH(q) will have a form similar to (2.17), with
Wt replaced by Wt. The test statistic will be asymptotically distributed X2

with q degrees of freedom. An asymptotically equivalent T . R~ statistic

can also be derived in this case.
Note, that the method of replacing the transition function with a suitable

approximation, is not restricted to the case where the transition functions

have either the form (2.5) or (2.6). Thus, this test procedure can be used
for all non-linear ARCH nlodels which have a transition function that can
be approximated by a second order Taylor expansion around zero, and for

which F(O) = O.
Above, the cases where the transition function is either the logistic or

the exponential have been deliberately separated . However, it is possible
to test the null of homoskedasticity against the alternative of non-linear
ARCH(q) of both forms simultaneously. This can be done in the regression

model of the form

(2.18)
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A LM type test statistic for the hypothesis is calculated as T . R~, where

R ~ is calculated from the model (2.18). The test statistic will be asymp
totically distributed X2 with 3 . q degrees of freedom. Furthermore, it is
straightforward to derive a LM statistic for testing the null of logistic

smooth transition ARCH(q) against the alternative of both a logistic and
an exponential smooth transition ARCH(q) model. Likewise, it is possible
to test the null of exponential smooth transition non-linear ARCH against

the alternative of both a logistic and-an exponential transition function.
However, both these tests require that the series of conditional variance un

der the null is estimated. Since it is far more time consuming to estimate a

smooth transition ARCH(q) model than a standard ARCH(q) model, the
tests will be more complicated to perform.

This section will close by describing specification procedures designed
to test for smooth transition GARCH, rather than for smooth transition
ARCH. Bollerslev [1986] notes that under the null of no heteroskedasticity
there is no general Lagrange multiplier test for GARCH(p, q). This is due
to the fact that the Hessian is singular if both p>O and q>O. In the smooth
transition GARCH model this will also occur. To test for smooth transition
GARCH, the same test procedures as described for the ARCH model are
proposed, with a fairly large number of lags. This is motivated by the fact

that the smooth transition GARCH model can be rewritten as a smooth

transition ARCH model with an infinite number of lags.

However, it is straightforward to derive a LM test for the null of GARCH

(p, q) against the alternative of smooth transition GARCH(p, q). The deriva
tion of such a statistic is performed using techniques similar to those

presented in the appendix. For simplicity the description is only of tests

of the null of GARCH(l,l) against the alternative of smooth transition

GARCH(l,l). Thus, the model considered under the null is

ht = / + [all + a21 F (ct-l)] C ~ - l + (3lht - l ,

and the hypothesis to be tested is

Ho a21 = 0

HI a21 =1= O.

Given that transition function is the logistic (2.5), and that ct is distributed
conditionally normal, a Lagrange multiplier test statistics for the hypothesis

is

! {t ~ [ c ~ -1] aht }'{t [ ~ a h t ] [ ~ a h t ] ,}-l
2 t=l hot hot 80. t=l hot ao. hot ao.

x{t ~ [ c ~ - 1] ah
t

} (2.19)
t=l hot hot ao.'
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where

hOt is the conditional variance under the null of GARCH(l,l), a.' is the

vector of-parameters (" all, a2l()/4, (3l)' and ~ l is the estimated parameter
(3l in the GARCH(l,l) model. The statistic LM3 will under the null of
GARCH(l,l) be asymptotically distributed X2 with one degree of freedom.
An asymptotically equivalent statistic would be calculated as T . R~ from
the regression of

{
c~ -I}
hOt

on

When the transition function is the exponential (2.6), the Lagrange mul

tiplier test statistics will be

! {t ~ [ c ~ -1] 8ht }'{t [ ~ 8 h t ] [ ~ 8 h t ] ,}-l
2 t=l hOt hOt 80. t=l hOt 80. hOt 80.

x{t ~ [ c ~ - 1] 8h
t

} (2.20)
t=l hOt hOt 80.'

where

hOt is the conditional variance under the null of GARCH(l,l), a.' is the

vector of parameters (" all, a2l 2(), (3l)' and ~ l is the estimated parameter
(3l in the GARCH(l,l) model. When Ho is valid LM4 has an asymptotic
X2 distribution with one degree of freedom. The asymptotically equivalent
statistic is T . R~ from the regression of

{ c~, -I}
hOt

on

{

t-l -i-l t-l -i-l 2 t-l -i-l t-l -i-l 4 }
Ei=l {3 Ei=l {3 Ct-i Ei=l {3 hOt- i Ei=l {3 Ct-i

hOt ' hOt ' hOt ' hOt .
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2.4 Estimation

If the conditional mean follows equation (2.1), and given that the inno
vations Zt are Gaussian, the parameters of the models are estimated by

maximizing the likelihood function E;=llt, where It is given by (2.22).
This is done using standard numerical methods. Since the magnitude of
the parameters is quite different in this model, it is recommended that
the parameters be scaled, so that the diagonal elements of the Hessian are
roughly equal. It is also advisable ~ o set the starting value of the parameter

() in a region where the transition function will not just take on the extreme

values of the function.
If the conditional mean follows a regression model, the parameters of

the conditional variance process should be estimated simult'aneously with
the parameters of the conditional mean model. However, the procedure
can be simplified when the exponential model is considered. Engle [1982]
shows that when the conditional variance is symmetric with respect to the
innovations, as it is in the exponential smooth transition ARCH model, the
two models can be estimated separately. Thus, first the parameters of the
conditional mean model are estimated, and then estimate the parameters of
the ARCH/GARCH model are estimated on the estimated residuals from

the conditional mean model.

2.5 Empirical example

For the empirical analysis, observations used were daily return series from
four different equity indexes: the Copenhagen Stock Exchange general in

dex (CGI), the Financial Times all share index (FT-all), the Milan Stock
Exchange general index (MGI), and the Stockholm equity index (OMX).2

The period investigated is January 3, 1991 to July 15, 1996. Th~ number
of observations per series is approximately 1400. Returns are calculated as
In{Pt / Pt - 1), where Pt is the index level at the end of day t.

The series are first examined for autocorrelation using a test developed

by Richardson and Smith [1994]. The test, in the form used here, is a
robust version of a standard Box and Pierce [1970] procedure. The statistic

is calculated as

k .-2

RS(k) = TL -.f!.L,
i=l 1 + Ci

(2.21)

2 These series are not chosen randomly from the population of equity index series.

Rather, they have been selected because they fulfill the purpose of showing how the

specification tests work and how estimation results may turn out. However, it was no·

difficult to find series that suited this purpose.
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where Pi is the estimated autocorrelation between the returns at time t and
t - i. The terms Ci is an adjustment factor for heteroskedasticity, given by

c o v [ r ~ , r ~ - i ]
Ci = ,

var[rt]2

where rt is the demeaned return at time t. Under the null of no autocor
relation, the statistic is distributed asymptotically X2 with k degrees of
freedom.

Richardson and Smith's test (2.21) was calculated with k equal to five.
No autocorrelation was detected for FT-all and MGI, on five percent sig
nificance level, while autocorrelation was indicated for CGI and OMX. For
CGI and OMX AR(l) models ~ e r e fitted. To ensure that these models
capture the detected autocorrelation, the test (2.21) were applied again,
calculated on estimated residuals from the AR(l) models. Following the
recommendations of Box and Pierce [1970] and Ljung and Box [1978], the
value of the statistic in this case is compared to a X2 distribution with k - 1

degrees of freedom. No further autocorrelation was detected for CGI and
OMX, on five percent significance level. It is therefore concluded that for
FT-all and MGI a suitable mean equation is

and for CGI and OMX the mean specification chosen is

rt = 'Po + 'PI rt-I + Ct·

After having considered the conditional mean specification, tests are per

formed regarding the conditional variance. These tests are calculated on'
estimated residuals from the conditional mean models.3 Results from 'these

specification tests are showed in Table 1. Column two reports results for
Engle's [1982] test of no ARCH, calculated on ten lagged squared residuals.

The reported p-values show that it is possible to reject the null of constant
variance against heteroskedasticity in the form of linear ARCH for all four
series, on five percent significance level. Columns three and four show sinii
lar results, with respect to the smooth transition ARCH model. The last 'two

columns report the results from the tests of GARCH(I,I) against smooth
transition GARCH(l,I). According to column five, for CGI and MGI it is
possible to reject the null of GARCH(I,I) against the alternative of logistic
smooth transition GARCH(l,l), on five percent significance level. However,

3 Beta, Higgins and Lee [1992] thoroughly analyze the problem of testing for ARCH

when the conditional mean is given by an AR model. They suggest that the Lagrange

multiplier statistic should be adjusted for possible autoregression. The simplistic test

procedure here is motivated by the observation that even though autocorrelation is

present in financial time series, any AR model can only explain a very small fraction of

observed returns.
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for FT-all and OMX we can reject the null against the alternative of logis

tic smooth transition GARCH(l,l). Column six shows that only for CGI
is it possible to reject the null of GARCH(l,l) against the alternative of

exponential smooth transition GARCH(l,l). Thus, it is concluded that for

CGI the exponential smooth transition GARCH(l,l) model might be the

data generating process of the conditional variance. For FT-all and OMX

the conditional variance could have been generated from the logistic model.

For FT-all and OMX the logistic smooth transition GARCH(l,l) model
was estimated. The conditional mean specification was estimated simul

taneously. The exponential smooth transition GARCH(l,l) model is esti
mated on CGI. In this case the conditional mean is estimated separately.

Since no higher order GARCH effects are detected for MGI, no further

estimations are performed on the series. The results from the three esti

mations are compared to the results from estimations where the standard

GARCH(l,l) model is fitted to data. The innovations in all models are

assumed to be normally distributed.
Parameter estimates for the models are shown in Table 2. The two last

rows give the values on the log-likelihood function and the value on Akaike's

information criterion (AIC). All estimated parameters fall into the regions

where, given the sufficient conditions in Section 2.2, it is known that the

return processes are stationary and that the conditional variance is non
negative. Since specification tests have been used to establish the possible

data generating processes of the series, standard errors of the estimates

have intentionally been left unreported. If the residuals are assumed to

be distributed conditionally normal, the standard errors can be computed

from the inverse of the Hessian. If normality is not fulfilled, the estimation

procedure used is a quasi-maximum likelihood method. In such cases, stan
dard errors can be computed with a method presented by Bollerslev and

Wooldridge [1992].

The first two columns of Table 2 report estimation results for CGI. Ac

cording to AlC, the exponential smooth transition GARCH(l,l) model

constitutes an improvement over the standard GARCH(l,l) model in de

scribing the dynamics of the conditional variance. The estimated parameter

value for () gives a transition function which moves smoothly between zero

and one, as can be seen from Figure 2. Figure 3 shows how the conditional

variance reacts to different residual values, based on the estinlated para

meters. From the figure it can be observed that the news impact curve for

exponential smooth transition GARCH model nearly coincides with that

of the GARCH model when residuals are in the interval-1.5 to +1.5 per
cent.4 However, for larger absolute returns, the two curves show a different

pattern. In the smooth transition GARCH(l,l) case, the relative influence

4The news impact curve, as a way of illustrating the level of asymmetry in a het

eroskedatic model, was introduced by Engle and Ng [1993].
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of large absolute returns will be lower then in the GARCH(l,l) case. Only

2.5 percent of all absolute returns are larger than 1.5 percent.

For FT-all the logistic model maximizes the likelihood function and min

imizes AlC. As can be seen in Figure 1, the estimated value for () will give a

transition function that moves very slowly between its extreme values -1/2

and +1/2. In the region where most returns are present, between -1.5 and
+1.5 percent, the transition function seems to be almost linear with respect

to the residual value. Figure 4 shows how the conditional variance reacts to

different residual values, based on the estimated parameters. As expected,

the news impact curve for the logistic model is asymmetric around Ct = O.
The reaction to negative residual values is much larger than the reaction

to positive residuals of the same magnitude. Thus, a leverage effect seems

to be present in the return series.

The last two columns of Table 2 report estimation results for OMX.

Even in this case, the logistic model maxinlizes the likelihood function and

minimizes the AlC. From Figure 1 it can be observed that the estimated
parameter value for () gives a transition function which is much more sen

sitive to differ.ent residual values, than what was found for FT-all. When

absolute residuals are larger than 1.5 percent, the transition function will

always be at its extreme values. 16 percent of all absolute returns in the

sample are larger than 1.5 percent. Figure 5 shows the news impact curve

for the two models estimated on OMX. As was the case for FT-all, the

news impact curve show leverage effects. Thus, large positive returns will

increase the conditional variance less than large negative returns.

2.6 Summary and Conclusion

This paper has presented a new class of ARCH model, the smooth transi

tion ARCH model. In these models, the conditional variance is a non-linear

function of lagged squared residuals. The non-linearity is introduced by a

transition function. Two specific transition function are considered, the

logistic and the exponential. These two functions will each give the con

ditional variance quite different dynamics. The logistic function allows for

asymmetric behavior of the conditional variance with respect to the signs

of residuals. In the exponential smooth transition model, the dynamics of

the conditional variance will differ depending on the absolute size of lagged

residuals.

Following the work of Bollerslev [1986] the smooth transition ARCH

model is extended to a smooth transition GARCH model. In this model,

the conditional variance is a function of both lagged residuals and lagged
conditional variances. This formulation is likely to limit the number of

parameters needed for a successful estimation of the model.
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In Section 2.3 a number of specification tests for the smooth transition

ARCH/GARCH model were presented. Since the estimation of the model

requires iterative procedures, these tests are most valuable in a practical

situation.

Section 2.5 contained a short empirical example, where four equity in

dex returns series were estimated. Data is daily and the sample period

is from January 1991 to July 1996. Using the specification tests it can

be concluded that two of the series could have had the logistic smooth

transition GARCH(l,l) model as their data generating process. One con

ditional variance series might have been generated from an exponential

smooth transition GARCH(l,l) model. The models were estimated on the

three series that indicated higher order GARCH effects, and these estimates

are compared to standard GARCH(l,l) estimates. According to Ale, the

smooth transition GARCH(l,l) model constitutes an improvement over

the GARCH model. The estimated parameters for the logistic model in

dicate that large negative residuals increase the conditional variance more

than positive residuals. Thus, for these two series the conditional volatility

seems to increase in bear markets. The estimation results for the exponen

tial model show that large absolute residuals are given too high an influence

in the standard GARCH(l,l) model.

One question that has not been answered in this paper is whether this

model can outperform other non-linear ARCH models presented in the

literature. This is obviously a question that calls for further research. An

other question that needs to be examined more carefully is the parameter

restrictions required for stationarity. In Section 2.2, sufficient conditions

for stationarity are provided, but these conditions could be too restrictive.

Furthermore, small sample properties of the specification tests need to be

analyzed.
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Appendix

1. Derivation of LM statistic (2.10)
The Lagrange multiplier statistic has the general form

LM = TqT(aO)' I(ao)-l7jT(aO),

where ao is the vector of parameters under the ;null. 7jT(a) is the average

score and I(a) is the information matrix. If the innovations are assumed
to be Gaussian, the log likelihood of one observation is equal to

1 1 1 e~
It = --ln27r - -lnht - --

2 2 2ht
O

It is then straightforward to show that the average score is equal to

1 T 1 [2 ]
qT(a) = T L 2h ~ t -1 Wt·

t=l t t

The information matrix is the negative expectation of the Hessian averaged
over all observations

The Hessian for one observation can be shown to be equal to

a2
lt 1 [e~ ] ,1 1 [e~ ] ,

8a8a' = - 2h~ h
t

Wt
W t - '2 h~ h

t
- 1 Wt

W t ,

which implies that the information matrix becomes

. T 1 [ 1 ]
I(a) = L 2T E h2 WtW~ •

t=l t

The information matrix is consistently estimated by

Now consider the average score under the null, when the conditional
variance is constant. L ~ t 0'2 denote the constant conditional variance under
the null. The average score can then be written
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and the consistently estimated information matrix under the null is equal
to

T

- 1 "" ,1(00) = 2 L...J WtWt·
2T (0-2

) t=l

The Lagrange multiplier test of no -smooth transition ARCH can therefore
be written

where 0'2 = T- 1 2:;=1 e~. Formula (2.23) can be simplified to

{
T 2 }'{T }-1 {T 2 }~ 8 [;; -1] Wt 8WtW~ 8 [;; -1] Wt ,

which corresponds to formula (2.10).•
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Table 1. Results from specification 'tests

The table reports p-values for specification tests performed on the four series

of estimated residuals. For the Financial Times all share index and for the Milan

general index, the residuals are c"alculated as returns minus mean return. For

the Copenhagen general index and for the Stockholm OMX i n ~ e x , residuals are

from an AR(1) model. The investigated period is January 3, 1991 to July 15,

1996. The column labeled No ARCH gives the results for Engle's [1982] test of no

ARCH, calculated on ten lagged squared residuals. The statistic has an approx

imate X2 (10) distribution under the null. The column labeled LM1 reports the

results from the test of no ARCH, against the alternative of smooth transition

ARCH with a logistic transition function, as specified in equation (2.14), calcu

lated on ten lagged residuals. The column labeled LM2 reports the results from

the test of no ARCH, against the alternative of smooth transition ARCH with

an exponential transition function, as specified in equation (2.15), calculated on

ten lagged residuals. The column labeled LM3 reports the results from the test

of GARCH(1,1), against the alternative of sinooth transition GARCH(1,1) with

a logistic transition function, as specified in equation (2.19). The column labeled

LM4 repO,rts th~ results from the test of GARCH(1,1), against the alternative

of smooth transition GARCH(1,1) with' an exponential transition function, as

specified in equation (2.20).

Index No ARCH LM1 LM2 LM3 LM4

Copenhagen 1.85.10 11 1.84.10-20 3.42.10-23 0.7762 0.0156
FT-all share 3.28. 10-21 4.82.10-27 4.35.10-33 0.0461 0.6547

Milan 9.52. 10-61 4.43.10-83 1.24.10-84 0.3142 0.8617

OMX 9.49.10-18 2.54.10-17 5.12 .10-19 0.0123 0.4348
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Table 2. Results from estimations

The table shows results from estimations of the model

Tt = <Po + <P1Tt-1 + ct

with et rv N(O, ht ). Three models for ht are estimated: the logistic smooth

transition GARCH(l,l) model

ht = 'Y + (au + 021 [<1 +exp [-Oet_l])-l - 4]) eLl + f3 l ht - l ,

the exponential smooth transition GARCH(l,l) model

ht = 'Y + (all + 021 [1 - exp [ - 6 e ~ _ 1 ] ] ) C ~ - l + 131ht- 1,

and the standard GARCH(l,l) model

ht = , + olle~-l +131ht-1.

The three estimated series are daily returns for the Copenhagen Stock Exchange

general index, the Financial Times all-share index, and the Stockholm equity

index (OMX). The investigated period is January 3, 19·91 to July 15, 1996. For

FT-all no autocorrelation in returns was detected, and therefore 'Pt is excluded in

the estimation.The row labeled LL gives the value of the log-likelihood function.

Copenhagen FT-all share index OMX

EST- LST- LST-

GARCH GARCH GARCH GARCH GARCH GARCH

<Po 1.67.10-4 1.67.10-4 3.97.10-4 4.32.10-4 4.19.10-4 6.34.10-4

<P1 0.264 0.264 0.126 0.126

'Y 7.74.10-6 9.21.10-6 3.82.10-7 4.46.10-7 4.61.10-6 6.03.10-6

011 0.215 0.158 0.037 0.036 0.086 0.086

021 -0.166 -0.050 -0.094

131 0.612 0.580 0.956 0.955 0.884 0.870
() 2128 43.9 430

LL 5223.5 5219.7 4880.1 4878.1 4290.7 4281.7

AIC -10437.0 -10433.5 -9748.3 -9748.1 -8567.5 -8553.4
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Figure 1. Logistic transition function for the Financial Times all
share index and the OMX index

The figure shows the value of the logistic transition function

for different values on the residual tt-j. The transition function for FT-all is

created with the estimated parameter value () = 43.9. The transition function

for OMX is created with the estimated parameter value () = 430.
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Figure 2. Exponential transition function for the Copenhagen
Stock Exchange general index

The figure shows the value of the exponential transition function

F(et-j) =1- exp [ - 6 e ~ _ j ] , 6 > 0

for different values on the residual Ct-j. The transition function is created ,with

the estimated parameter value () = 2128.
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Figure 3. News impact curves for the Copenhagen Stock
Exchange general index

The figure shows how the conditional variance reacts to different values on

lagged residuals. The curves are created from the estimated parameter values

given in Table 2. The ESTGARCH(l,l) curve is created with the formula

ht = 'Y + (all + 021 [1 - exp [ - g e ~ _ 1 ] ] ) e ~ - l + (3lht-l,

and the GARCH(l,l) curve with the formula

ht = 'Y + alle~-l + (3lht - l .

The initial conditional variance in all curves is equal to the unconditional variance

for the GARCH(l,l) model, 3.52.10-5 .

l1li

l1lil1li

__ •

.......
......

-0.03 o

. .....ESTGARCH(l,l)

-GARCH(l,l)

.......
.,.....

......

0.03

Residual value



Figures . 45

Figure 4. News impact curves for the Financial Times all share
index

The figure shows how the conditional variance reacts to different values on
lagged 'residuals. The curves are created from the estimated parameter values'
given in Table 2. The LSTGARCH(l,l) curve is created with the formula

ht = 'Y+ (0:11 +0:21 [(1 +exp[-8et_1])-1_~]) eLl + {31 ht-1,

and the GARCH(l,l) curve w i ~ h the formula

ht = 'Y + alle~-l + (31ht - 1o

The initial conditional variance in all curves is equal to the unconditional variance

for the GARCH(l,l) model, 5.13.10-5 .
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Figure 5. News impact curves for the· OMX index

The figure shows how the conditional variance reacts to different values on
lagged residuals. The curves are created from the estimated parameter values

given in Table 2. The LSTGARCH(l,l) curve is created with the formula

h t = '1+ (on +021 [(1 +exp[-6et_1])-1_~]) eLl +f31ht-1,

and the GARCH(l,l) curve with the formula

h t = "Y + aIIe~-1 + f3I h t - I •

The initial conditional variance in all curves is equal to the unconditional variance

for the GARCH(l,l) model, 1.42-10-4
.
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Specification Tests for Asymmetric
GARCH

3.1 Introduction

To estimate the unknown parameters of a model in the ARCH/GARCH

class, iterative numerical methods are very often required. These procedures

are time consuming. Furthermore, if the model in question explains the data

badly, the estimation might not converge. Therefore, it is essential to have

reliable specification tests. These tests give the econometrician indications

of which models can be the data generating process of a time series. This

paper presents two Lagrange multiplier tests designed to detect higher order

GARCH effects. For both tests, the null hypothesis is the GARCH model

proposed by Bollerslev [1986]. In the first test, the alternative hypothesis is

the generalized quadratic ARCH (GQARCH) model of Sentana [1995], and

in the second test, the alterative is the logistic smooth transition GARCH

(LSTGARCH) model presented by Hagerud [1996], and Gonzalez-Rivera

[1996]. The models are only considered in their most simple structure, when

the lag lengths are equal to one, but tests for more complex models can
easily be derived, using a similar method.

In both the GQARCH and LSTGARCH model, the conditional variance
is asymmetric in the sign of lagged innovations. Thus, there is a correlation
between current conditional variance and lagged returns. A number of other

such asymmetric models have been proposed in the literature. The most

common of these are: the EGARCH models of Nelson [1991], and the GJR

model of Glosten, Jagannathan, and Runkle [1993].
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In this paper, results are presented from Monte Carlo simulations per
formed to investigate the small sample properties of the two statistics. The
empirical size is shown to coincide with the theoretical. When the power
of the tests is examined, it is determined whether the tests can be used'
to test for the existence of asymmetry of forms other than those specified
in the GQARCH and LSTGARCH models. If that is the case, this will
indicate that the tests cannot distinguish between different forms of asym
metry. This is naturally a weakness of the tests. However, it might also
be an advantage. If a test can detect other forms of asymmetry, one test
can indicate, if the null cannot be rejected, that a large number of ARCH
models can be excluded as the data generating test process of a time series.
The other asymmetric models considered in this experiment are: EGARCH,

GJR, TGARCH, A-PARCH, and VS-ARCH. It is shown that both tests
can be used to detect asymmetries generated by these five models.

For plausible parameter values on the data generating process, the empir

ical power of the tests is always below 100 percent. Therefore, the relative
power of the tests is compared to four other asymmetry tests proposed by
Engle and Ng [1993]. The procedures of Engle and Ng are the most com
monly used tests in the literature. The simulations show that the power
properties of the two tests here are superior to that of Engle and Ng's
tests. The major contribution of this paper, therefore, is the presentation
of two tests for general asymmetry, with superior power properties.

This article is organized as follows. The next section describes the asym
metric ARCH models that will be considered in the Monte Carlo experi
ment. Section 3.3 surveys previous literature on specification tests in the

ARCH environment. Section 3.4 contains a presentation of the specification
tests. Results from the Monte Carlo experiment are given in Section 3.5.
Finally, Section 3.6 concludes the paper.

3.2 Asymmetric GARCH Models

This section presents the GQARCH and the LSTGARCH models, as well
as the five other asymmetric GARCH models that will be considered in
the Monte Carlo experiment.! In all the models presented, and also for the
remainder of this article, it is assumed that the return on an asset, rt, is
generated by

(3.1)

IThe EGARCH, GJR and A-PARCH models presented below, are more thoroughly

surveyed by Hentschel [1996]. Based on his Asymmetric Absolute Value ARCH model,

Hentschel develops a general GARCH model, which nests a large number ARCH models.

Both symmetric and asymmetric models are nested, but not QARCH and VS-ARCH.
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where ct denotes a discrete-time stochastic process with the form

h
1/ 2

ct = Zt t , (3.2)

where Zt rvnid(0,1), and ht will be the conditional variance at time t.

3.2.1 GQARCH

Sentana [1995] introduces the Quadratic ARCH model. The term quadratic

is used since the QARCH model can be interpreted as a second-order Taylor

approximation to the unknown conditional variance function. The Gener

alized QARCH(1,1) model is

(3.3)

where " (, 0, and (3 are constant parameters. Positivity of the variance is
achieved if 0, (3 2:: 0, and ( < 40,. The model is covariance stationary if

0+(3 < 1. Asymmetry is introduced with the parameter (.

3.2.2 LSTGARCH

The logistic smooth transition GARCH model is proposed by Hagerud

[1996], and Gonzalez-Rivera [1996]. In the LSTGARCH(1,1) model, the

conditional variance is assumed to be generated by

ht = , + [01 + 02F (ct-1)] C ~ - l + /3h t - 1 ,

where F(.) is a transition function with the form

(3.4)

F (C:t-l) = (1 + exp [-(}C:t_l])-l -~, (} > O. (3.5)

For positive conditional variance in the LSTGARCH model, it is required

that

, > 0,

01 > 0,

/3i > 0,

1
01 > "2 1021 .

For stationarity of the return process it is required

1
[01 - 2 1021 + max(02' 0)] + /3 < 1.

For the smooth transition GARCH process to be defined, it is required that

at least one 0i > 0, i = 1, 2. In the LSTGARCH(1,1) model, the level of

asymmetry is controlled by the parameters 02 and B.
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3.2.3 EGARCH

The seminal work in the area of asymmetric ARCH is the exponential
GARCH model of Nelson [1991]. In the EGARCH(I,I) model, the natural
logarithm of the conditional variance follows the process

Inht = 'Y + j3lnht- 1 + ).Zt-l + rp [IZt-ll- v!2/i] , (3.6)

where " {3, ,x, and ep are constant parameters, and Zt is defined as in (3.2).
For the process Ct to be stationary, it is sufficient that {3 < 1. Nelson gives
three motivations for his model compared to the standard GARCH model
of Bollerslev [1986]: (i) The GARCH model cannot explain the asymmetric

behavior of the conditional variance in asset price returns. (ii) For the condi

tional variance to be strictly positive, the parameters of the GARCH models
must be non-negative, which is not required in the EGARCH mode1.2 (iii)

In the GARCH model, it is difficult to evaluate whether or no a shock to

variance persists. Persistence of conditional variance in the EGARCH is
controlled by the parameter {3.

3.2.4 GJR

In the GJR model of Glosten, Jagannathan, and Runkle [1993] the standard
GARCH model is augmented with a term that captures asymmetry. The

GJR model is

(3.7)

where " a, {3, and ware constant parameters, and S ~ l is a variable that
takes the value one when Ct-l < 0 and zero otherwise. For positive condi

tional variance, it is sufficient that the parameters" a, and (3, and (a+w)

are non-negative. For the process Ct to be stationary, it is sufficient that

a+{3+w < 1.
Note that the GJR model (3.7) will obtain as a limiting case of the

LSTGARCH(I,l) model (3.4), when the logistic transition function (3.5),
is replaced by the Heaviside function minus one half. In the GJR model, the
conditional variance follows one process when the innovations are positive

and another process when the innovations are negative. In the LSTGARCH

model, however, the transition between states is smooth.

3.2.5 TGARCH

The Threshold GARCH model is introduced in Zakoran [1994]. In the
TGARCH model, it is not the conditional variance, but the conditional

2Nelson and Cao [1992] show that the non-negativity constraint for the GARCH

model given by Bollerslev [1986] is only sufficient for strictly positive conditional vari

ance. They demonstrate that weaker conditions can be found.
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standard deviation, Ut = ht/
2

, that is modeled. The TGARCH(1,1) model
is

Ut = ,+ O+C[_l - O-Ct_l + (3Ut-l, (3.8)

where ct = max(Ct, 0), and Ct = min(ct, 0). For strictly positive condi
tional standard deviation, it is sufficient that, > 0, 0+ ~ 0, 0- ~ 0, and
{3 ~ O. The return series is stationary if

Note that (3.8) can be reparameterized as

Ut = , + 0 Ict-ll +wSt-lCt-l + (3Ut-l.

Thus, in the TGARCH(1,1) model, the conditional standard deviation has
the same functional form as the conditional variance has in the GJR model

(3.7).

3.2.6 A-PARCH

Ding, Granger, and Engle [1993] introduce the,Asymmetric Power ARCH

model. In the A-PARCH(1,1) model, the conditional variance is given by

8/2 (I I )8 8/2h t = , + 0 Ct-l - "7Ct-l + {3h t - 1 , (3.9)

where " 0, (3, "7 and 8 > 0 are constant parameters. Asymmetry is intro
duced via the parameter "7 E (-1,1). For positive conditional variance, it

is required that the parameters " 0, and (3, are non-negative. Conditions
for stationarity are relatively complex, and can be found in Ding, Granger,

and Engle [1993].
The A-PARCH model is a generalization of previous GARCH models.

The model includes seven other models as special cases. For example, 8 = 2

and "7 = 0 will give the GARCH(1,1) model. Letting 8 = 2 gives the GJR
model. When 8 = 1 the dynamics of the model will be similar to that
in the TGARCH model. Since these models are nested in the A-PARCH
model, likelihood ratio tests can be performed to test the significance of

the parameters. Thus, the null of a specific model, against the alternative
of A-PARCH, can be tested with relative ease.

3.2.7 VB-ARCH

The Volatility Switching model is proposed by Fornari and Mele [1996a].

In the VS model the conditional variance follows

(3.10)
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where

St 1 if ct > 0

St a if Ct = 0

St -1 if Ct < 0,

and vl is defined as c ~ / h t . The parameters of the model are " a, {3, and

e. With the series {Stvl} ~=1' Fornari and Mele introduce what they call

mean reversion in the conditional variance. vl ,measures how much a given
squared residual deviates from its expected value, ht, and St indicates the

sign of the residual. The model, for example, is able to generate data where
unexpectedly large negative returns increase ht , large positive returns de

crease ht , small negative returns decrease ht , and small positive returns

increase ht . The level of asymmetry in the model will therefore depend on
parameter e, and on the relative size of residuals.3

3.3 Previous ARCH Specification Tests

This section is included to introduce the reader to the area of specification

tests in the ARCH/GARCH literature. Readers already familiar with this

literature can proceed to Section 3.4.

In the ARCH(q) model of Engle [1982], the conditional variance is given

by the process
q

ht = , +2: ajC~_j'
j=1

(3.11)

where, and aj (j = 1..q) are non-negative constants, with at least one

aj > O. To test the presence of ARCH, Le. testing Ho : aj = 0 (j = 1..q),
against HI : at least one aj =1= 0, Engle proposes a Lagrange multiplier
test. Since the conditional variance is constant under the null, a Lagrange
multiplier test is particularly suitable. Engle shows that the LM statistic
can be c ~ l c u l a t e d as T . R;, where T is the number of observations, and

R; is the coefficient of multiple correlation from the regression of c ~ on a

constant and C ~ _ I , ••• ,C~_q. Under the null, the statistic has an asymptotic X2

distribution with q degrees of freedom. As noted by Granger and Terasvirta

[1993], McLeod and Lee's [1983] test of linearity in the conditional mean
against unspecified non-linearity is asymptotically equivalent to Engle's

test of no ARCH.

3In Fornari and Mele[1996b], the authors proposed a slightly different VS-ARCH

model, in which two extra parameters are needed.
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In the GARCH(q,p) model of Bollerslev [1986] the conditional variance
is given by the process

q p

ht =, + L O:jC~_j + L{3jht - j ,
j=1 j=1

(3.12)

where " O:j (j = 1..q) and {3j (j = 1..p) are non-negative constants, with
at least one O:j > O. To test the presence of GARCH, an LM statistic
cannot be derived in the way described by Engle. Bollerslev [1986] notes
that under the null of no heteroskedasticity, there is no general test for
GARCH(q,p). This is because the information matrix is singular if both
p>O and q>O. Based on Bollerslev's finding Lee [1991] derives a mod~fied

LM statistic for Ho : O:j = {3i = 0 (j = 1..q, i = 1..p), against H 1 : at least
one O:j # 0 or one (3i # O. Lee shows that this test is equivalent to the test of
no ARCH(q). Thus, under t ~ e null of homoskedasticity, the GARCH(q,p)

effect and the ARCH(q) effects are locally equivalent alternatives. Lee notes
that with his methods for deriving a modified LM statistic for no GARCH,
it is possible to derive a test of the null of ARCH(q) against the alternative

of GARCH(k1 ,q+ k2 ), where k1 > 0 and k2 > O.
Tests of the null of linear ARCH as in (3.11), or linear GARCH as in

(3.12), against different forms of non-linear ARCH/GARCH, has been pro
posed by, among others, Bera and Higgins [1992], Higgins and Bera [1992],
Engle, and Ng [1993], Rabemananjara, and ZakoYan [1993], and Sentana
[1995]. Bera and Higgins [1992] and Higgins and Bera [1992] discuss testing
for ARCH against NARCH (Non-linear ARCH). In the NARCH model, the
conditional variance is, as in the ARCH and GARCH models, symmetric

in the sign of Ct. Since the GQARCH and the LSTGARCH models are
asymmetric, their test is of less-jmp-ortance in this context. It is still worth

noting that the test of no LSTGARCH and the test of no NARCH, have
the common problem of a non-identified parameter under the null. The
methods for solving this problem, however, are quite different.

Engle, and Ng [1993] present four different LM type tests for linear
ARCH/GARCH against asymmetry. These four statistics will be discussed
more thoroughly in Section 3.5, and a detailed description of how the tests
may be calculated appears in the appendix. In this section, a short intro
duction to the four tests is given. The Sign bias test examines the impact
of positive and negative shocks on the conditional variance not predicted
by the linear model. This is done by investigating whether, in a linear
regression model, the variable St:-1 has any predictive power on squared
normalized residuals c ~ /hot , where hot is the conditional variance under
the null. St:-1 is defined as in the GJR model (3.7). The test statistic is
calculated as a t-ratio in the linear regression model. The other three tests
are c a ~ r i e d out using similar methods. The Negative size bias test investi
gates whether. the linear model can explain the different effects that large
and small negative shocks have on the conditional variance. The variable
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used for this test is S't-lCt-l. In the Positive size bias test, different effects
of large and small positive shocks are investigated. The variable used for

this test is StlCt-l, where Stl is defined analogously to St-l. In the
fourth test, the three previous hypotheses are considered simultaneously.

In Monte Carlo experiments, Engle and Ng show that the empirical size
and power of the tests are reasonable when the sample size is 1000.

The TGARCH model (3.8) is further developed in Rabemananjara, and

ZakoYan [1993]. They allow Ut to become negative. Thus, Ut cannot be

considered a conditional standard deviation. The TGARCH(q,p) model of

Rabemananjara, and Zakoian [1993] is

q p q p

Ut=,+ L:0jlct-jl+ L:,8jIUt-jl+ L : O j c ~ _ j + L:,8jut-j' (3.13)
j=l j=l j=l j=l

wp.ere Ct = min(ct, 0) and ut = min(ut, 0). The null hypothesis for the test

of asymmetry in (3.13) is, Ho : oj = ,8-; = 0 (j = 1..q, i = 1..p). To test

the null against HI :at least one oj =1= 0 or one ,8-; =1= 0, Rabemananjara,
and ZakoYan derive an LM test statistic. Under the null, the statistic is

asymptotically distributed X2 with q + p degrees of freedom. In a Monte

Carlo experiment, the authors show that both the empirical size and power

of the test are reasonable for large sample sizes (> 500).
Sentana [1995] presents a number of test procedures that can be used in

conjunction with his QARCH model. To test the null of homoskedasticity

against the alternative of QARCH(q) , Sentana proposes an LM test based
on the regression model

q q

c~ = ao + LaljCt-j + ~L:-a2ijCt-jCt-i + et ·

j=l j = l i ~ j

(3.14)

The hypothesis is: Ho : alj = a2j = 0 (j = 1, ... , q, i = 1, ... , q), against

HI : at least one alj =1= 0 or one a2ij -=1= O. The statistic is calculated as
T· R ~ from the regression model (3.14). Under Ho, the LM statistic has an

asymptotic X2
. distribution with q(q + 3)/2 degrees of freedom.

The tests described in this section are all derived under the assumption
that the residuals are distributed conditionally normal. In practice, this

assumption is often not fulfilled. This is particularly the case when the in
vestigated series contains returns of a traded asset .. The problem is carefully

investigated in Wooldridge [1990] and [1991]. Wooldridge points out that
when normality does not hold the asymptotic size of the statistics will be
wrong. In the 1990 article, Wooldridge propose a robust version of Engle's

test of no ARCH(q). In the 1991 article, he presents a general procedure

for robustifying Lagrange multiplier tests of the specification of conditional
variance. This method is used by Sentana [1995], when he derives a ro

bust test procedure for the null of ARCH(l), against the alternative of
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QARCH(1,1). In Wooldridge [1991], the author also presents a method for

performing non-nested hypothesis tests for the conditional variance.
The two tests presented in this paper are both derived under condi

tional normality. Furthermore, the small sample properties are only inves

tigated for normally distributed innovations. However, using the results of
Wooldridge [1991], it would be straightforward to derive robust versions of
the tests.

3.4 Specification Tests for Asymmetry

In this section, the two new test statistics are presented. For both tests,
the null is the standard GARCH(1,1) model, proposed by Bollerslev [1986]

ht = / + OC~_I + (3ht - l . (3.15)

The test of GARCH(1,1), against the alternative of GQARCH(1,1) is
formulated

Ho (=0

HI (# o.

Given that the residual, Ct, is distributed conditionally normal, a Lagrange

multiplier test statistic for the hypothesis is

x

where

[

t-I t-I t-I t-I ]8ht -i-I -i-I 2 -i-I -i-I

8{j' = {;P 'ttP Ct-i'{;P hOt- i ,{;P Ct-i,

hot is the conditional variance under the null of GARCH(l,l), {3' is the

vector of parameters (,,0, {3, (), and ~ is the estimated parameter (3 in the
GARCH(1,1) model. The derivation of (3.16) is given in the appendix. In
the appendix, it can also be seen that based on test (3.16), it is possible to
derive the asymptotically equivalent test T . R; from the regression

{ c~ -I}
hot

on
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{

t-l -i-l ~ t - l -i-l 2 t-l -i-l t-l -i-l }

Ei=l .B LJi=l.B Ct-i Ei=l.B hOt- i Ei=l.B ct-i (3.17)
hot ' hot ' hot ' hot ·

Before a complete test procedure is presented, first a problem concerning
the estimation of the model (3.15) must be considered. Given that the
series of conditional variance under the null is estimated with maximum
likelihood, the normalized residuals, VOt == et/h~{2, should be orthogonal
to

{

t-l -i-l t-l -i-l 2 t-l -i-l }

Ei=l .B Ei=l.B Ct-i Ei=l.B hOt-i (3.18)
hot ' hot ' hot ·

This should be true independent of whether or not the null is true. However,
in practice, exact orthogonality cannot always be guaranteed. If orthogo
nality does not hold, the empirical size of the statistic might be distorted.
To overcome this complication, the customary procedure is to replace VOt

with a quantity that is guaranteed to be orthogonal to (3.18), (see e.g.
Eitrheim and Terlisvirta [1996]). The following procedure will accomplish
that:

1. Regress

{:!t -I}
on (3.18). Let {et};=l be the series of residuals from the regression.
These residuals will by construction be orthogonal to (3.18).

2. Regress et on (3.17). The statistic is set equal T· R ~ from this regres
sion.

In the Monte Carlo experiments, it was seen that the empirical size of
the statistic (3.16), and its asymptotically alternative, were slightly above
the theoretical significance level. By using the method described above, it
was possible to correct the size. However, it was also found that a slightly
simplified method gave almost the same result. In this method, the vector
(3.17) was replaced by

{

t-l-i-l }
1, Ei=l .B ct-i

hot

Base on this conclusion, it is proposed that the null hypothesis ofGARCH(l,1),
against the alternative of GQARCH(1,1), should be tested using the fol
lowing procedure:
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1. Estimate a GARCH(I, 1) model. Form the vectors

2. Regress

{
e~ -I}
hot

on Ct, and calculate

(3.19)

from the regression.

The test statistic LM1 is under the null asymptotically distributed X2

with one degree of freedom.
The test of GARCH(I,I), against the alternative of LSTGARCH(I,I) is

formulated

Given that the residual, et, is distributed conditionally normal, a Lagrange
multiplier test statistic for the hypothesis is

~ {t, 2~Ot [:!t -1] ~: r{t [h:t:] [h:t ~:r}-1

x {t2~Ot[:!t-1]~:}' (3.20)
where

(3.21)

hot is the conditional variance under the null of GARCH(I,I), a.' is the
vector of parameters (,,0,1,0,2, {3, B), F(etlB) is the value of the transition

function at time t, and ~ is the estimated parameter {3 in the GARCH(I,I)
model. The derivation of (3.20) is done with the same methods used for
the derivation of (3.16).

The statistic (3.20), however, is not operational, since the vector (3.21) is
dependent on the transition function (3.5), which under the null has a non
identified parameter B. Following Luukkonen, Saikkonen, and Terasvirta



(3.22)

(3.23)
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[1988], this problem is solved by making a second-order Taylor expansion
of the transition function, around zero.4 The obtained approximation of

F(.) is then inserted into formula (3.4), and this results in an approximate
version of the conditional variance equation. Since F(O) = 0, the transition
function (3.5) can be approximated by

Tl = P'(O)x = ~x
4

The LSTGARCH(1,1) model can therefore be approximated by

- 2 () 3
ht = ,+ a1Ct-1 + a24Ct-1 + /3ht - 1 ·

The hypothesis of GARCH(I,I), against LSTGARCH(I,I) can therefore
be written

Ho a2()/4=O

H1 a2()/4;j;O.

A Lagrange multiplier for this test is equal to

{
T - }' { T [ - ] [ - ] '}-11 1 e~ 1 vht 1 vht 1 vht

"2 ~ 2hot [hOt - ] vii &; hot vii hot vii

{

T 2 - }x _1_!.L _ 1 aht

~ 2hot [hOt ] vii '

where

- [t-1 t-1 t-1 t-1 ]aht _ ~-i-1 ~-i-1 2 ~-i-1 3 ~-i-1
a-' - L..J /3 ,L..J /3 Ct-i, L..J {3 Ct-i, L..J /3 hot- i ,

a i=1 i=1 i=1 i=1

hot is the conditional variance under the null of GARCH(1,1), 0.' is the

vector of parameters (" a1 , a2()/4, /3), and ~ is the estimated parameter /3
in the GARCH(I,I) model. As in the GQARCH test, to test the null of
GARCH(I,I), against the alternative of LSTGARCH(I,1), the procedure
proposed is:

1. Estimate a GARCH(1, 1) model. Form the vectors

d
t

= (1, L:~:~~~-leLi)
hot

4A test of GARCH(l,l) against' LSTGARCH(l,l) has previously been developed

by Gonzalez-Rivera [1996]. However, she solves the problem with the non-identified

parameter 6 somewhat differently, using a method proposed by Davies [1977].
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2. Regress

{
c~ _ I}
hot

on d t , and calculate

(3.24)

from the regression.

LM2 is under the null asymptotically distributed X2 with one diegree of

freedom.

3.5 Monte Carlo Experiment '

The Monte Carlo experiment for testing the empirical size of the test sta

tistics (3.19) and (3.24) is based on a GARCH(l,l) data generating process

Tt ct

h
1/ 2

ct = Zt t

ht , + aC~_l + f3h t - 1

(3.25)

where Zt rovnid(O,l). Four combinations of the constant parameters " Q,

and f3 are studied. These values are shown in Tables 1 and 2. For each

set of parameter values 2,500 samples with 250 and 1000 observations are

generated. The test statistics are calculated, and compared to the critical

values for one, five and ten percent confidence levels.

In Table 1, the actual rejection frequencies of the test procedure (3.19) are

reported. The empirical size of the test is relatively close to the theoretical

size, both when the number of observations is 1000 and 250. However, the

simulated size seems to be somewhat less accurate for the smaller sample

size. Table 2 reports the simulation results for test procedure (3.24). For

the larger sample the empirical size is quite close to the theoretical size.

When the sample size is 250 the empirical size seems to be lower than the

theoretical. It is therefore concluded that for both statistics, the simulated

size is fairly accurate for the larger sample size, and the simulated size is

reasonable for a sample of 250 observations.

As noted in the introduction, the two tests' ability to detect asymmetry

will be compared, to that of Engle and Ng's [1993] four tests, the Sign

bias test (BB), the Negative size bias test (NBB), the Positive size bias

test (PBB), and the test of the joint hypothesis of SB, NSB, and PSB.
Such a comparison can only be made if it is known that the empirical size

properties of Engle and Ng's tests are similar to those reported for tests

(3.19) and (3.24). A number of different alternative formulations of Engle
and Ng's tests were tried before appropriate size properties were received .

The procedures that where found most promising, and which are used in the
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remainder of this article, are described in the appendix. Tables 3 to 6 report

the actual rejection frequencies for the four alternative tests. Based on the

results reported in Tables 1 to 6, it is concluded that for the larger sample
size, the empirical size properties for the six tests are quite similar. When

the number of observations is 250, the empirical size properties fluctuate
more across the different test procedures. The remainder of this study will
therefore focus on the results based on the larger sample size.

To investigate the power of test (3.19) the data generating process con
sidered is

rt €t

€t Zth:/
2

(3.26)

ht 1.25 .10-6
- 1.68 . 10-4

€t_1 + 0.0355· € ~ - 1 +0.952· ht - 1 ,

where Zt rvnid(O, 1). The parameters of the model (3.26) have been obtained
from an estimation performed on daily observations for the Financial Times

All-share Index. The sample period is January 1991 to July 1996. The
estimated power of the test is reported on the rows labeled LM1 in Table
7. From the-results when the sample size is 250, it can concluded that for

such a small sample, the test has very low power. When the sample size is
1000 the estimated power is increased, but is still low. However, compared
to the estimated power for the four tests of Engle and Ng, also reported

in Table 7, the test constitutes a marked improvement. The result is not
surprising, since the test (3.19) is designed to detect the kind of asymmetry

caused by (3.26), whereas the tests of Engle and Ng are designed to detect

general GARCH asymmetry. But surprisingly, the test of no LSTGARCH
(3.24) also outperforms the tests of Engle and Ng.

To investigate the power of test (3.24) the data generating process con
sidered is

€t

1/2 ( )Ztht 3.27

5.2.10-7 + [0.295 - 0.258 . F(€t-1)]€~-1 + 0.70· ht - 1

(1 + exp [-200· Ct_1J)-1 - ~,

where Zt rvnid(O, 1). The parameters of the model (3.27) are in part taken

from the paper by Engle and Ng [1993], when they consider the GJR model
(3.7). If the parameter (), which has been set to 200, is allowed to increase

towards infinity, the data generating process (3.27) will coincide with the

GJR model considered in Engle and Ng's article. By setting () to 200, the

transition function F(€t-1) will not just take on its extreme values -1/2
and 1/2. Table 8 reports the power properties of the six statistics when
the true data generating process is (3.27). The power of the test (3.24) is

reasonable when the sample size is 1000. The power of the test is reduced
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considerably for the smaller sample size. The test (3.19) also proves to
have power to detect asymmetry generated by (3.27), but, as expected, the
power is significantly lower than for the test (3.24). The tests of Engle and
Ng are a clear disappointment. It is important to keep in mind that the
reported power is a function of the parameter values in the data generating
process. One should therefore not compare the figures in Table 7 and 8.
The parameters of the data generating process (3.27) clearly give rise to
more asymmetry than the process (3.26).

The two statistics will now be further evaluated by investigating the
empirical power of the tests for detecting asymmetry caused by the other
five GARCH models presented in Section 3.2. To investigate the power of
the tests, when the true model is EGARCH, the data generating process
considered is

rt Ct

ct Zth:/
2

(3.28)

In ht = -0.7395 +0.90 · In ht - 1 - 0.075 · Zt-l +0.25· [IZt-ll - y'2/i] ,

where Zt rvnid(O, 1). Except for the value of the parameter" the parameters
of the model (3.28) are those used by Engle and Ng [1993], when they
consider the EGARCH model (3.6). The simulated power of the six tests
are presented in Table 9. The highest power is reported for test (3.19),
followed by test (3.24). Among the tests of Engle and Ng, the Negative size
bias test perform best, but the power is still significantly lower than the
power for the two tests presented in this paper. The results for the smaller
sample size is again disappointing.

The power of the tests, when the true model is GJR, is investigated
considering the data generating process

rt = ct

Ct Zth:/
2

(3.29)

ht 5.20.10-7 + 0.166· C ~ - l + 0.2576· S t = . . l C ~ - l + 0.70· ht - 1 ,

where Zt rvnid(O, 1). Except for the value of the parameter" the parameters
of the model (3.29) are those used by Engle and Ng [1993], when they
consider the GJR model (3.7). Results of the simulations are in Table 10.
These parameter values appear to generate a very marked asymmetry. For
the larger sample size, the simulated power for tests (3.19) and (3.24) are
strikingly high, whereas the tests of Engle and Ng perform less efficiently.

To investigate the power of the tests, when the true model is TGARCH,
the data generating process considered is

rt ct

Ct ZtO't (3.30)

O't 6.54.10-4 + 0.111 . ct-l - 0.192· Ct-l + 0.833· O't-l,
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where Zt I"Jnid(O, 1). Except for the value of the parameter" the parameters
of the model (3.30) have been obtained from an estimation performed on
daily observations for the French CAC 240 Index, reported by ZakoYan
[1994]. The sample period is 1976 to 1990. Results from the simulations are
shown in Table 11. Tests (3.19) and (3.24) perform well once again. The
power properties of test .(3.19) must, in these circumstances, be considered
very good. The results for the tests BE, NBB, PBB, and the joint test
are, compared to the results for the other two tests, unsatisfactory.

When the true model is A-PARCH, the situation is investigated consid

ering the data generating process

ct

1/2 ( )Ztht 3.31

9.22 . 10-6 + 0.083 . (lct-1\ - 0.373 . Ct_1)1.43 + 0.92 . h:!:/2,

where Zt I"Jnid(O, 1). Except for the value of the parameter " the parame
ters of the model (3.31) have been obtained from an estimation ~ r f o r m e d
on daily observations for the S&P 500 Index, reported by Ding, Granger,
and Engle [1993]. The sample period is 1928 to 1991. ~he results of the
simulations are shown in Table 12. It is interesting to note that the para
meters of the models, which have be estimated o,n this very large sample,
apparently give rise to a ma_rked asymmetry. This can be seen from the

high power reported for tests (3.19) and (3.24). In this case, the results

for the tests of Engle and Ng are even more disappointing than when the
TGARCH model was the true data generating process.

Finally, the power of tests when the true model is VS-ARCH is investi
gated. In this case, the data generating process studied is

rt Ct

€t Zt h:/
2

(3.32)

ht 3.9 . 10-6 + 0.043 . C;-l +0.918 . ht - 1 + 2.22 . 10-6
. Bt - 1V;-l'

where Zt I"Jnid(O, 1). Except for the value of the parameter" the parameters
of the model (3.32) have been obtained from an estimation performed on
daily observations for the S&P 500 Index, reported by Fornari and Mele

[1996a]. The sample period is January 1990 to September 1994. Table 13
reports the simulation results. The power of test (3.19) and of test (3.24)
almost coincide, and are at reasonable levels for the larger sample size. The
tests 9f Engle and Ng prove to have almost no power at all.

3.6 Summary and Conclusion

In the paper two new Lagrange multiplier test procedures have been pre
sented. The procedures are developed for testing the null hypothesis that
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the conditional variance follows a GARCH(l,l) process, against the alterna
tive that the conditional variance follows an asymmetric GARCH process.
In the alternative hypotheses, well specified parametric models are consid
ered. In test number one, the conditional variance follows a GQARCH(l,l)
process under the alternative. In the second test, the alternative model is
the LSTGARCH(l,l).

Small sample properties for the two tests have also ·been presented. These
have been obtained from a number of Monte Carlo experiments. In those
experiments two sample sizes are considered, 1000 and 250 observations.
It is shown that the empirical size of the two tests is quite accurate for
the larger sample size, and reasonable for the smaller. Since asymmetric
GARCH specifications are primarily used for modeling high frequency fi
nancial data, a sample size of 1000 observations is not at all unusual.

The power of the tests is naturally a function of the parameters of the
data generating process under the alternative. If the level of asymmetry in
the data is low, the power falls considerably. To evaluate the power proper
ties of the two tests, the power of the tests is compared to those of four other
GARCH asymmetry tests, previously proposed in the literature. The four

tests are: the Sign bias test (BB), the Negative size bias test (NBB), the
Positive size bias test (PBB), and the test for the joint hypothesis of BB,
NBB, and PBB. These test are all developed by Engle and Ng [1993]. The
Monte Carlo simulations show that the power of the two tests presented
in this paper is much higher than the power of the four alternative tests.
Furthermore, it is shown that the power properties of the two tests are also
superior when the true data generating process is not the GQARCH(l,l)
model or the LSTGARCH(l,l) model. The other data generating processes

considered are: EGARCI-I(l,l), GJR, TGARCH(l,l), A-PARCH(l,l), and
VS-ARCH. The test for which the alternative is the GQARCH(l,l) model
generally proves to have slightly better power properties than the test for
which the alternative is the LSTGARCH(l,l) model. It is therefore con
cluded that the two tests are in fact tests for general GARCH asymmetry,
with reasonable power properties. This finding should be of importance
for any econometrician working with GARCH models. The disappointing
results of the tests of Engle and Ng [1993] are most likely a function of the
fact that the tests have been developed without a well specified parametric
alternative.

That the two tests can detect asymmetry caused by many parametric

GARCH model is, however, not only good news. The results show that, us
ing these tests, it is very hard, to actually decide which asymmetric model

might have been the data generation process of a time series. Neverthe
less, the tests will indicate whether any model in the family of asymmetric

GARCH models could or could not have been the data generation process.
Since the tests presented above have relatively low power, I am pessimistic
about the possibility of designing powerful LM tests for testing the different
models against each other. This subject still calls for further research.
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Both test statistics presented in the paper are derived under conditional
normality. The small sample properties are also investigated when the inno
vations of the data process are drawn from a Gaussian distribution. Many
empirical investigations have shown that the assumption that financial data
is distributed conditionally normal is most likely incorrect. Under such cir
cumstances, the simulated size results are of less importance. Research in
the area of specifications tests under non-normality is therefore strongly
called for.
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Appendix

1. Derivation of the LM statistic (3.16)

Assume that we have the observed time series CO,CI,ooo,CTo The condi
tional variance is under the alternative assumed to be generated by

ht = w~{3,

where w ~ = (1, e~-I' ht-I,et-I), and {3'= (" a, (3,(,). The test is Ho : (, = 0,
against HI : (, i= O. The Lagrange multiplier statistic has the general form

LM = 'TqT({30)'1({30)-lqT({30)'

where (30 is the vector of parameters under the null. qT({3) is the average

score and 1({3) is the information matrix. If we assume that the innovations
are Gaussian, the log likelihood of one observation is equal to

1 1 1 c~
It = --ln21r - -lnht - --

2 2 2ht

O

Assuming that hI is fixed such that 8hI /8{3 = 0, it can be shown that the
average score is equal to

where

[

t-I t-I t-I t-I ]
8ht _ '" -i-I '" -i-I 2 '" -i-l . '" -i-l .

8{3' - 6. f3 ,6. f3 Ct-i' 6. f3 ht - .. 6. f3 Ct-.·

(3.33)

(3.34)

In (3.33) hot is the estimated conditional variance under the null of GARCH,

and ~ in (3.34) is estimated under the null. The information matrix is the

negative expectation of the Hessian averaged over all observations

The Hessian for one observation can be shown to be equal to

which implies that the information matrix becomes

1({3) = 2- EE [~8ht] [~8ht]'.
2T t=1 ht 8{3 ht 8{3
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The information matrix under the null is consistently estimated by

f ( ~ o ) = 2-t [~8hOt] [~8hOt]'.
2T t=l hot 8{3 hot 8{3

The Lagrange multiplier test of GARCH against GQARCH can therefore
be written

~ {t 2 ~ O t [:!t -1] ~~ r{t [h:t ~~] [h:t ~~ J'} -1

{ ~ 1 [c~ 1] 8ht }
{;;t 2hot hot - 8{3 ,

which corresponds to formula (3.16).•

2. Derivation of asymptotically equivalent statistic T . R;
Consider the statistic (3.16). The equation can be rewritten as

~ {t [:!t -1] [h:t ~~] r{t, [h:t ~~] [h:t ~~ J'}-1

{
~ [ c~ 1] [18ht

]}{;;t hot - hot a~ , (3.35)

Define y'= (Yl, ···,YT) and X'= (xl' ... ,XT), where

Yt = {e~ -I}
hot

and

Xt
1 8ht

hot 8{3'

{

t-l -i-l t-l -i-l 2 t-l -i-l t-l -i-l }
Ei=l {3 Ei=l {3 Ct-i Ei=l {3 ht - i Ei=l {3 Ct-i

hot' hot ' hot ' hot ·

Then, it is straightforward to rewrite (3.35) as

!y'X (X'X)-1 X'y
2

Note, that given that Ct rv N(O, hot) then

T (2 )2
plimy'y=plimL h

Ct
-1 =2·T.

T-+oo T-+oo t=l Ot



(3.36)
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This suggests that an asymptotically equivalent statistic is

LM
2

= TY'X (X'X)-l X'Y = T . R2

y'y u

where R ~ is the squared multiple correlation between y and X. Thus, the
statistic is equal to T '. R~ from the regression Yt on Xt••

3. Test procedure used for the Sign bias test
The sign bias test statistic is defined as the t-ratio for the coefficient b

in the regression equation

2 -, 1 8ht
v t = a + b · St-l + T hot 8f3o + et

where v ~ = c~ / hot, hot is the conditional variance under the null, T is a
constant parameter vector, f30 are the parameters under the null, and et is
the residual. When the null is the GARCH(l,l) model, the test procedure
used is:

1. Estimate a GARCH(I, 1) model. Form the vectors

and

1 8ht
---, =
hot 8f3o [

t-l -i-l t-l -i-l 2 t-l -i-l ]
Ei'=l f3 Ei=l {3 Ct-i Ei=l (3 ht - i

hot' hot ' hot

(3.37)

2. Run the regression (3.36), and calculate the statistic BB, which is
equal to t-ratio for the estimate of the parameter b.

The test statistic BB is under the null asymptotically distributed stan
dard normal.

4. Test procedure used for the Negative size bias test

The negative size bias test statistic is defined as the t-ratio for the coef
ficient b in the regression equation

2 b S- , 1 8ht
v t = a + . t-1Ct-l + T hot 8f3o + et

where v ~ = c~ / hot, hot is the conditional variance under the null, T is a
constant parameter vector, f30 are the parameters under the null, and et is
the residual. When the null is the GARCH(l,l) model, the test procedure
used is:
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1. Estimate a GARCH(1, 1) model. Form the vectors

and

1 8ht---, =
hot 8f3o [

t-l -i-l t-l -i-l 2 t-l -i-l ]
Ei=l {3 Ei=l {3 Ct-i Ei=l (3 ht - i

hot' hot ' hot

2. Run the regression (3.37), and calculate the statistic NSB, which is
equal to t-ratio for the estimate of the parameter b.

The test statistic NSB is under the null asymptotically distributed stan

dard normal.

5. Test procedure used for the Positive size bias test

The positive size bias test statistic is defined as the t-ratio for the coef
ficient b in the regression equation

(3.38)

where v ~ = c~ / hot, hot is the conditional variance under the null, T is a
constant parameter vector, f30 are the parameters under the null, and et

is the residual. When the null is the GARCH(l,l) model, we used the test
procedure:

1. Estimate a GARCH(1, 1) model. Form the vectors

and

1 8ht---, =
hot 8f3o [

t-l -i-l t-l -i-l 2 t-l -i-l ]
Ei=l {3 Ei=l {3 Ct-i Ei=l {3 ht - i

hot' hot ' hot

2. Run the regression (3.38), and calculate the statistic PSB, which is
equal to t-ratio for the estimate of the parameter b.

The test statistic PSB is under the null asymptotically distributed stan
dard normal.
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6. Test procedure used for the Joint test

The test for the joint hypothesis of SB, NSB, and PSB is formulated as

H o bl = b2 = b3 = 0,

HI bi =1= 0, i = 1,2,3,

in the regression

2 b S- b S- b S+ , 1 8ht
v t = a + 1· t-l + 2· t-1Ct-l + 3· t-lct-l + 'T hot 8f3

o
+ et

where v ~ = c~ / hot, hot is the conditional variance under the null, T is a
constant parameter vector, f30 are the parameters under the null, and et is

the residual. Since 8ht /8f3o should be orthogonal to v ~ , the test statistic
could be calculated as T . R~ from the regression. However, the simulations
showed that the empirical size of such a statistic is severely distorted. To
achieve an appropriate size, v~ was adjusted, and 8ht /8f3o was replaced
with a slightly simplified vector. When the null is the GARCH(I,I) model,
the test procedure used was:

1. Estimate a GARCH(I, 1) model. Form the vector

Run the regression v ~ on {I, C ~ - I , hOt-I}, and calculate the series of

residuals v ~ .

2. Calculate the statistic as T . R~ from the regression v ~ on

{
_ _ + 1 C~-i ht - i }

I,St-I,St-Ict-I,St-Ict-I'-h'-h'-h ·
Ot Ot Ot

The test statistic should be compared to a X2 distribution with three
degrees of freedom.



72 3. Specification Tests for Asymmetric GARCH

Table 1. Simulated Size for the Test of no GQARCH

The table shows results from a Monte Carlo experiment where the size of test

statistic (3.19) is investigated. In the experiment, the data generating process is

model (3.25), with the four different parameter combinations shown in column

one. The column labeled Actual Rejection Frequencies report the simulated em

pirical size at the three different theoretical significance levels of one, five, and ten

percent. The figures are based on 2,500 samples, thus a 95 % confidence interval

is given by a + 2· y'a(l - a)/2500, where a is the empirical size.

Parameter Values

"y = 5.0.10-6
,0 = 0.25,{3 = 0.70

f = 1.0 . 10-6
,0 = 0.05, {3 = 0.85

f = 5.0 · 10-6
,0 = 0.05, {3 = 0.90

"y = 1.0.10-6
,0 = 0.09,{3 = 0.90

Sample
Size

1000
250

1000
250

1000
250

1000
250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies

1.36 4.88 9.92
1.16 6.04 12.04

0.88 4.76 9.64
0.76 5.16 10.12

1.20 5.44 10.20
0.88 5.00 11.32

1.12 5.64 11.96
0.84 5.96 12.20

Table 2. Simulated Size for the Test of no LSTGARCH

The table shows results from a Monte Carlo experiment where the size of test

statistic (3.24), is investigated. In the experiment, the data generating process is

model (3.25), with the four different parameter combinations shown in column

one. The columns labeled Actual Rejection Frequencies report the simulated em

pirical size a;tthet:nr~ediffereIit theoretic~l significance levels of one, five, and ten

percent. The figures are based on 2,500 samples, thus a 95 % confidence interval

is given by a +2. y'a(l - a)/2500, where a is the empirical size.

Parameter Values

"y = 5.0.10-6
,0 = 0.25,{3 = 0.70

f = 1.0 · 10-6
,0 = 0.05, {3 = 0.85

f = 5.0 · 10-6
,0 = 0.05, {3 = 0.90

f = 1.0 · 10-6
,0 = 0.09, {3 = 0.90

Sample
Size

1000
250

1000
250

1000

250

1000
250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies

0.88 5.16 10.84
0.72 3.56 8.12

0.88 4.40 9.16
0.40 3.04 6.64

0.92 5.16 10.20
0.68 4.24 8.80

1.20 5.28 10.16
0.76 5.20 11.24
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Table 3. Simulated Size for the Sign Bias Test

The table shows results from a Monte Carlo experiment where the size of the

Sign bias test, is investigated. In the experiment, the data generating process is

model (3.25), with the four different parameter combinations shown in column

one. The columns labeled Actual Rejection Frequencies report the simulated em

pirical size at the three different theoretical significance levels of one, five, and ten

percent. The figures are based on 2,500 samples, thus a 95 % confidence interval

is given by a+ 2 . Ja(l - a) /2500, where a is the empirical size.

Parameter Values

, = 5.0· 10-6
,0: = 0.25, f3 = 0.70

, = 1.0 . 10-5
,0: = 0.05., f3 = 0.85

, = 5.0 . 10-6
, 0: = 0.05, f3 = 0.90

, = 1.0 . 10-6
,0: = 0.09, f3 = 0.90

Sample

Size

1000
250

1000
250

1000
250

1000
250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies

0.96 4.80 9.44
0.84 5.08 10.68

0.84 5.28 10.60
0.72 5.24 10.84

1.44 6.04 10.96
1.00 5.64 11.12

1.04 5.40 9.72
0.76 5.20 11.24

Table 4. Simulated Size for the Negative Size Bias Test

The table shows results from a Monte Carlo experiment where the size of the

Negative size bias test, is investigated. In the experiment, the data generating

process is model (3.25), with the four different parameter combinations shown

in column one. The columns labeled Actual Rejection Frequencies report the

simulated empirical size at the three different theoretical significance levels of

one, five, and ten percent. The figures are based on 2,500 samples, thus a 95 %

confidence interval is given by a+2 . Ja( 1 - a) /2500, where a is the empirical

size.

Parameter Values

, = 5.0 .10-6
,0: = 0.25, f3 = 0.70

'1 = 1.0· 10-5
,0: = 0.05, f3 = 0.85

, = 5.0 . 10-6
, a = 0.05, f3 = 0.90

, = 1.0 . 10-6
,0: = 0.09, f3 = 0.90

Sample

Size

1000
250

1000
250

1000
250

1000
250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies

1.08 4.24 8.96
0.60 4.28 8.00

0.92 5.12 9.76
0.60 4.28 9.20

0.88 5.88 11.44
0.72 3.68 8.80

0.72 4.68 9.60
1.04 4.88 9.08
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Table 5. Simulated Size for the Positive Size Bias Test

The table shows results from a Monte Carlo experiment where the size of the

Positive size bias test, is investigated. In the experiment, the data generating

process is model (3.25), with the four different parameter combinations shown

in column one. The columns labeled Actual Rejection Frequencies report the

simulated empirical size at the three different theoretical significance levels of

one, five, and ten percent. The figures are based on 2,500 samples, thus a 95 %

confidence interval is given by a+2· Va(l - a) /2500, where a is the empirical

size.

Parameter Values

,= 5.0 '10-8 ,a = 0.25,{3 = 0.70

, = 1.0 . 10-5
, a = 0.05, {3 = 0.85

, = 5.0 . 10-8
, a = 0.05, {3 = 0.90

, = 1.0 . 10-8
, a = 0.09, {3 = 0.90

Sample
Size

1000
250

1000
250

1000
250

1000

250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies

0.80 4.20 9.28
0.72 4.32 8.60

0.96 4.36 9.56
0.84 4.64 9.32

1.20 5.24 9.84
0.56 4.20 8.64

1.12 5.68 10.92

0.80 4.28 8.72

Table 6. Simulated Size for Engle and Ng's Joint Test

The table shows results from a Monte Carlo experiments, where the size of

the Joint test of Engle and Ng[1993], is investigated. In the experiment, the data

generating process-is m o d e l - ( 3 - ~ 2 5 ) , with the four different parameter combinations

shown in column one. The columns labeled Actual Rejection Frequencies report

the simulated empirical size at the three different theoretical significance levels

of one, five, and ten percent. The figures are based on 2,500 samples, thus a 95 %

confidence interval is given by a+2 . Va(l - a) /2500, where a is the empirical

size.

Parameter Values

, = 5.0 . 10-8
, a = 0.25, {3 = 0.70

,= 1.0 ·10 5,a = 0.05,{3 = 0.85

, = 5.0 . 10-6
, a = 0.05, {3 = 0.90

, = 1.0 . 10-8
, a = 0.09, {3 = 0.90

Sample

Size

1000

250

1000

250

1000

250

1000
250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies

1.44 4.80 8.76

0.80 3.64 7.64

1.12 5.08 9.72
0.88 4.16 8.48

1.36 5.44 11.20

0.76 4.00 8.92

1.44 5.04 9.88
1.00 4.24 9.12
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Table 7. Actual Rejection Frequencies when the True Model is

GQARCH(l,l)
The table shows results from a Monte Carlo experiment where the empiri

cal power of six specification tests are investigated. In the experiment, the data

generating process is model (3.26). The columns labeled Actual Rejection Fre

quencies report the simulated empirical power at the three different theoretical

significance levels of one, five, and ten percent. The figures are based on 2,500 sam

ples, which give an estimated standard error of the estimated power, fi, equal to

Jfi(l - fi)/2500. The abbreviations are: LMI refers to the test of no GQARCH,

LM2 to the test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative

size bias test, PSB to the Positive size bias test, and Joint refers to the test of

the joint hypothesis of SB, NSB, and PSB.

Test

SB

NSB

PSB

Joint

Sample Size

1000
250

1000
250

1000
250

1000
250

1000
250

1000
250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies (%)

6.28 20.72 32.56
1.44 6.48 13.80

3.92 13.20 22.56
0.84 4.60 11.36

1.28 5.52 10.92
0.88 5.28 9.92

1.60 6.00 10.92
0.96 4.28 8.88

1.00 4.88 10.76
0.48 4.44 9.68

1.24 4.92 10.48
1.00 4.12 8.00
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Table 8. Actual Rejection Frequencies when the True Model is
LSTGARCH(l,l)

The table shows results from a Monte Carlo experiment where the empirical

power of six specification tests is investigated. In the experiment, the data gener

ating process is model (3.27). The columns labeled Actual Rejection Frequencies

report the simulated empirical power at the three different theoretical signifi

cance levels of one, five, and ten percent. The figures are based on 2,500 sam

ples, which give an estimated standard error of the estimated power, fi, equal to

Jfi(l - fi)/2500. The abbreviations are: LMI refers to the test of no GQARCH,

LM2 to the test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative

size bias test, PSB to the Positive size bias test, and Joint refers to the test of

the joint hypothesis of SB, NSB, and PSB.

Test

SB

NSB

PSB

Joint

Sample Size

1000
250

1000
250

1000
250

1000
250

1000
250

1000
250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies (%)

15.36 34.72 47.36
5.12 15.36 25.12

36.12 64.40 75.60
7.12 21.64 32.92

5.40 15.00 24.04
1.64 7.76 14.48

6.36 16.68 26.48
1.72 7.12 12.20

6.44 21.20 34.40
1.00 7.40 18.08

6.08 17.08 27.44
2.40 6.96 12.72
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Table 9. Actual Rejection Frequencies when the True Model is

EGARCH(l,l)

The table shows results from a Monte Carlo experiment where the empirical

power of six specification tests is investigated. In the experiment, the data gener

ating process is model (3.28). The columns labeled Actual Rejection Frequencies

report the simulated empirical power at the three different theoretical signifi

cance levels of one, five, and ten percent. The figures are based on 2,500 sam

ples, which give an estimated standard error of the estimated power, P, equal to

Vp(l - p)/2500. The abbreviations are: LMI refers to the test of no GQARCH,

LM2 to the test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative

size bias test, PSB to the Positive size bias test, and Joint refers to the test of

the joint hypothesis of SB, NSB, and PSB.

Test

SB

NSB

PSB

Joint

Sample Size

1000

250

1000

250

1000
250

1000
250

1000
250

1000

250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies (%)

51.08 74.00 82.80
7.72 22.08 33.44

31.32 57.00 70.56

4.08 15.52 24.56

9.16 24.44 36.80
2.08 9.20 16.40

12.44 29.56 41.08
1.88 8.32 14.96

9.52 27.84 40.68
2.20 9.92 18.36

7.32 20.84 32.12

1.16 6.12 11.88
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Table 10. Actual Rejection Frequencies when the True Model is
GJR

The table shows results from a Monte Carlo experiment where the empirical

power of six specification tests is investigated. In the experiment, the data gener

ating process is model (3.29). The columns labeled Actual Rejection Frequencies

report the simulated empirical power at the three different theoretical signifi

cance levels of one, five, and ten percent. The figures are based on 2,500 sam

ples, which give an estimated standard error of the estimated power, p, equal to

Vp(l - fi)/2500. The abbreviations are: LMI refers to the test of no GQARCH,

LM2 to the test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative

size bias test, PSB to the Positive size bias test, and Joint refers to the test of

the joint hypothesis of SB, NSB, and PSB;

Test

SB

NSB

PSB

Joint

Sample Size

1000
250

1000
250

1000
250

1000
250

1000
250

1000
250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies (%)

84.16 95.00 97.44
19.08 43.00 56.92
73.56 - 90.52 95.12
14.68 37.04 51.12

26.68 49.76 62.20
5.12 15.16 24.08

18.72 39.40 51.28
4.00 11.72 19.20

22.16 49.08 62.96
3.28 14.68 25.40

20.24 44.36 58.20
3.16 10.96 18.48
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Table 11. Actual Rejection F r e q u e n c i ~ s when the True Model is
TGARCH

The table shows results from a Monte Carlo experiment where- the empirical

power of six specification tests is investigated. In the experiment, the data gener

ating process is model (3.30). The columns labeled Actual Rejection Frequencies

report the simulated empirical power at the three different theoretical signifi

cance levels of one, five, and ten percent. The figures are based on 2,500 sam

ples, which give an estimated standard error of the estimated power, fi, equal to

Jfi(l - fi)/2500. The abbreviations are: LM! refers to the test of no GQARCH,

LM2 to the test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative

size bias test, PSB to the Positive size bias test, and Joint refers to the test of

the joint hypothesis of SB, NSB, and PSB.

Test

SB

NSB

PSB

Joint

Sample Size

1000
250

1000
250

1000
250

1000
250

1000
250

1000
250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies (%)

56.76 79.28 86.00
10.24 26.60 38.16
32.72 58.80 71.64
5.44 17.48 27.24

11.00 27.12 37.60
2.28 8.48 15.36

10.48 25.76 36.36
2.76 7.80 14.52

9.00 26.48 39.04
2.16 8.36 16.16

7.24 21.44 32.92
1.32 5.68 11.44
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Table 12. Actual Rejection Frequencies when the True Model is
A-PARCH

The table shows results from a Monte Carlo experiment where the empirical

power of six specification tests is investigated. In the experiment, the data gener

ating process is model (3.31). The columns labeled Actual Rejection Frequencies

report the simulated empirical power at the three different theoretical signifi

cance levels of one, five, and ten percent. The figures are based on 2,500 sam

ples, which give an estimated standard error of the estimated power, p, equal to

Vp(1 - fi) /2500. The abbreviations are: LMI refers to the test of no GQARCH,

LM2 to the test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative

size bias test, PSB to the Positive size bias test, and Joint refers to the test of

the joint hypothesis of SB, NSB, and PSB.

Test

SB

NSB

PSB

Joint

Sample Size

1000

250

1000
250

1000
250

1000
250

1000
250

1000
250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies (%)

76.28 91.56 95.40
12.76 32.40 45.84

64.16 85.36 91.32
8.92 27.12 41.08

6.72 17.40 26.88
1.48 '7.36 13.16

8.32 18.92 27.60
2.12 8.16 14.08

5.72 18.72 30.60
1.20 6.88 14.00

5.80 16.36 25.84

1.12 5.76 11.56
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Table 13. Actual Rejection Frequencies when the True Model is
V8-ARCH

The table shows results from a Monte Carlo experiment where the empirical

power of six specification tests is investigated. In the experiment, the data gener

ating process is model (3.32). The columns labeled Actual Rejection Frequencies

report the simulated empirical power at the three different theoretical signifi

cance levels of one, five, and ten percent. The figures are based on 2,500 sam

ples, which give an estimated standard error of the estimated power, p, equal to

Vp(1 - p)/2500. The abbreviations are: LMl refers to the test of no GQARCH,

LM2 to the test of no LSTGARCH, SB to the Sign bias test, NSB to the Negative

size bias test, PSB to the Positive size bias test, and Joint refers to the test of

the joint hypothesis of SB, NSB, and PSB.

Test

SB

NSB

PSB

Joint

Sample Size

1000
250

1000
250

1000
250

1000
250

1000
250

1000
250

Nominal Significance Level

1 % 5 % 10%
Actual Rejection Frequencies (%)

20.96 43.32 55.92
3.00 12.04 20.52

19.56 42.08 56.04
1.96 10.04 17.20

1.60 7.52 13.68
1.04 5.56 11.60

2.12 9.48 17.48
0.88 6.08 12.84

2.52 9.64 16.96
1.12 5.44 10.80

1.40 7.80 15.24
0.84 4.88 10.76
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Modeling Nordic Stock Returns with
Asymmetric GARCH Models

4.1 Introduction

During the last 15 years, an enormous amount of effort has been devoted
to the modeling of conditional volatility in financial markets data. The

seminal work in this area of research is by Engle [1982], who introduces
the standard autoregressive conditional heteroskedasticity model, thereby

initiating the development of the ARCH class of models. Today the ARCH

literature has grown to spectacular proportions. An excellent survey of the
literature is Bollerslev, Engle, and Nelson [1994].

Many of the proposed ARCH models include a term that can capture cor
relation between returns and conditional variance. Models with this feature

are often termed "asymmetric" or "leverage" volatility models. The term

leverage stems from the empirical observation that the conditional vari
ance of equity returns often increases when returns are negative, Le. when

the financial leverage of the firm increases. One of the earliest asymmetric

ARCH models is the EGARCH (Exponential Generalized ARCH) model
of Nelson [1991]. Another popular specification is the model of Glosten,

Runkle, and Jagannathan [1993], denoted GJR.
This paper investigates to what extent asymmetric GARCH models might

have ,been the data generating process for a number of time series. Data

i n v e s t ~ g a t e d is daily observations from 45 Nordic stocks. The investigated
period is July 1991 to July 1996. Furthermore, this paper is concerned with
the relative in sample performance of seven different parametric asymmet

ric ARCH models. The models studied are: EGARCH, GJR, TGARCH of
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Zakoian [1994], A-PARCH of Ding, Granger, and Engle [1993], GQARCH
of Sentana [1995], VS-ARCH of Fornari and Mele [1996], and LSTGARCH
of Hagerud [1996], and Gonzalez-Rivera [1996].

To estimate the unknown parameters of the models, iterative numerical
methods are required. These procedures are often time consuming, and if
the model in question explains the data badly the estimation might not
converge. Specification tests are therefore used to investigate whether a
certain model might have been the data generating process of a time series.
The test of no ARCH, developed by Wooldridge [1990] is used to test for
general ARCH effects. This test is a robust version of Engle's [1982] test
of no ARCH. To test for asymmetric effects, robust versions of two tests
proposed by Hagerud [1997] are used. Hagerud's test are derived under

conditional normality, and since the data shows a high level of conditional
heterokurtosis, robustification is necessary.

It is found that 32 of the 45 series show signs of heteroskedasticity. Of
these 32 securities, twelve could have been generated by an asymmetric
GARCH model. Furthermore, for the subsample of twelve series, it is con
cluded that the models GJR, TGARCH, and GQARCH are superior in
modeling the asymmetric dynamics of the conditional variance.

This article is organized as follows. Section 4.2 describes the conditional
variance models and the estimation procedures used. In Section 4.3, the
tests used for the specification of the conditional mean and variance are
formulated. The data is described in Section 4.4. Results are presented in

Section 4.5, and the conclusions in Section 4.6.

4.2 Models and Estimation

Let the price of a stock at time t be denoted by Pt. Returns, measured as

In(Pt / Pt-l), are assumed to follow the AR(p)-process

P

Tt = 1>0 + ~ ¢irt-i + €t,

i=l

where €t denotes a discrete-time stochastic process with the form

(4.1)

(4.2)

where Zt rv iid(O, 1), and ht is the conditional variance of return at time t,
whose dynamics GARCH specifications wish to 'model.

The seven asymmetric GARCH models that will be investigated, are
listed below. But first is a specification of the symmetric GARCH(l,l)
model that is used as the null hypothesis when the presence of asymmetry
is tested for. The models will only be studied in their most simple structure,
when the lag lengths are equal to one. In many empirical investigations,
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these parsimonious models have proven to perform well. The description
below is very brief. A more detailed presentation of the asymmetric models
can be found in Hagerud [1997].

Bollerslev's [1986] GARCH(1,1) model assumes that the conditional vari
ance is generated by

ht =, + O:C~_I + {3ht - l , (4.3)

where " 0: and {3 are non-negative constants. For the GARCH process to
be defined, it is required that 0: > O.

The EGARCH model of Nelson [1991] is

lnht = 'Y +{jlnht- 1+ AZt-l'+ CP [IZt-11 - V2/,r] , (4.4)

where '., {3, A, and c.p are constant parameters, and Zt is defined as in (4.2).
The GJR model of Glosten, Jagannathan, and Runkle [1993] is

ht = , + O:C~_I +wSt_1 C~-I + {3ht - l , (4.5)

where " 0:, (3, and ware constant parameters, and St.-I is an indicator
function that takes the value one when Ct-I < 0 and zero otherwise.

The Threshold GARCH model is introduced in Zakoian [1994]. The
TGARCH(1,1) model is

h
l / 2 - + + - - (3h l / 2
t -, + 0: Ct-I - 0: Ct-I + t-I' (4.6)

where ct = max(Ct, 0), and Ct = min(ct, 0). Note that (4.6) can be repa
rameterized as

h:/
2 = , + 0: ICt-11 +wSt:-1Ct-I + (3h:~;.

Thus, in the TGARCH(1,1) model, the conditional standard deviation has
the same functional form as the conditional variance has in the GJR model

(4.5).
Ding, Granger, and Engle [1993] propose the Asymmetric Power ARCH

model. The A-PARCH(1,1) model is

0/2 (I I )0 0/2ht = , + 0: Ct-I - 'TJct-1 + {3ht - l , (4.7)

where " Ct, (3, 'TJ and 8 ~ 0 are constant parameters.
Sentana [1995] introduces the Quadratic ARCH model. The term quadratic

is used since the QARCH model can be interpreted as a second-order Taylor
approximation to the unknown conditional variance function. The Gener
alized QARCH(1,1) model is

(4.8)
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where " (, a, and {3 are constant parameters.
The VS-ARCH (Volatility Switching) model of Fornari and Mele [1996]

is

(4.9)

where

St 1 if €t > 0

St 0 if €t = 0

St -1 if €t < 0,

and v¥ is defined as €¥/h t . The parameters of the model are " a, {3, and

e·
The logistic smooth transition GARCH(1, 1) model of Hagerud [1996],

and Gonzalez-Rivera [1996] is given by

(4.10)

where F(.) is a transition function with the form

The parameters of the model are therefore " aI, a2, {3, and fJ. Note that
GJR will result as a limiting case of LSTGARCH, when fJ ~ 00.

To estimate the parameters of the models, a quasi-maximum likelihood

approach is used. The innovations Zt are assumed to be distributed inde
pendently normal, and a normal log-likelihood function is maximized, using
standard numerical methods. Bollerslev and Wooldridge [1992] show that
when the normality is violated, the quasi-maximum likelihood estimators
(QMLE) are generally consistent and have a limiting normal distribution.
In their article, Bollerslev and Wooldridge also present asymptotic standard
errors of the estimators valid under non-normality.

The parameters of the conditional mean model are estimated simulta
neously with the conditional variance model. Engle [1982] and Bollerslev
[1986] show that when the ARCH model is symmetric with respect to
lagged returns, the two models can be estimated separately. This result
is used when the standard GARCH(1,1) model is estimated, in the testing
procedure. Unfortunately, this simplification cannot be used for the other
models.

4.3 Specification Tests

Following the recommendations of Wooldridge [1991], a bottom-up strat
egy is used when performing specification tests. Thus, first the conditional
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first movement is specified. Once the conditional mean is formulated and
estimated satisfactorily, tests for the conditional variance specification are

performed.
When attempting to specify the conditional mean, only possible autocor

relation in the returns is tested for. Thus, any possible non-linearity in the
conditional mean is disregarded. Furthermore, the possibility of the condi
tional variance to be an explanatory variable of return is not considered. To
test for autocorrelation, a test developed by Richardson and Smith [1994]
is used. The test, in the form use here, is a robust version of a standard Box

and Pierce [1970] procedure. Letting Pi be the estimated autocorrelation
between the returns at time t and t - i, the test is formulated as

k -2

RS(k) = TL: ---.EL.
i=l 1 + Ci

(4.11)

(4.12)

The terms Ci is an adjustment factor for heteroskedasticity, and it is calcu
lated as

c o v [ r ~ , r ~ _ i ]
Ci = ,

var[rt]2

where rt is the demeaned return at time t. Under the null of no autocor
relation, the statistic is distributed asymptotically X2 with k degrees of
freedom. Since the sample sizes are relatively large, any adjustments of the
statistic, in the spirit of Ljung and Box [1978], are unnecessary.

If the null of no autocorrelation cannot be reject, it is concluded that

returns are equal to a constant plus a residual Ct, Le. the conditional mean
specification is model (4.1), with p equal to zero. If the null is rejected, an
AR(1) model is estimated on the series. To ensure that this model captures

the detected autocorrelation, test (4.11) was once more applied. In this case,
the test is run on the estimated residuals from the AR(1) model. Following
the recommendations of Box and Pierce [1970] and Ljung and Box [1978],
the value of the statistic in this case is compared to a X2 distribution with
k - 1 degrees of freedom. If the null cannot be rejected, it is concluded

that returns are generated by an AR(1) model. If the null is rejected, the
procedure is continued with higher order AR models, until test (4.11) is
not rejected.

After the conditional mean model is deemed satisfactory, tests for pos
sible heteroskedasticity are performed. First, the null of homoskedasticity
against the alternative of heteroskedasticity is tested. The most commonly

used test for this hypothesis is the LM test of no ARCH of Engle [1982].
However, Engle's test requires that the fourth conditional moment of Ct is
constant and finite, as shown by Koenker [1981]. To overcome that com
plication, and to ensure that the test has a satisfactory asymptotic size, a
robust test of no ARCH developed by Wooldridge [1990] is used. This test
is calculated using the procedure:
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1. Estimate the sample variance under the null of homoskedasticity

T

(;2 = T- I Le~,

t=l

where et is the consistently estimated residuals from the model (4.1).

2. Regress 1 on

( ~ _ (
2

) (~-1 - (2
) ,.,', ( ~ - (

2
) (~_q _(2

)

The statistic is equal to LMo = T· R ~ = T - RSS, where R ~ is the
uncentered coefficient of determination from the regression (4.13),
and RSS is the residual sum of squares. The statistic converges in
distribution to a X2 variable with q degrees of freedom.

If the null of no ARCH(q) cannot be rejected, the investigation continues
with tests for asymmetric GARCH. This is done with two new test pro
cedures, based on a pair of LM statistics proposed by Hagerud [1997]. In
both tests, the conditional variance follows a GARCH(I,1) process under
the null. In test number one, the alternative hypothesis is the GQARCH
model (4.8), and in test number two, the alternative hypothesis is the LST
GARCH model (4.10). Hagerud [1997] shows that these two tests have su
perior power properties, compared to the standard asymmetric ARCH tests

developed by Engle and Ng [1993]. This superiority remains valid even when
the true data generating process is not the GQARCH or the LSTGARCH
models, but any other of the asymmetric models presented in Section 4.2.

Hagerud's [1997] tests are derived under the assumption that €t is dis
tributed conditionally normal. This assumption is unlikely to be fulfilled
in -the aata set considered h e r e ~ N o n ~ n o r m a l i t y might give the statistics
the wrong asymptotic size. The statistics are therefore robustified using a
method presented by Wooldridge [1991]. For these statistips to be of the
correct asymptotic size, only general distributional assumptions have to
be made (see Wooldridge [1990]). Furthermore, the information matrix be
tween the conditional mean and the conditional variance parameters does
not have to be block-diagonal. Derivations of statistics LMI and LM2 ,

presented below, can be found in the appendix.
The hypothesis for the test of no GQARCH can be formulated

Ho ,= 0,

HI , ~ O ,

and the proposed test procedure is:

1. Estimate a GARCH(I,1) model on the series of estimated residuals
{et};=l, and form the series of conditional variance under the null

{hOt}'[=l. Let ~ be the estimated parameters (3 in the GARCH(1,1)
model.
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2. Regress

on

{

t-I -i-I t-I -i-l_2 t-I -i-I }
_ Ei=1 /3 Ei=l /3 Ct-i Ei=1 /3 hOt- i

Yt- h ' h ' h 'Ot Ot Ot

and let a be the vector of estimated parameters. Form the series of
residuals

3. Regress 1 on

( ~ -1) ·Xt (4.14)
hot

The statistic is equal to LMI = T·R~ = T-RSS, from the regression
(4.14).

The statistic LMI converges in distribution to a X2 variable with one
degree of freedom, corresponding to the number of restrictions.

The test of no LSTGARCH can be formulated l

and the proposed test procedure is:

1. Estimate a GARCH(I,I) model on the series {et}'[=I' and form {hOt}'[=I.

2. Regress
t - l - i - I ~

Ei=l/3 Ct-i

hot '

on Yt, defined above, and let bbe the vector of estimated parameters.
Form the series of residuals

t - I - i - I ~

Ei=1./3 Ct-i _ -by'
St = h t·

Ot

ITo test for Q2 = 0 in the LSTGARCH(l,l) model will cause an identification prob

lem. Hagerud [1997] shows how this problem can be solved by making a Taylor approx

imation of the model.
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3. Regress 1 on

( ~ -1) .St
hot

The statistic is equal to LM2 = T· R ~ = T - RSS.

The statistic LM2 converges in distribution to a X2 variable with one
degree of freedom.

While performing test LMl or LM2, and given that the series of condi
tional variance is estimated with quasi-maximum likelihood, the normalized

residual, Vt = ct/h~{2, should be orthogonal to the vector

{

t-l -i-l t-l -i-l_2 t-l -i-l }
_ Ei=l {3 Ei=l {3 Ct-i Ei=l {3 hOt- i

Yt - h ' h 'h .
Ot Ot Ot

This should be true independently of whether the null is true or not. How
ever, in practice, exact orthogonality cannot always be guaranteed. This
is noted by Engle and Ng [1993], and from a Monte Carlo study, the au

thors concluded that it is advisable to adjust Vt, such that orthogonality
is guaranteed. However, since the small sample properties of LMl or LM2

are unknown, no such adjustment will be performed.
If at least one of the tests LMI and LM2 are rejected, the models (4.4)

through (4.10) will be estimated on the series. To decide whether a certain
model is able to capture the heteroskedasticity adequately, a number spec
ification tests are once more performed. First, the skewness and kurtosis of

the series of normalized residuals, £t/h:/
2

, are calculated, where ht is the
estimated conditional variance. Second, a new test procedure to test for
further asymmetric ARCH effects is used. This test procedure is a robust
version of the Sign bias test of Engle and Ng's [1993]. The sign bias test is a
test for general asymmetry. The robustification is, as above, done using the
method of Wooldridge [1991]. The null is now the asymmetric model that
was used to estimate ht , and the alternative is the same asymmetric model

augmented by a term T . St.-I' Thus, the alternative model considered is

gt = ht + T . St.-I'

where ht is any of the asymmetric models (4.4) to (4.10). The test is for
mulated as follows

Ho T = 0,

Hl T =1= 0,

and the robust test procedure is:

1. Estimate the asymmetric GARCH model with quasi-maximum like

lihood, and form {ht};=l'
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2. Regress

on
1 8ht

Wt = h
t

8f3'

where f3 is the vector of parameters in the asymmetric model. Let c
be the vector of estimated parameters. Form the series of residuals

3. Regress 1 on

(4.16)

The statistic is equal to LM3 = T . R; = T - RSS.

The statistic LM3 converges in distribution to a X2 variable with one
degree of freedom. Note that to perform the test, it is necessary to calculate

the partial derivatives 8gt /87, and 8ht /8f3. These will differ depending on

the model considered under the null. These derivatives for all the seven

models are listed in the appendix.

4.4 Data

Original stock price observations are daily close prices from the exchanges

in Helsinki, Stockholm, Oslo, and Copenhagen. The stocks are the most

actively traded securities in each of the markets. The period investigated
is July 1, 1991 to July 1, 1996. This gives approximately 1,260 price obser

vations per security. The price observations are not adjusted for dividends,
but since dividends are paid on a yearly basis, only five return observations

per series are affected by dividends. The data is collected from Datasteam.

The investigated securities are listed in Table 1, and some summary

statistics are given. 17 stocks are from Stockholm, 14 from Copenhagen,

8 from Oslo, and 6 from Helsinki. The prices of most of the stock have

increased over the investigated period of five years. The highest return

is observed for the Finnish telecommunication company Nokia, with 63

percent average yearly yield. The worst investment during the period is

the Norwegian shipping company l.m. Skaugen. The average yearly yield

for the 45 companies is 8.9 percent.

From the last column in Table 1, it can be seen that the volatility, mea

sured as estimated constant standard deviation p.a., varies considerably in

the sample. The lowest volatility is reported for the Danish pharmaceutical
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company NovoNordisk, with 15 percent, and the highest is reported for
I.m. Skaugen, with 70 percent. However, a majority of the stocks have a
volatility in the interval 20 to 30 percent.

4.5 Results

Table 2 reports the results from the tests performed to specify the condi

tional mean. Richardson and Smith's [1994] test (4.11), calculated on eight
autocorrelations, indicate that twelve companies show signs of autocorrela
tion, on five percent significance level. For these companies, AR(l) models
were estimated. Column three in the table reports p-values for Richardson
and Smith's [1994] test calculated on the estimated residuals from these
AR(l) models. No autocorrelation can be detected in these series of residu
als. It is therefore concluded that for 33 securities, a suitable mean equation
is (4.1) with p = 0, and for the remaining twelve securities an AR(l) model
is appropriate.

Column two in Table 3 reports the results from Wooldridge's [1990] tests
of no ARCH. The test is calculated with q equal to eight.2 Thirteen compa
nies show no signs of heteroskedasticity, on five percent significance level.
These companies will not be considered further. Column three contain
p-values for Engle's [1982] test of no ARCH, calculated on eight lagged
squared residuals. This is the non-robust alternative to Wooldridge's test.
Note that if the non-robust test had been used, quite different conclusions

about the presence of heteroskedasticity in the sample would have been

drawn.
Column four in Table 3 shows excess kurtosis for the series of estimated

residuals, and column five reports the first autocorrelation in squared resid
uals. Terasvirta [1996] shows that a GARCH(l,l) model with normal errors
cannot generate data with high excess kurtosis and low first-order autocor
relation in squared residuals. Many of the series in this sample show such
a pattern. However, since the primary interest is finding an estimate of the

series of conditional variance, {h t }t=l' this should not affect the results.
This follows from the fact that the series of conditional variance only de

pends on the consistently estimated parameters a, (3, and" and not on the
distributional assumption made. This is obviously only true if the assump

tions of Bollerslev and Wooldridge [1992] are fulfilled, so that the QMLEs
are consistent.

Table 4 reports the results from the two tests of no asymmetric GARCH.
According to column two, the null of GARCH(l,l) can be rejected against

2 Wooldridge's test of no ARCH was also calculated on ten and fifteen lagged residuals.

The results from those tests were only slightly different from the ones shown in Table 3.

Thus, the general level of detected heteroskedasticity was not altered when the number

of lags in the statistic was increased.



4.5 Results 93

the alternative of GQARCH(l,l), for eleven securities on the five percent
significance level. The null of GARCH(l,l) against LSTGARCH(1,1), can
be rejected for three securities. In total, asymmetries have been detected for
twelve securities, out of the 32 securities that showed signs of heteroskedas
ticity. For this subsample of twelve securities, the investigation continues

by fitting the seven asymmetric models (4.4) to (4.10) to the return obser
vations.

In Table 4, are also the p-values for the corresponding non-robust test
procedures of Hagerud [1997]. The results for the test of GARCH(1,1)
against GQARCH(1,1), are given in column three, and column five reports
the results for the test of GARCH(1,1) against LSTGARCH(1,1). In num
ber cases different conclusions would have been drawn if the non-robust
tests had been used. Thus, it is advisable to use the proposed robust test
statistics.

As pointed out in Section 4.2, a quasi-maximum likelihood approach is
used to estimate the seven models on the twelve return series. For most
securities, all seven models could be estimated without difficulty. Out of a

total of 84 estimations, convergence was not reached in eight cases. These
cases are indicated as failures in Table 7. It is primarily the A-PARCH
model that is hard to estimate. Failures often occur because the series
of conditional variance is given a negative value, or because stationarity
conditions on the estimated parameters could not be met. The two samples
that proved to be most troublesome to estimate are the price series for SCA,
a Swedish forestry company, and the series for Unibank, a Danish bank.

In all models but one, the asymmetries were estimated to be in agreement
with the folkloristic view that the conditional volatility increases in bear
markets. Thus, the parameters of the models were estimated to such values
that if a certaIn modefhadbeen the true data generating -process, a negative

correlation between lagged residuals and conditional variance would result.
The exception is the VS-ARCH model estimated for I.m. Skaugen.

One of the objectives of this study was to investigate which of the asym

metric ARCH specifications (4.4) to (4.10) models the conditional variance
"best." Two simplistic selection criteria for finding the best model are used:
the value of the likelihood function, and the BIC information criteria of
Schwarz [1978]. In addition, it is required that the best model, should not
perform worse than the other models, with regard to the specification t e s ~ s

presented in Section 4.3.
Table 5 reports, for each security, the top three ranked models maximiz

ing the likelihood function. Table 6 gives the analogous results for BIC.

Not surprisingly, the models with most parameters, A-PARCH and LST
GARCH, often maximize the likelihood function. However, in some cases,

the more parsimonious models GJR, TGARCH, and GQARCH perform
better. When the number of parameters is given consideration, as in the
BIC, the three models GJR, TGARCH, and GQARCH, seems to be supe-
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rior. Both GJR and TGARCH minimize BIC in five cases, and GQARCH
is ranked first in two cases.

P-values for the robust sign bias test, LM3 , performed on the 76 models
that were successfully estimated, are reported in Table 7. Only in two cases,
GQARCH for SCA B, and EGARCH for Handelsbanken A, can the null of
no additional asymmetry be rejected, on five percent significance level. In
all other cases, it is hard to find any evidence which favors one model over
the other. It is therefore concluded that the models seem to capture the
same dynamics of heteroskedasticity, but do so more or less well. However,
this conclusion should be taken with a pinch of salt, since there might be
asymmetries in the data that cannot be detected with the rather general
hypothesis of the sign bias test.

The investigation now focuses on the series of estimated normalized resid-

uals, {et /h;/2}T . Table 8 reports estimated standardized third moment,
t=l

skewness, of the series. An assumption that the distribution of Zt in (4.2} is
symmetric appears to be appropriate for seven of the series, on five percent
significance level. For EAC, Modo B, Orkla A, I.m. Skaugen, and Volvo
B, the estimated skewness indicates that the distribution is skewed. Alter
natively, this might be an indication that a different specification of the
c o n d i t i o ~ a l variance should be used. Analogously to the results of the sign
bias test, no model is better than the rest in reaching a zero skewness.

The estimated excess kurtosises of {et /h:/2}T ,for the 76 models, are
t=l

reported in Table 9. The hypothesis that the coefficient of excess kurtosis
is equal to zero is rejected for all models. Thus, it can be concluded that
an assumption that Zt is normally distributed is inappropriate. The use
of a distribution that can generate large innovations more often is recom
mended. A possible candidate is the Student-t distribution. It is interesting
to note once again that all models seem to capture a similar structure for
the conditional variance series. The excess kurtosis for a particular security
is almost the same across the seven models.

Based on the selection criteria, and on the results of the specification
tests presented in Table 7 to 9, the GJR specification appears to have many

advantageous properties. Only for EAC and I.m. Skaugen does the model

not rank among the three best based on BIC. The model is also relatively
easy to estimate. Convergence was reached for all twelve securities. For

the Orkla A, SCA B, Skandia, and Unidanmark A, the parameter a in the
GJR model was estimated to a negative value. A very large positive residual
might then give a negative conditional variance. However, in the four series,
this does not occur, indicating that it might only be a theoretical problem.
In none of the 76 models that were successfully estimated did any negative
variance occur.

The LSTGARCH model is, as noted in Section 4.2, a generalization of
the GJR model. In six cases, the estimate of the parameter () is so high that
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the two models coincide. As was the case with GJR, the estimated para

meters for Orkla A, SCA B, and Skandia might in extreme cases give rise
to negative conditional variance. The LSTGARCH is somewhat harder to
estimate, and for Unidanmark A no convergence is reached. Based on these

results, it is concluded that the GJR specification is a good approximation

of the LSTGARCH model.
The TGARCH model appears to be a good complement to the GJR

model. For six securities, the model ranks among the best three, both ac
cording to the values on the likelihood function and BIC. The model's

simple structure makes estimation easy. However, for SCA B no conver
gence is reached. For Orkla A, and Unidanmark A, the parameter a+ is
estimated to a negative value. This allows negative conditional variances

to appear for large positive return realizations, but this does not occur for

the two series.
The results for the EGARCH model are slightly disappointing. In five

cases, both according to the value of the likelihood function and.BIC, the
model ranks among the top three models, but is always outperformed by

TGARCH. The model is fairly hard to estimate. For SCA A, and Unidan

mark A, no convergence was reached. The persistence parameter f3 is often

estimated to a value just below unity. Only in two cases is f3 estimated to
values below 0.99.

Even though the GQARCH(l,l) model is extremely simple in its struc
ture, it performs well. For ABB A and Volvo B, the model maximizes the
likelihood function. It is among the top three models, according to BIC,
for four securities. The model is easily estimated for all twelve securities.

The A-PARCH model maximizes the likelihood function for five securi

ties, and ranks among the top three models in four cases, according to BIC.
The model's very general structure therefore seems to capture the dynamics

of the conditional variance well. However, one of the model's disadvantages

is that it is hard to estimate. For successful estimation, the choice of start

values is important. For four securities convergence could not be reached.

In three cases the VS-ARCH model ranks among the top three models,
both according to the value of the likelihood function and BIC. The model is

easily estimated and convergence is reached for all securities. Unfortunately,

the rather different asymmetry structure of the model does not appear to
be successful in the sample investigated.

4.6 Summary and Conclusion

This paper has presented results from an empirical investigation of 45 eq

uity return series, from the Nordic stock exchanges in Helsinki, Stockholm,
Oslo, and Copenhagen. The study investigated whether some asymmetric

GARCH model might have been the data generating process of the series.
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For this, two novel test procedures that are robust to non-normality were
used. Evidence of asymmetry was found for twelve securities. It was also
shown that the results of the proposed tests differ from those of non-robust
tests. Thus, for this sample, using robust tests seems to be advisable.

For the twelve series that indicated asymmetries, the seven GARCH mod
els, EGARCH, GJR, TGARCH, A-PARCH, GQARCH, VS-ARCH, and
LSTGARCH, were estimated . These models all allow for correlation be

tween the conditional variance and lagged returns. In 76 cases of 84 the
models were successfully estimated. Using the value on the likelihood func
tion, and the information criteria of Schwarz [1978], BIC, an attempt was
made to identify which specifications modeled the conditional variance best.
The models GJR, TGARCH, and GQARCH were found to be superior.

To investigate whether the seven models were able to capture the asym
metry present in the data, a robust version of the sign bias test was per
formed . Only in two cases of 76 could the hypothesis of no additional
asymmetry be rejected. Finally, the skewness and kurtosis of the series
of normalized residuals were calculated. These coefficients were very sta
ble across the models. For seven securities the hypothesis of zero skewness
could not be rejected. The hypothesis of no excess kurtosis was rejected
for all 76 models. It is therefore concluded that an assumption that the
distribution of Zt is the standard normal is most likely incorrect.

This study has focused on in sample properties for a nUIuber of different
parametric GARCH models. This naturally give rise ti the question of how
these results can be used in a practical modeling situation. This will de
pend on the purpose of the exercise. GARCH models are commonly used
by professionals in the option markets to forecast volatility for securities. If
it is believed that the in sample properties of a model reflect the forecasting
ability of the model, the results presented here are of major importance.
For the practitioner, it should be comforting to note that the modeling per
formance of the relatively simple models, GJR, TGARCH, and GQARCH
are at least as good as that of the more complicated models. These models

are easier to estimate, and much easier to use for forecasting. However, the
reader must be warned not to equate in sample properties with forecasting

ability. This subject calls for further research.

In many other situations where GARCH models are used, the mean
specification is more complex than the one used here. For econometricians

working with such models, it is hoped that the methodological part of this

paper is of interest. The use of the proposed tests for asymmetry is not
limited to the simple model structure considered here. However, in this
respect, further research into the small sample properties of the statistics
is needed.
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Appendix
1. Test of Ho: GARCH(I,I), HI: GQARCH(I,I)

The test considered is

Ho (= 0,

HI (=F O.

Hagerud [1997] shows that given that the residuals are distributed con
ditionally normal, a Lagrange multiplier test statistics for the hypothesis

is

where

hot is the conditional variance under the null of GARCH(1,1), ?t is the con
sistently estimated residual, {3' is the vector of conditional variance para
meters ('Y,a,{3,(), and ~ is the estimated parameter (3 in the GARCH(1,1)
model. Based on test (4.17) it is straightforward to derive the asymptoti
cally equivalent test T R: from the regression

( it -1)
hot

on

If conditional normality fails to hold, (4.18) will have the wrong asymp
totic size. In Procedure 4.1 in Wooldridge[1991], the author shows how
a regression-based specification test of this type can be robustified. The
resulting test statistic will be valid under the rather general regularity con
ditions of Wooldridge [1990]. Using the method proposed by Wooldridge
[1991], the robust version of test (4.18) is:
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1. Regress

on

{

t-I -i-I t-I -i-I_2 t-I -i-I }
_ Ei=1 {3 Ei=1 {3 Ct-i Ei=1 {3 hOt- i

Yt- h ' h 'h .
Ot Ot Ot

Let abe the vector of estimated parameters. Form the series of resid
uals

t-I-i - I_

Ei=1 {3 Ct-i -,
Xt = h - aYt·

Ot

2. Regress 1 on

(it -1) .Xt
hot

The statistic is equal to T· R ~ = T - RSS, from this last regression,
which is equivalent to the statistic LMI presented in Section 4.3. The
statistic converges in distribution to a X2 variable with one degree of
freedom.

2. Test of Ho: GARCH(l,l), HI: LSTGARCH(l,l)
The test considered is

Ho (}2 =0,

HI a ~ 2 =1=_0.

Hagerud [1997] shows that given that the residuals are distributed con
ditionally normal, a Lagrange multiplier test statistics for the hypothesis
is

{
T [-2 ] }'{T [ ] [ ],}-I1 1 Ct 1 8ht 1 8ht 1 8ht

2 ~ 2hot hot - 8fj ~ hot 8fj hot 8fj

{t 1 [it 1] 8h
t

}
t=1 2hot hot - 8f3 '

where

8

[

t-I t-I t-I t-I ]ht _ ~ -i-I ~ -i-I_2 ~ -i-I ~ - i - I ~
8f3' - L.J {3 , L.J {3 Ct-i' L.J {3 hOt- i , L...J {3 Ct-i'

i=l i=l i=1 i=1

To derive the robust test LM2 presented in Section 4.3, the same method
employed in the GQARCH case above was used.
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3. 8gt /8r, and 8ht /8/3 for the models (4.4) to (4.10)
When the model under the null is the EGARCH model (4.4), and /3' is

('Y , (3, A, <p), the partial derivatives are

ht ~pi-l (iZt-il- J2/1r)] .

When the model under the null is the GJR model (4.5), and {3' is ('Y, a, w, (3),
the partial derivatives are

When the model under the null is the TGARCH model (4.6), and {3' is
('Y, a+ , a+ , (3), the partial derivatives are

t-1
1/2 ~ -.i-1 -1/2

St-1 +ht L..J{3 h t+ 1- i St-i'

i=2

[

t-1 t-1 t-1
1/2 ~ -.i-1 1/2,"", -.i-1-.+ 1/2 ~ -i-1-._

2ht L..J {3 ,2ht L..J {3 ct_i,2ht L..J {3 Ct-i'

i=1 i=1 i=1

t-1 ]
2h~/2 tt pi-l h:~~ .

When the model under the null is the A-PARCH model (4.7), and {3' is
('Y, a, 'fJ, (3, 8), the partial derivatives are

8 t-1
J!!... - S- + h 1- 6/ 2 ,"",ai-1h6/2-1S-
8 - t-1 t L..J fJ t+1-i t-i'

r i=2

[

h
1-6/2 t-1. h1-6/2 t-1 .

2 t ~al-1 2 t ~al-1(1-' .1_ -. .)6
8 L..J fJ , 8 L..J fJ Ct-l 'fJCt-l'

i=1 i=1
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1-8/2 ~ - i - l { _ _ 8- } 2h:-
8

/
2 ~-i-l 8/2

2aht L...J{3 (Iet-il- 'TJet-i) et-i, 8 L...J{3 ht- i ,
i=l i=l

2h:-
8

/
2
~ -i-l (8/2 8/2 _ _ 8

8 L...J (3 -ht+1- i In ht+1- i + 2a(let-i I - '!Jet-i)
i=l

In( I€t-iI- "l€t-i) + f3h~~~ In h~~~) ]

When the model under the null is the GQARCH model (4.8), and {3' is

(" , , a, (3), the partial derivatives are

t-l
",-i-l

L...J{3 St-i'
i=l

When the model under the null is the VS-ARCH model (4.9), and {3' is

(" a, (3, e), the partial derivatives are

When the model under the null is the LSTGARCH model (4.10), and {3'

is (" aI, , a2, (3, lJ) ,- the partial derivatives are --

t-l
",-i-l

L...J {3 St-i'
i=l

[

t-l t-l t-l t-l
",-i-l ~ - i - l 2 ",-i-l- - 2 ",-i-l

{;;;{ f3 ,{;;;{ f3 €t-i' {;;;{ f3 F(€t-i IO)€t-i, {;;;{ f3 ht- i ,

t-l _h2:t . ]-i-l e ue -1. -3

Q(2 Ef3 ( _ge o)2€t-i ,
i=l 1 + e ct-1.

where F(etIO) is the estimated value of the transition function at time
t, under the null. When () is estimated to a high value, such that the
LSTGARCH model coincides with GJR model, the columns of the ma

trix 8h/8{3' = 8(hI, ... , hT )'/8{3' might not be independent. To overcome
this complication the partial derivatives of the GJR model should be used
instead of those of the LSTGARCH model. This is the practice followed in

this paper.
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Table 1. Summary data for the investigated series

This table lists the 45 Nordic stocks investigated. 'The column labeled "71 in

%", reports yearly yield for the security during the investigated period of five

years. The column labeled "(j in %", reports the estimated constant standard

deviation in return, on a yearly basis. The period investigated is July 1, 1991 to

July 1, 1996.

Security

ABBA

Aker B

Astra A

Atlas Copco A

Bergesen d.y. B

Carlsberg B

Cultor 2

Danisco

Den Danske Bank

D/S 1912 B

D/S Svendborg B

EAC

Electrolux B

Enso R

FLS Industries B

Norsk Hydro

Investor B

ISS B

Jyske Bank

Kvaerner B

Exchange

SE

NO
SE

SE

NO
DK

FI

DK

DK

DK

DK

DK

SE

FI

DK

NO
SE

DK

DK

NO

Industry

Engineering

Engineering

Pharmaceuticals

Engineering

Shipping

Food & bev.

Food & bev.

Food & bev.

Financial

Shipping

Shipping

Shipping

Household durables

Forestry

Engineering

Oil and chemical

Inv. company

Service

Financial

Engineering

11 in %
12.9
5.0

24.8

19.2
-3.8

1.3
40.2

8.7
2.5

5.2

5.6

-7.8
4.2

21.0
-2.0

11.3
10.3

0.3
0.7

3.4

(j in %

19.8
50.5

24.5

25.6

30..5

20.2
44.1

19.5
21.3
21.1

20.2
35.4
28.8

33.3
25.1

25.2

33.6
29.3
18.3

29.9
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Table 1. Continued

Security Exchange Industry II in % (J" in %

LM Ericsson B SE Telecom 23.9 36.4
ModoB SE Forestry 5.6 43.9
Nokia FI Telecom 63.2 40.0
Novo Nordisk B DK Pharmaceuticals 12.0 15.0
Norske Skog B NO Forestry 3.6 43.4

Orkla A NO Food & bev. 14.0 29.7

Outokompu A FI Metal and mining 31.1 36.7

Pohjola B FI Insurance 8.6 47.9
Saga B NO Oil and chemical -5.5 33.5

Sandvik B SE Engineering 16.6 24.7

BAS' Danmark DK Transportation 17.6 37.9

SCAB SE Forestry 3.6 30.3
Skandia SE Insurance 0.9 36.7
S-E Banken A SE Financial 1.7 35.0
Handelsbanken A SE Financial 8.4 47.1

Skanska B SE Construction 4.3 38.5
Lm. Skaugen NO Shipping -17.9 69.7

SKFB SE Engineering 7.4 30.4

Sophus Berendsen B DK Service 21.7 16.5

StoraA SE Forestry 2.1 31.3

Topdanmark DK Insurance -9.5 24.2

Trelleborg B SE Metal and mining -6.7 44.2

Unidanmark A DK Financial -1.1 27.1

UPM Kymmene FI Forestry 15.5 35.1

Volvo B SE Automotive 18.3 30.3
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Table 2. Results from tests of autocorrelation

This table reports results from tests performed to specify the conditional mean

equation. Column two gives p-values for Richardson and Smith's [1994] test for

autocorrelation, (4.11), calculated on demeaned returns. Column three reports p

values for the same statistic, but calculated on estimated residuals from an AR(l)

model. Both statistics are calculated on eight autocorrelations, Le. in formula

(4.11) k is equal to eight.

Security

ABBA

Aker B

Astra A

Atlas Copco A

Bergesen d.y. B

Carlsberg B

Cultor 2

Danisco

Den Danske Bank

D/S 1912 B

D/S Svendborg B

EAC

Electrolux B

Enso R

FLS Industries B

Norsk Hydro

Investor B

ISS B

Jyske Bank

Kvaerner B

RS(8) on ift

(p-value)

0.107

0.305

0.501

0.157

0.462

0.137

0.610

0.005

0.012

0.417

0.752

0.075

0.003

0.807

0.031

0.354

0.442

0.039

0.018

0.250

RS(8) on et
from AR(l) (p-vaIue)

0.320

0.419

0.642

0.797

0.803

0.739
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Table 2. Continued

Security

LM Ericsson B

ModoB

Nokia

Novo Nordisk B

Norske Skog B

Orkla A

Outokompu A

Pohjola B

Saga B

Sandvik B

SAS Danmark

SCAB

Skandia

S-E Banken A

Handelsbanken A

Skanska B

Lm. Skaugen

SKFB

Sophus Berendsen B

Stora A

Topdanmark

Trelleborg B

Unidanmark A

UPM Kymmene

Volvo B

RS(8) on Tt

(p-value)

0.609

0.862

0.333

0.005

0.870

0.455

0.981

0.345

0.677

0.146

0.062

0.519

0.214

0.827

0.361

0.434

0.041

0.031

0.047

0.047

0.431

0.457

0.001

0.688

0.206

RS(8) on et
from AR(l) (p-value)

0.674

0.365

0.707

0.826

0.941

0.607
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Table 3. Results from tests of ARCH(q)

This table reports results from tests performed to specify the conditional vari

ance equation. Column two reports p-values for Wooldridge's [1990] test for no

ARCH(8), (4.13). Column three gives p-values for Engle's [1982] test of no ARCH,

calculated on eight squared residuals. Column four reports the coefficient of ex

cess kurtosis calculated on estimated residuals. Column five reports first-order

autocorrelation in squared estimated residuals.

Security

ABBA

Aker B

Astra A

Atlas Copco A

Bergesen d.y. B

Carlsberg B

Cultor 2

Danisco

Den Danske Bank

D/S 1912 B

D/S Svendborg B

EAC

Electrolux B

Enso R

FLS Industries B

Norsk Hydro

Investor B

ISS B

Jyske Bank

Kvaerner B

no ARCH(8)

(p-value)

0.001

0.057

0.049

0.452

0.001

0.237

0.502

0.002

0.000

0.012

0.160

0.000

0.000

0.306

0.011

0.002

0.024

0.202

0.488

0.031

non-robust

0.000

0.000

0.001

0.000

0.000

0.000

0.059

0.000

0.000

0.000

0.000

0.000

0.000

0.070

0.054

0.000

0.000

0.000

0.090

0.000

5.2

6.9

1.8

4.7

3.7

3.2

33.7

4.7

3.5

3.0

4.4

7.6

2.8

4.4

7.2

6.6

14.7

51.8

50.1

7.2

0.089

0.136

0.122

0.209

0.101

0.150

0.001

0.162

0.108

0.158

0.125

0.278

0.202

0.048

0.087

0.200

0.188

0.028

0.102

0.116
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Table 3. Continued

no ARCH(8)

Security (p-value) non-robust K(?) -(-2 -2 )P Ct ,Ct-l

LM Ericsson B 0.014 0.000 3.7 0.149

ModoB 0.040 0.000 13.4 0.281

Nokia 0.025 0.000 7.5 0.100

Novo Nordisk B 0.026 0.001 3.7 0.110

Norske Skog B 0.060 0.000 10.3 0.124

Orkla A 0.039 0.000 8.5 0.115

Outokompu A 0.455 0.000 38.9 0.150

Pohjola B 0.002 0.000 7.1 0.156

Saga B 0.073 0.000 9.4 0.153

Sandvik B 0.003 0.000 3.0 0.190

SAS Danmark 0.034 0.000 8.0 0.172

SCAB 0.034 0.000 7.8 0.182

Skandia 0.031 0.000 5.7 0.353

S-E Banken A 0.004 0.000 18.9 0.347

Handelsbanken A 0.000 0.000 12.4 0.365

Skanska B 0.006 0.000 14.1 0.081

Lm. Skaugen 0.000 0.000 8.4 0.186

SKF B 0.002 0.000 2.5 0.166

Sophus Berendsen B 0.072 0.094 4.1 0.088

Stora A 0.010 0.000 6.0 0.193

Topdanmark 0.156 0.000 9.2 0.294

Trelleborg B 0.010 0.000 5.1 0.185

Unidanmark A 0.000 0.000 2.9 0.132

UPM Kymmene 0.000 0.000 2.3 0.143

Volvo B 0.000 0.000 5.4 0.202
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Table 4. Results from tests of no asymmetric GARCH

This table reports results from tests performed to specify the conditional vari-

ance equation. In column two, p-values for the robust test of GARCH(l,l) against

GQARCH(l,l), are reported. Column three gives the p-values for the non-robust

version of the same test, as formulated in Hagerud [1997]. In column four, p-values

for the robust test of GARCH(l,l) against LSTGARCH(l,l), are presented. Col-

umn five reports the p-values for the non-robust version of the same test, as

formulated in Hagerud [1997].

Security LM1 non-robust LM2 non-robust

ABBA 0.001 0.009 0.199 0.129

Astra A 0.068 0.053 0.061 0.170

Bergesen d.y. B 0.144 0.419 0.558 0.397

Danisco 0.235 0.018 0.875 0.385

Den Danske Bank 0.447 0.373 0.505 0.933

DIS 1912 B 0.101 0.120 0.109 0.274

EAC 0.043 0.280 0.029 0.313

Electrolux B 0.202 0.232 0.123 0.197

FLS Industries B 0.638 0.757 0.863 0.882

Norsk Hydro 0.215 0.414 0.412 0.241

Investor B 0.063 0.740 0.188 0.753

Kvaerner B 0.572 0.785 0.780 0.631

LM Ericsson B 0.069 0.004 0.748 0.377

ModoB 0.014 0.066 0.092 0.005

Nokia 0.986 0.495 0.307 0.275

Novo Nordisk B 0.960 0.937 0.608 0.795

Orkla A 0.000 0.010 0.784 0.181

Pohjola B 0.450 0.100 0.604 0.176

Sandvik B 0.545 0.887 0.251 0.207

SAS Danmark 0.907 0.904 0.962 0.955

SCAB 0.343 0.131 0.044 0.046

Skandia 0.001 0.000 0.017 0.000

S-E Banken A 0.884 0.323 0.779 0.602

Handelsbanken A 0.032 0.002 0.140 0.033

Skanska B 0.054 0.109 0.213 0.051

Lm. Skaugen 0.046 0.495 0.779 0.552

SKFB 0.040 0.163 0.706 0.400

Stora A 0.475 0.436 0.058 0.115

Trelleborg B 0.001 0.000 0.074 0.005

Unidanmark A 0.030 0.029 0.087 0.024

UPM Kymmene 0.852 0.835 0.425 0.681

Volvo B 0.042 0.022 0.351 0.425
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Table 5. Asymmetric models ranked according to value on the
likelihood function

Results from quasi-maximum likelihood estimation of the EGARCH, G,JR,

TGARCH, A-PARCH, GQARCH, VS-ARCH, and LSTGARCH models. The ta

b l ~ reports the three models that gave the highest value on the likelihood function,

for each security. The column'lahelled '# l' reports the highest value, the follow

ing column the second highest, and the last column the third highest value on

the likelihood function. In those cases where the GJR model gave the same value

as the LSTGARCH model, the GJR model is ranked before the LSTGARCH

model.

Security #1 #2 #3
ABBA GQARCH LSTGARCH A-PARCH

EAC A-PARCH TGARCH EGARCH

ModoB LSTGARCH A-PARCH GJR

Orkla A TGARCH EGARCH GJR

SCAB LSTGARCH GJR VS-ARCH

Skandia GJR LSTGARCH TGARCH

Handelsbanken A A-PARCH GJR LSTGARCH

I.m. Skaugen A-PARCH TGARCH EGARCH

SKFB A-PARCH TGARCH EGARCH

Thelleborg B A-PARCH TGARCH EGARCH

Unidanmark A GJR VS-ARCH TGARCH

Volvo B GQARCH A-PARCH VS-ARCH
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Table 6. Asymmetric models ranked according to value on BIC

Results from quasi-maximum likelihood estimation of the EGARCH, GJR,

TGARCH, A-PARCH, GQARCH, VS-ARCH, and LSTGARCH models. The ta

ble reports the three models that gave the lowest value on Schwarz [1978] infor

mation criteria, BIC, for each security. The column labelled '# l' reports the

lowest value, the following column the second lowest, and the last column the

third lowest value on BIC.

Security #1 #2 #3
ABBA GQARCH GJR LSTGARCH

EAC TGARCH EGARCH A-PARCH

ModoB GJR LSTGARCH A-PARCH

Orkla A TGARCH EGARCH GJR

SCAB GJR LSTGARCH VS-ARCH

Skandia GJR TGARCH GQARCH

Handelsbanken A GJR GQARCH A-PARCH

I.m. Skaugen TGARCH EGARCH A-PARCH

SKFB TGARCH EGARCH GJR

Trelleborg B TGARCH EGARCH GJR

Unidanmark A GJR VS-ARCH TGARCH

Volvo B GQARCH VS-ARCH GJR
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Table 7. Test for higher order asymmetric effects

Results from the robust sign bias test LM3' The null hypothesis is the estimated

asymmetric model, and the alternative is the asymmetric model augmented by

the term T . St-l' The table reports p-values.

Model

EG- TG- A- GQ- VS- LSTG-
Security ARCH GJR ARCH PARCH ARCH ARCH ARCH

ABBA 0.0513 0.2988 0.1291 0.2943 0.7503 0.3796 0.2942

EAC 0.8562 0.6597 0.5102 0.3837 0.5978 0.7042 0.4380
ModoB 0.7269 0.0935 0.1814 0.4840 0.3291 0.0789 0.4255

Orkla A 0.3378 0.0658 0.3928 Failure 0.3872 0.4671 0.0658

SCAB Failure 0.9657 Failure Failure 0.0097 0.7256 0.9570

Skandia 0.0666 0.4562 0.2707 Failure 0.9582 0.5841 0.4560
Hand. A 0.0497 0.8977 0.2342 0.9787 0.1276 0.4146 0.8778
Lm. Ska. 0.6711 0.9206 0.6615 0.6001 0.9523 0.9090 0.9510

SKF B 0.9324 0.9389 0.8305 0.8095 0.5781 0.4076 0.9897
Trell. B 0.6900 0.8063 0.5120 0.6967 0.3664 0.8149 0.7987
Unid. A Failure 0.2440 0.6663 Failure 0.2884 0.2556 Failure

Volvo B 0.3470 0.2796 0.3299 0.2968 0.9784 0.5343 0.2793

Table 8. Skewness for the series of normalized residuals

The table reports the estimated standardized third moment (skewness) for the

series of normalized residuals, ?t/ht . The critical value on five percent significance

level, for the test of zero skewness against non-zero skewness is approximately,

±O.14. For underlined figures, the null of zero skewness is rejected on five percent

significance level.

Model

EG- TG- A- GQ- VS- LSTG-

Security ARCH GJR ARCH PARCH ARCH ARCH A ~ C H

ABBA -0.1233 -0.0698 -0.1202 -0.0699 -0.0649 -0.0914 -0.0698

EAC -0.6039 -0.7254 -0.5921 -0.6013 -0.7070 -0.7393 -0.7497

Modo B 0.1531 0.2104 0.1482 0.2142 0.1669 0.1670 0.2206

Orkla A -0.3914 -0.4040 -0.3807 Failure -0.4184 -0.4806 -0.4040

SCAB Failure 0.0688 Failure Failure 0.0420 0.1825 0.0685
Skandia 0.0770 0.0462 0.0776 Failure 0.0827 0.0625 0.0462
Hand. A 0.0195 0.0794 0.0109 0.0875 0.0949 0.0605 0.0794

Lm. Ska. -0.8084 -0.7348 -0.8025 -0.7981 -0.7495 -0.5892 -0.7348

SKFB 0.0377 0.0285 0.0293 0.0251 0.0364 0.0370 0.0376
Trell. B · -0.0077 -0.0425 0.0014 0.0023 -0.0408 -0.0613 -0.0424

Unid. A Failure -0.0291 -0.0660 Failure -0.1297 0.0576 Failure

Volvo B 0.2656 0.2819 0.2656 0.2834 0.2702 0.2693 0.2596
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Table 9. Excess kurtosis for the series of normalized residuals

The table reports the estimated standardized fourth moment minus three (co-

efficient of excess kurtosis), for the series of normalized residuals, €t/ht. The

critical value on five percent significance level, for the test of zero excess kurtosis

against non-zero excess kurtosis is approximately, ±O.27. The null can therefore

be rejected for all series, and for all models.

Model

EG- TG- A- GQ- VS- LSTG-
Security ARCH GJR ARCH PARCH ARCH ARCH ARCH

ABBA 2.5803 2.3695 2.6115 2.3692 2.3737 2.5291 2.3693

EAC 7.3740 9.4624 7.0605 7.2255 9.3352 9.7064 9.7532

ModoB 2.3141 2.0073 2.3467 1.9888 2.4548 2.4052 1.7063

Orkla A 5.2144 5.4453 5.2131 Failure 5.6993 6.2284 5.4453

SCAB Failure 1.7293 Failure Failure 2.0850 2.2559 1.7287

Skandia 1.5634 1.6442 1.5368 Failure 1.4757 1.7601 1.6442

Hand. A 3.0726 3.1501 3.0572 3.1512 3.0998 3.3614 3.1501

I.m. Ska. 7.8845 7.3694 7.8293 7.7823 7.4495 6.4197 7.3693

SKF B 0.7471 0.7681 0.7761 0.7909 0.7752 0.7527 0.7460

Trell. B 1.4918 1 ~ 6 2 0 9 1.4497 1.4483 1.6812 1.8034 1.6202
Unid. A Failure 1.6002 1.9712 Failure 2.4035 1.6721 Failure
Volvo B 1.6459 1.5086 1.6408 1.5365 1.5083 1.4707 1.5087





5
Discrete Time Hedging of OTC
Options in a GARCH Environment

5.1 Introduction

It is well known that the price of an option depends on the expected volatil
ity of the underlying asset during the life of the option. For participants

in the option markets, it is therefore essential to have reliable volatility
predictions, .and a great deal of effort is put into forecasting. Many empiri

cal investigations have shown that the variance of retur;ns can be m O c l ~ l e d

with GARCH processes.! Furthermore, volatility forecasts performed with
GARCH have proven to be superior to other forecasting methods in a num-

1 A introduction to the GARCH literature and a summary of empirical investigations

can be found in Bollerslev, Chou and Kroner [1992].
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ber of studies.2 GARCH models are therefore becoming popular among
practitioners in the option markets.

When practitioners calculate prices of European options this, they of
ten use formulas where the variance is assumed to be constant during the

life of the option, e.g. the Black and Scholes [1973] formula. This practice
is followed even though the agents believe that the return process is het
eroskedastic. This is primarily done because of calculational convenience.
The practitioners know that they are using the wrong model, but do so
because they believe that the Black and Scholes formula gives them a good

approximation to the option value calculated under an assumption of non
constant volatility.

This paper examines the effect of using the Black and Scholes formula for
valuing options when the volatility plugged into the formula is forecasted

with a GARCH(l,1) model and when the variance of the asset return in
fact follows a GARCH process. It is assumed that there do not exist any
other options with the same underlying security, or any other assets cor
related with the volatility of the underlying security. This implies that it

is impossible to vega-hedge the option, and that the risk-neutral valuation
technique of Harrison and Kreps [1979] cannot be used. The problem con
sidered can therefore be compared to the situation a financial intermediary

faces when it has written an OTC option on a company's stock for which
no exchange traded options exist, and when it wishes to keep the option po
sition unexposed to any stock price movements. The intermediary is forced
to continuously hedge its position and the only security it that can use for
this purpose is the underlying security.3

The Black and Scholes formula is derived under the assumption that
securities prices move continuously in time, and that hedging can be per
formed at e ~ c h instant. The GARCH model, however, is defined--in discrete
time. The investigation perform here can therefore be regarded as a study

2The effectiveness of volatility forecasts performed with GARCH models has been

tested before by e.g. Engle, Hong, Kane and Noh [1993], Engle, Kane and Noh [1993],

and Noh, Engle and Kane [1994]. Engle, Hong, Kane and Noh [1993] compared the

profitability of using GARCH(I,I) forecasts relative to some other forecasting methods.

They find the GARCH(I,I) forecasts were significantly superior for valuing one-day

options on the NYSE index during the period 1962 to1989. Engle, Kane and Noh [1993]

perform a similar study, with the difference that the options priced are allowed to have

longer maturities than one day. In the test, NYSE-index data from 1968 to 1991 is

used. They conclude that pricing of NYSE index options of up to 90 days maturity is

more accurate when a GARCH model is used. Noh, Engle and Kane [1994] report similar

results when a GARCH forecast is compared to a forecast made from implied volatilities.

The data used is S&P 500 index from 1986 to 1991. The evidence in favour of GARCH,

however, is not unanimous. Heynen and Kat [1994] show that for a number of stock index

series, a stochastic volatility model outperforms two GARCH specifications in volatility

prediction. The period investigated is 1980 to 1992. A survey of the stochastic volatility

class of models is found in Ghysels, Harvey, and Renault [1996].

3The interest rate is assumed to be constant, Le. no interest risk is considered.
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on how well a continuous time pricing formula works in a discrete time envi
ronment. This problem has previously been investigated by e.g. Bossaerts
and Hillion [1995]. However, their approach is quite different to the one
employed here.

This paper does not focus on the issue of the relative effectiveness of
GARCH volatility predictions compared to other forecasting methods. In
stead, the investigation is on how well the combination of the Black and
Scholes formula and GARCH volatility forecasts performs compared to
using the Black and Scholes formula when the volatility is constant. A sim
ulation procedure is followed where the variance process, and therefore also
the return process is created with a random number generator. The data is
generated under the assumption that the variance follows a GARCH(1,1)
process. To test the effectiveness of the combination of the Black and Sc
holes formula and GARCH volatility forecasts, the return on a complete
option writing strategy is calculated, complete in the sense that both the
initial pricing of the option and the delta-hedging strategy until maturity
is included. The delta-hedging is performed on equally spaced time inter
vals, during the entire life of the option. Deltas are calculated with the

Black and Scholes formula using a GARCH volatility forecast. Every day a
new volatility forecast is made. Given this volatility forecast, a new delta
is calculated and a new delta-hedging decision is made. Transaction costs
are assumed to be zero. The simulation is repeated many times to give an
estimate of expected return from the tested strategy.

The simulations show that the variance of profits in the heteroskedastic
environment is larger than when the volatility is constant. The dispersion
increases with the maturity of the option. The average profit is almost the
same in both the homo- and heteroskedastic case. The effectiveness of the
hedging is largely affected by, (1) the level of kurtosis in the return process,
and (2) the first-order autocorrelation in centered and squared returns.

The GARCH(1,1) model is presented in Section 5.2 which also describes
how volatility forecasts are performed. Section 5.3 discusses the problems
concerning the pricing of options in a discrete time heteroskedastic world.
Hedging techniques in discrete time under non-constant volatility are de
scribed in Section 5.4. In Section 5.5 the simulation procedure is presented.
The results are given in Section 5.6 and conclusions in Section 5.7.

5.2 The GARCH(l,l)-t Model and Volatility
Forecasting

The ARCH family of models was first introduced by Engle [ 1 9 8 ~ ] and fur
ther developed into Generalized ARCH, GARCH, by Bollerslev [1986]. As
mentioned by Bollerslev, Chou and Kroner [1992], one of the most com
monly used GARCH models is the GARCH(1,1) model. In the GARCH(1,1)
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model the conditional variance of asset return at time t, ht , obeys the

process

ht =, + aC~_1 + f3h t - 1 , (5.1)

where ct is the error term in the return process that will be assumed to be4

rt = 'P + Ct·

The error term is assumed to have the form

(5.2)

where Zt is i.i.d. with expected value zero and variance, J.L2' equal to unity.
Most often in the literature Zt is assumed to be normally distributed.

For the variance process to be stationary it is required that a + {3 <
1. Furthermore, it is required that, > 0, a > °and (3 ~ 0, for the
variance process to be positive and the GARCH(I,I) process to be de

fined. 5 Terasvirta [1996] shows that for any Zt rv i.i.d.(O, J.L2) for which

{t4 == E [zt] < 00 and 'Y2 == E [(,8 + azl)2] < 1, the kurtosis of Et is given

by

(5.3)
1-,~

"'e = "'z-I--'-'2
where "'z is the kurtosis of the process Zt, and '1 == E [(f3 + azt)]. The
autocorrelation function of squared Ct for any Zt rvi.i.d.(O, J.L2) for which

{t4 = E [zt] < ooand 'Y2 = E [(,8+ azl)2] < 1, following Ter~virta
[1996], is equal to

(5.4)p= 1,2, ..(
2 2) J.L2,i-1a (1 - f32 - af3J.L2)

P c c - ---~~----....;...
t, t-p - 1 f32 2 f.l- - afJJ.L2

Below it is assumed that Zt is distributed Student-t, with v degrees of
freedom, denoted Zt rv t(O, 1; v).6 The error term, ct, will therefore be con
ditionally distributed Student-t with expected value zero and variance ht .

The reason for choosing t-distributed innovations, instead of Gaussian, is

4In a number of empirical investigations, the return process is estimated as being

autoregressive. For example Noh, Engle, Kane [1994] specify the return process as being

AR(l). Since an autoregressive return process further complicates option valuation, such

return processes will not be considered here. Furthermore, no consideration is given to a

conditional mean specification where the conditional variance enters as an explanatory

variable.

5For a rigorous description of the GARCH(1,1) process see Nelson [1990a] and

TerAsvirta [1996].

6The GARCH model with conditionally t-distributed errors, denoted the GARCH-t

model, was introduced in Bollerslev [1987].
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that a Student-t distribution is more likely to generate returns that resem
ble empirically observed high-frequency financial time series. Terasvirta
[1996] shows that the GARCH(1,1) model with normal errors is unable to
generate data with the level of kurtosis and pattern of first-order autocor
relation in squared residuals empirically observed.

In this case, when Zt f'J t(O, 1; v)

(5.9)

(5.8)

(5.5)

(5.6)

(5.7)

3(v-2)
/;,% = ""'4 = (v _ 4) v > 4

1'1 = (3 + a

1'2 = (32 + 20.(3 + 0.2Kz .

Formula (5.3) then implies that the kurtosis of Ct is equal to

1-«(3+0.)2
K e = K z 2 ,

1 - f3 - 20.(3 - a2K z

given that v > 4 and 1'2 < 1.
Furthermore, the autocorrelation of { c ~ } when Zt f'J t(O, 1; v) is, accord

ing to formula (5.4)

2 2 (a + (3)P-1 a (1 - (32 - a(3)
p(et,et-p) = 2 p= 1,2, ...

1 - (3 - 2a(3

(5.11)

(5.10)

From equation (5.9) it can be concluded that the autocorrelation function
of squared residuals will be independent of the kurtosis of the LLd. process.

One important characteristic of the GARCH model is that the uncondi
tional variance is constant. In the GARCH(1,1) the unconditional variance,
(J'2, is equal to

(1'2 = l' - .
1-a-(3

Given the distributional assumptions of Zt, the parameters of the model
can be estimated by maximum likelihood. In the case Zt is distributed
Student-t the parameters of the model will be: C{), a, (3, 1', and v. If the model
is to be used for prediction of volatility for asset returns, the estimations
are most often done with daily observations. Engle, Kane and Noh [1993]
show that for the NYSE index, a suitable sample size consists of 1000
observations.

Given estimated parameters a, ~, and 9, the one-day-ahead conditional
variance forecast, ht+1It, is calculated as

- 2 -ht+1lt = 9+ aCt + f3ht ,

and the s-day-ahead forecast is

ht+s1t = 9+ aE [ e ~ + S - l Iht] + ~t+s-llt =

= '9 + (a + 13) ht+S-ll t o
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In option valuation the average variance over a specific time interval is
often of interest. The average predicted variance during the period from

t + 1 until t + 'T is calculated as

-2 1"'-
vt ,,,. = - L ht+ilt '

'T i=l

(5.12)

When this forecast is used in connection with option valuation, it is often

rewritten in standard deviation p.a. using the formula

where 250 represents the number of trading days per year.

Recursive substitution on equation (5.11) gives

ht+slt = 9+(a +~) (9+(a +~) ht+S - 2 It)

9 [~(a+~f] + (a+~r-lht+llt.

From equations (5.14) and (5.10) it can be concluded that

- 9-2ht+sl t ---+ _ = (T as 8 ---+ 00.

l-a-{3

(5.13)

(5.14)

(5.15)

Thus the variance forecast asymptotically approaches the estimated uncon
ditional variance, (72. The predicted variance for a period far ahead of the
current period will therefore be close to the unconditional variance. This is

illustrated in Figure 1. Given equations (5.12) and (5.15), it is clear that
the average volatility for long periods will be close to (72. The length of the

forecast needed for the prediction to be close to the unconditional variance

depends on the size of Z; + ~). If Z; +~) is close to unity, the'variance

process moves slowly towards (72. If Z; +~) is low the variance process

will be close to (72 most of the time. When the true values of a and {3 are

low, the behavior of the process will besimilar to that of a homoskedastic

process.

In some studies (see e.g. Engle and Bollerslev [1986]), (a+{3) has been
estimated to values indistinguishable from unity. This causes the variance

process to be non-stationary.. This observation motivated the integrated
GARCH (IGARCH) model of Engle and Bollerslev [1986]. In the simu

lations below, (a+{3) will in some cases be close to one. Still, problems

concerning non-stationarity in the variance process will not be dealt with.
Furthermore, only processes where the kmtosis of the return process exists

will be studied.
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A number of empirical investigations have found a negative correlation

between the variance and the return on some assets.7 This is one of the

motivations for the exponential GARCH (EGARCH) model proposed by
Nelson [1991]. From the specification of the GARCH(1,1) process (5.1) one
can conclude that the conditional variance is independent of the path of
the stock price. It is only the absolute value of the error term that affects
the variance. The issue of correlation between the volatility and sign of the

return is' therefore not addressed in this study.

5.3 The Pricing of Options in a GARCH(l,l)
Environment

When GARCH(1,1) volatility forecasts are used for options valuation, o.ne

common practice is that the predicted average volatility, calculated with
equation (5.13), is plugged into the Black and Scholes [1973] formula, see
e.g. Engle, Hong, Kane ano. Noh [1993].8 The purpose of this study is

to evaluate how this practice affects the ~ r i c i n g and hedging of options.

From the description in the previous section, it is evident that two of the

,crucial assumptions used in the Black and Scholes derivation are violated

in the GARCH(1,1) world. First, in the GARCH(1,1) model, world time is

discrete. Second, volatility is not constant. In this section, a few comments

will be made regarding these two violations.
In this study it will be assumed that stock prices move at discrete mo

ments in time. 'No assumptions will be made concerning the preferences of

the a g e ~ t s , except that they prefer more to less. If the risk-neutral valuation
techniques of Harrison and Kreps [1978] should be used, it is required that
agents a ~ all·times can hedge themselves perfectly against all risk factors.
In the GARCH(1,1) model, the conditional variance of the stock in the

next perIod is deterministic, as can be seen from equation (5.1). Therefore

the only risk factor to consider is the stock price movement, Le. the delta
of the option. However, since the stock price on the next discrete point in

time can take an uncountable number of values, it is impossible to hedge

the price risk perfectly. This is a general problem in all discrete time mod
els which are not of the binomial type. Thus, even if the variance were

constant, arbitrage arguments alone could not be used to price options.

To price contingent claims in an environment where prices move discretely

and where the stochastic process can give rise to more than the two pos-

7See Nelson [1991] for a short survey.

8 This practice can be motivated in some way by a result presented by Hull and White

[1987]. They show that when the price of an asset and its instantaneous variance follow

two independent geometrical Brownian motions, the price of a European option on the

asset will be· equal to the Black and Scholes price, with the variance set equal to the

average variance during the life of the option.
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sible prices in the next period, behavioral assumptions about the agents
in the economy need to be made. More precisely, the agents attitude to
ward risk needs to be known. This approach is taken by Duan [1995] when
he develops an option pricing model in a discrete time GARCH(I,1) envi
ronment. To obtain an option pricing expression, Duan has to make very
strong assumptions about the utility functions of agents and lor about the
distribution of aggregate consumption in the economy.

Instead of assuming that stock prices move discretely, the discrete events
in the GARCH(1,1) model could be viewed as representing a countable sam
ple from the uncountable event space generated by a continuous stochastic
process. For the sake of argument, assume that this stochastic process is
of conceptually the same form as the GARCH process, such that there is
only one source of risk in the economy and that the non-constant variance
is given by a deterministic function of the past price trajectory. If that
were the case, and hedging could be performed continuously, the model
would be complete, and risk-neutral valuation techniques could be used to
price contingent claims. Generally, however, nothing is known of the form
of the continuous process that, when sampled' once a day, generates data
with GARCH(1,1) characteristics. Moreover, since the focus here is on the
GARCH(1,1) process in discrete time, this insight cannot help to solve the
problem considered in this paper. A topic related to these issues is the es
timation of the instantaneous conditional variance in a diffusion process by
a GARCH model estimation. This problem is thoroughly investigated by
Nelson [1992].

Before ending this section, it might be appropriate to make some mention
of the consequences of letting the length of the time steps in the GARCH
model approach zero. This issue was first considered by Nelson [1990b]. In
his article, Nelson presents tools for investigating the relationship between
stochastic difference equations and Ito processes. Nelson then applies these
techniques to two examples of ARCH models, the GARCH(I,1) model and
the AR(1)-EGARCH model of Nelson [1991]. The continuous time limit
of the GARCH(1,1) model is shown to have a process for the conditional
variance with a stationary distribution that is the inverted gamma.

5.4 Hedging of Options in a GARCH(l,l)
Environment

The previous section discussed pricing of options and it was noted, as done
previously in the literature, that options cannot be priced using risk-neutral
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techniques when heteroskedasticity' is present.9 In this section, a few words

will be said about hedging in the GARCH(1,1) environment.

Hedging an option entails reducing exposure to different risk factors. The

factors typically correspond to different random variables. A hedge portfolio

has zero exposure to some or all of these factors. If the random variables

move continuously, the hedging should ideally be performed continuously.

If the random variables move discretely, hedging should be done at each

time step.

The amount of hedging needed to reduce the risk of each factor can be

expressed using hedge parameters. If the variance of the underlying asset

is assumed to be constant, only one hedge parameter, the option delta,

needs to be considered. The delta used in this context will henceforth be

called the Black and Scholes delta, ~ B S . ~ B S can be calculated as the first

derivative of the Black and Scholes formula with respect to the underlying

security price10

8FBS
~ B S = ----as.

If it is assumed that the volatility may change ~ n c e and then stay at the

new level until the expiration of the option, the Black and Scholes vega can

be used as a hedge parameter

ABs = 8FBS.
. 8v

Further, the Black and Scholes gamma can be written

82FBS
fBS = 8S2 •

When the volatility is stochastic, extended hedge parameters have to be

developed. These can be derived using Taylor series expansion. Following

Engle and Rosenberg [1994], the discrete time delta is then given by

18fj2
~ s v = ~BS + ABs 21) 8S ' (5.16)

where fj denotes the forecasted variance. In the GARCH(1,1) environment,

when the first derivative of variance with respect to price is zero, the sto

chastic volatility delta will, according to equation (5.16), be equal to the

Black and Scholes delta, ~ s v = ~BS • This will also be true for gamma,

i.e. rsv = fBS.

To create a delta-neutral hedge in the GARCH(1,1) environment, the

Black and Scholes delta ~ a n be used. If an agent is short the option, the

9 One can use risk-neutral methods if there exists a traded security that is perfectly

correlated with the volatility, but this is generally not the case.

lONote that in a discrete environment, the hedge parameters will not give a perfect

hedge but rather one which on average reduces risk.
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hedging is done by buying an amount delta of the underlying security.

Since vega and gamma for the underlying security is equal to zero, the
underlying security cannot be used for vega- and gamma-hedging. To hedge
these two factors, other derivative securities with non-zero vega and gamma
are ,needed. In this study, it is assumed that no other derivative securities
exist, and consequently no vega and gamma hedging can be performed.

5.5 Simulation Experiment

As noted in the introduction, the object of this study is to try to eval

uate the effectiveness of using GARCH(1,1) volatility prediction in com
bination with the Black and Scholes formula, when the return process is
heteroskedastic. This is attempted by using a simulation procedure. It will

be assumed that the variance of return follows a GARCH(1,1) process and
that the agents know the true parameters of the process. The simulation
procedure is p"erformed in.the following steps:

1. At time zero, a hypothetical trader writes a European call option.
Different maturities and strike prices are considered. The premium is
deposited at the risk free rate, assumed to be constant and equal to
zero. The option is priced using the Black and Scholes formula. The

volatility is set equal to a forecasted average volatility. The forecast is
performed using a GARCH(1,1) model. The parameters of the model

(5.1) will be

0: 0.0204

{j 0.9700

I 4.31 .10-7

v 5

The level of conditional volatility at date zero is set randomly. This is
done by letting a random number generator create a return series for

250 days, assuming that the return follows the specified heteroskedas
tic process. At the beginning of this return series, the conditional

variance is set to the unconditional variance. The last conditional

variance in the series is the level assumed to prevail when the option
is written.

2. After having written the option, the trader hedges the position by
buying DJ.BS of the underlying security, where the delta is calculated
with the Black and Scholes formula using the forecasted volatility.
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3. Given the conditional variance for the next period, ht+1It , the re
turn for the next period is generated given its distribution, rt+1 rv

t (eP, ht+11 t; 5) .11 cp is chosen to be zero for convenience.

4. From the new stock price calculated in step 3, a new delta is calcu
lated.12 If this delta is different from the previous one, the hedge will
be adjusted by either selling or buying the underlying security.

5. Step 3 and 4 are repeated four times every day, Le. the stock moves
four times per day and hedging is performed each time the stock
price moves. Note that the conditional variance and therefore also
the volatility forecast is constant during each day.

6. When one day has passed the error term, Ct, for that day is calculated.
Given this error term and given the current conditional variance, the
conditional variance for the next day is calculated using equation
(5.1). From this new conditional variance, the stock movements for
the following day can be generated. Furthermore, a new volatility
forecast is calculated.

7. Steps 3 to 6 are repeated until the option expires when the position
is closed.

8. All the cash flows generated in the steps above are summarized and
recorded.

9. The simulation is repeated 1000 times to give an estimate of the
expected value and the variance of the return from the investigated

strategy.

It should be noted that even if the price of the underlying asset does
not change over time, the option price will. It will therefore be necessary to
hedge the position even when the price of the underlying asset is unchanged.

However, this change will usually be minimal.
The parameter values used in the simulation have been obtained from

an estimation on 900 daily returns for the S&P 500 index from Novem
ber 6, 1991 to July 11, 1995.13 In the estimation, the degrees of freedom
were estimated to 4.6, but for simplicity v is set to an integer value. The
parameters give the unconditional variance 4.49 . 10-5 , corresponding to a
standard deviation p.a. equal to 10.6 percent. The kurtosis implied by the

11 Note that in the GARCH(l,l) model the forecasted conditional variance, ht+1 It , is

equal to the true conditional variance, ht+l.

12When the deltas are calculated during the day, the time to expiration is specified

in days and fractions of a day. This proved to be important for obtaining correct deltas

when the time to expiration was short.
131 am deeply indebted to Tobias Ryden and Stefan E. Asbrink for providing us with

the estimated parameters.
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parameters is 10.90, which is calculated using formulas (5.5) and (5.8). Fur
thermore, the first autocorrelation of squared residuals will, according to

formula (5.9), be 0.04. Even though p (E'~, E'~-1) is relatively low, the level
of kurtosis and the level of autocorrelation are similar to values obtained
in empirical investigations, as can be seen in Terlisvirta [1996].

The results obtained in the simulation procedure are compared to re
sults obtained in simulations where the return process is homoskedastic.
These simulations also follow the eight steps specified above, but with con
stant volatility. Returns are generated from a model where the error term

is distributed Student-t with the same degrees of freedom as in the het
eroskedastic case. The variance is held constant and equal to the uncondi
tional variance for the GARCH(l,l) process. When the options are priced
and when the deltas are calculated, the true volatility is used in the Black
and Scholes formula. The level of kurtosis in these returns is equal to that
of Zt, which can be calculated using formula (5.5). Thus, when v is equal
to five, the kurtosis will be equal to nine.

5.6 Results

Simulations with options of six different maturities have been performed:
1M, 2M, 3M, 4M, 5M, and 6M. The results from simulations with at-the
money call options are presented in Table 1.14 In the table, rows labelled
GARCH(l,l) give the results from simulations with heteroskedastic return
processes, and rows labelled Homoskedastic give the results from simula
tions where the variance of returns is constant. The first two lines report
average profits of the hedging procedure as percentage of the initial stock
price. The reported values indicate that the average profit is almost the
same for the homo- and heteroskedastic cases, and close to zero. This agrees

with the finding of Engle and Rosenberg [1994] that ~ s v = ~BS.15

The rows labelled Standard deviation in Table 1 report the dispersion of
profits as percentage of initial stock price. In the constant volatility case,
the standard deviation is at the same level for all maturities, whereas the
standard deviation in the GARCH(l,l) cases increases with the time to
maturity. For the 1M option, the standard deviation is 10 percent higher in

14Since the interest rate is equal to zero, the at-the-money options will also be at-the

money-forward.
15Engle and Rosenberg [1995] examine whether ~ s v = ~BS is also true in practice.

They estimate risk factors using Monte Carlo techniques when the variance is assumed to

follow a GARCH process. Their study is performed on data from four different markets:

S&P 500 index, bond index futures, weighted foreign exchange rate index, and oil futures.
They assume that the error term is distributed student-t, and allows the variance to be
negatively correlated with the level of return. They find that GARCH deltas are similar

to those calculated with the Black and Scholes formula. GARCH gammas are found to

be significantly higher than the Black and Scholes gammas.
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the GARCH(l,l) case than in the constant volatility case. This difference
increases to 32 percent for the 2M option, and further to 95 per-cent for the
6M option.

Note that the figures reported in Table 1 are based on profits in percent
of initial stock prices.. In, might appear to be more natural to report the
figures in percent of the initial option prices. However, since the initial
option prices will vary with each iteration in the GARCH(l,l) case, such
a procedure was found to be less suitable. To give an indication of how
the figures compare to the option prices, the initial option prices in the
homoskedastic case are given on the last row of Table 1. These prices are
also the median prices in the heteroskedastic case. The figures show that the
standard deviations reported are relatively large compared to the option
prices. For example, the· standard deviation of 0.20 percent reported for the
3M option in the homoskedastic case, constitutes 9 percent of the option
price.

Figures 2 to 4 plot the profits from the simulations performed on options
with maturities of one, three and six months, respectively. The graphs
clearly show that the variance of return increases with the maturity of the
option.

Since the returns generated in the constant variance case are distributed
Student-t, the standard deviation would be expected to be larger in these
simulation that in simulations done with normally distributed returns. To
test. this, a simulation was, performed for a three month option with nor
mal errors. The variance of returns was also in this case set equal to the
unconditional variance of the GARCH(l,l) process. The kurtosis of this
return series, like the kurtosis of any normally distributed variable will be
equal to three. The standard deviation in this case was equal to 0.11, which
should be compared to 0.20 for the 3M option in the Student-t case. It can
therefore be concluded that with Student-t distributed errors, the standard
deviation in profits is almost double that in the case with normal errors.

Table 2 contain the results from four simulations done with call options
that are in-the-money and out-of-the-money. The maturity of the options
is three months. The in-the-money options are 10 percent in. the money
and the out-of-the-money options are 10 percent out of the money. The
results have a similar pattern as in the at-the-money case. For the in
the-money options, the standard deviation is 100 percent higher in the
GARCH(l,l) simulation than in the constant volatility simulation. The
difference for the out-of-the-money option is 171 percent. The difference
in standard deviation is, therefore larger in these, cases than in the at-the
money case, where the difference is 50 percent for the three month options.
However, it should be noted that the level of standard deviation is lower
when the option is not written at-the-money.

The test of this section, will present results from simulations done for I

testing how the standard deviation of profits is dependent on the parameter
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values in the GARCH(1,1)-t model. The simulations are done with Euro
pean at-the-money call options with an initial maturity of three months.

The first test determines how sensitive the results are to the level of the
parameter ,. Table 3 contains these results. The first two lines simply re
state the results given in Table 1, whereas the last two lines give the results
from two simulations done where, is twice as high as before. Since a and
{3 are unchanged, the kurtosis and the autocorrelation in squared residuals
will be unchanged. However, the increase in , will double the unconditional
variance. As expected, the increase in the unconditional variance increases
the standard deviation both in the stochastic case and in the constant
volatility case. However, the relative difference is almost constant, at 50
percent when, is equal to 4.31 · 10-07 , and at 53 percent when , is equal
to 8.62 . 10-07• This finding is of particular interest to agents in markets
where volatility is much higher than for the S&P 500 index.

Second, tests how sensitive the results are to the level of kurtosis in the
return process are performed. The results from these simulations are shown
in Table 4. Row one restates the results from Table 1. The following two
rows show the results when the level of kurtosis is lowered by increasing the
degree of freedom in the Student-t distribution. In the last row, the degree
of freedom is equal to infinity, which implies that the innovations are in fact
normally distributed. Since a and {3 are unchanged, the autocorrelation in
squared residuals will also be unchanged. As can be seen in the last column,
the standard deviation in profits decreases as the level of kurtosis falls.

Third, it is tested how the level of first-order autocorrelation in squared
residuals influences the distribution of profits. This has been done in a
number of simulations where the parameter values have been changed such
that the first-order autocorrelation in squared residuals has increased, but
leaving the unconditional variance and k u r t o s i s ~ unchanged. The results
from these simulations are shown in Table 5. The values in the last column
indicate that the dispersion of profits increases when the level of auto
correlation in squared residuals increases, though not monotonically. This
result is of major importance since, ~as noted above, the level of first-order
autocorrelation in the original simulations, 0.04, is relatively low.

Finally, it is investigated how the level of persistence in the conditional
variance, measured by a: + {3, affects the distribution of profits. In the
simulations above, a: + {3 has always been close to 0.99. That will give a
half-life for the conditional variance of approximately 70 trading days. Table
6 shows the results from the original simulation and three other simulations
where the parameters values are changed so that the level of persistence has
decreased. The half-life on the last three rows are approximately 15,11, and
10 days, respectively. As can be seen in columns six and seven, the level of
kurtosis and autocorrelation in squared residuals are kept almost constant.
The results presented in T ~ b l e 6. indicate that the level of persistence in
the conditional variance have no major effect on the standard deviation in
profits.
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5.7 Conclusion

The objective of this simulation study has been to investigate if it is rec
ommendable to follow the practice of calculating option prices and deltas
with the Black and Scholes formula when the return process follows a
GARCH(l,l) process. In Section 5.6 it was shown that the variance of
return was higher when the return followed a GARCH(l,l) process rather
than a constant volatility process. The average profit, however, was almost
the same in both cases. The results for in-the-money options and out-of
the-money options pointed in the same direction. Furthermore, it is shown
that the dispersion of profits increases with the level of kurtosis and the
level of first-order autocorrelation in squared residuals.

The findings mentioned above imply that an agent who is not risk-neutral
and believes that the return follows a GARCH(l,l) process must compen
sate by charging a higher premium when writing options. Two good indi
cators of the size the risk in the hedging are, (i) the kurtosis and (ii) the
level of first-order autocorrelation in squared residuals.
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Table 1. Results for at-the-money call options

The table shows results from simulations done with options that initially were

at-the-money. 1000 simulations are performed for each option investigated. The

rows labeled Mean return report average profit as percentage of the initial stock

price, and the rows labeled Standard deviation report the dispersion of profits as

percentage of initial stock price. The rows labeled GARCH(l,l) give the results

from simulations with heteroskedastic return processes, with parameter values

0: = 0.0204, (3 = 0.970, 'Y = 4.31 . 10-7 and v = 5. The rows labeled Ho

moskedastic report the results from simulations with a constant volatility return

process. The last row reports initial option prices calculated with the Black and

Scholes formula in the homoskedastic case. The number of trading days for the

different maturities is: 21, 42, 63, 83, 104, and 125.

Variance Maturity of option
Procees 1M 2M 3M 4M 5M 6M

Mean return GARCH(l,l) 0.01 0.01 0.03 0.02 0.02 0.01
Homoskedastic 0.01 0.00 0.01 0.00 0.00 0.01

Standard GARCH(l,l) 0.21 0.25 0.30 0.32 0.35 0.39
deviation Homoskedastic 0.19 0.19 0.20 0.22 0.21 0.20

Initial opt. price Homoskedastic 1.22 1.73 2.12 2.43 2.73 2.99

Table 2. Results for in-the-money and out-of-the-money call
options

The table shows results from simulations done with options that initially were

10 percent in-the-money, and 10 percent out-of-the-money. 1000 simulations are

performed for each option investigated. The rows labeled Mean return report

average profit as percentage of the initial stock price, and the rows labeled Stan

dard deviation report the dispersion of profits as percentage of the initial stock

price. The rows labeled GARCH(l,l) give the results from simulations with het

eroskedastic return processes, with parameter values 0: = 0.0204, /3 = 0.970,
'Y = 4.31 . 10-7 and v = 5. The rows labeled Homoskedastic report the results

from simulations with a constant volatility return process. The maturity of the

options is three months, which corresponds to 63 trading days.

Variance Procees

Mean return GARCH(l,l)
Homoskedastic

Standard deviation GARCH(l,l)
Homoskedastic

In-the-money

-0.01
0.00

0.08
0.04

Out-of-the-money

0.01
0.01

0.12

0.07
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Table 3. Response to a higher 1

The table shows results from simulations done with options that initially were

at-the-money. 1000 simulations are performed for each option investigated. The

rows labeled GARCH(l,l) report the results from simulations with heteroskedas

tic return processes, and the rows labeled Homoskedastic report the results from

simulations with a constant volatility return process. 0'2 is calculated with for

mula (5.10). The standard deviation figures represent the dispersion of profits as

percentage of the initial stock price. The maturity of the options is three months,

which corresponds to 63 trading days.

Variance Parameter values St.
Process a (3 'Y II q2 dey.

GARCH(l,l) 0.0204 0.970 4.31·10 5 4.49.10-5 0.30
Homoskedastic 5 4.49.10-5 0.20
GARCH(l,l) 0.0204 0.970 8.62.10-7 5 8.98.10-5 0.43
Homoskedastic 5 8.98.10-5 0.28

Table 4. Response to the level of kurtosis

The table shows results from simulations done with options that initially were

at-the-money. 1000 simulations are performed for each option investigated. (j'2 is

calculated with formula (5.10), "'e with formulas (5.5) and (5.8), and p (c:~, C:~-1)

with formula (5.9). The standard deviation figures represent the dispersion of

profits as percentage of the initial stock price. The maturity of the options is

three months, which corresponds to 63 trading days.

Parameter values St.

a (3 'Y II (12 K.e p (e~, e~-l) dey.

0.0204 0.970 4.31· 10 5 4.49 ·10 5 10.9 0.04 0.30
0.0204 0.970 4.31· 10-7 6 4.49.10-5 6.7 0.04 0.27
0.0204 0.970 4.31.10-7

00 4.49.10-5 3.1 0.04 0.19
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Table 5. Response to .the level of first-order autocorrelation in
squared residuals

The table shows results from simulations done with options that initially were

at-the-money. 1000 simulations? are performed for each option investigated. The

rows labeled GARCH{l,l) report the results from s i m u l a t i o n ~ with heteroskedas

tic return processes, and the rows labeled Constant Volatility report the results

from simulations with?homoskedastic return processes. (J'2 is calculated with for

mula (5.10), "'e with formulas (5.5) and (5.8), and p (e~, e~-l) with formula (5.9).

The standard deviation figures represent the dispersion of profits as percentage

of the initial stock price. The maturity of the ,options is three months, which

corresponds to 63 trading days.

Parameter values St.

a f3 '"Y II (7 "'e P (e~, C~-l) dev.

0.0204 0.970 4.31 . 10- 1 5 4.49.10-5 10.9 0.04 0.30
0.0407 0.950 4.16.10-7 6 4.49.10-5 10.9 0.12 0.35
0.0505 0.940 4.26.10-7 7 4.49.10-5 10.9 0.16 0.47
0.0594 0.930 4.75 .10-7 8 4.49.10-5 10.9 0.19 0.43

Table 6. Response to the level of persistence in the conditional
variance

The table shows results from simulations done with options that initially were

at-the-money. 1000 simulations are performed for each option investigated. (J'2 is

calculated with formula (5.10), "'e with formulas (5.5) and (5.8), and p (e~, e~-l)

with formula (5.9). The standard deviation "figures represent the dispersion of

profits as percentage of the initial stock price. The maturity of the options is

three months, which corresponds to 63 trading days.

Parameter values St.

a f3 '"Y II (72
"'e p (c~, C~-l) dev.

0.0204 0.970 4.31 . 10 5 4.49 ·10 5 10.9 0.04 0.30
0.0442 0.910 20.56.10-7 5 4.49. 10-5 10.9 0.06 0.34

0.0503 0.890 26.80.10-7 5 4.49.10-5 10.9 0.07 0.32
0.0531 0.880 29.85.10-7 5 4.49.10-5 10.9 0.07 0.30
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Figure 1. Predicted variance and predicted average variance as a
function of the forecasting horizon

The forecasts are made with a GARCH(l,l) model. Parameter values are

Q = 0.0204, f3 = 0.970 and 'Y = 4.31 . 10-7
. The unconditional variance is

equal to 4.49 . 10-5 , all:d the initial conditional variance is equal to 5.70 . 10-5 .
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Figure 2. Distribution of profits from writing an at-the-money
option with a maturity of one month and delta hedging it until
expiry

The figure shows results from two simulations done with options that ini

tially were at-the-money. 1000 simulations are performed for each option inves

tigated. The curve labeled GARCH(1,1) gives the results from simulations with

heteroskedastic return processes, with parameter values a = 0.0204, {3 = 0.970,

'Y = 4.31 . 10-7 and v = 5. The curve labeled Constant Volatility gives the

results from simulations with homoskedastic return processes. The maturity of

the opti·ons is one month, which corresponds to 21 trading days.
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Figure 3. Distribution of profits from writing an at-the-money

option with a maturity of three months and delta hedging it
until expiry

The figure shows results from two simulations done with options that ini

tially were at-the-money. 1000 simulations are performed for each option inves

tigated. The curve labeled GARCH(l,l) gives the results from simulations with

heteroskedastic return processes, with parameter values a = 0.0204, f3 = 0.970,

'Y = 4.31 . 10-7 and v = 5. The curve labeled Constant Volatility gives the

results from simulations with homoskedastic return processes. The maturity of

the options is three months, which corresponds to 63 trading days.
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Figure 4. Distr:ibution of profits from writing an at-the-money
option with a maturity of six months and delta hedging it until

expiry

The figure shows results from two simulations done with options that ini

tially were at-the-money. 1000 simulations are performed for each option inves

tigated. The curve labeled GARCH(l,l) gives the results from simulations with

heteroskedastic return processes, with parameter values a = 0.0204, (3 = 0.970,

, = 4.31 . 10-7 and v = 5. The curve labeled Constant Volatility gives the

results from simulations with homoskedastic return processes. The maturity of

the options is six months, which corresponds to 125 trading days.
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