
RESEARCH ARTICLE

A new one-parameter lifetime distribution

and its regression model with applications

M. S. EliwaID
1,2*, Emrah Altun3, Ziyad Ali Alhussain1, Essam A. Ahmed4,5, Mukhtar

M. SalahID
1, Hanan Haj Ahmed6, M. El-Morshedy7,8

1 Department of Mathematics, College of Science, Majmaah University, Majmaah, Saudi Arabia,

2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt, 3 Department of

Mathematics, Bartin University, Bartin, Turkey, 4 Department of Administrative and Financial Sciences,

Taibah University, Community College of Khyber, Medina, Saudi Arabia, 5 Department of Mathematics,

Sohag University, Sohag, Egypt, 6 Department of Basic Science, Preparatory Year Deanship, King Faisal

University, Hofuf, Al-Ahsa, Saudi Arabia, 7 Department of Mathematics and Statistics, College of Science and

Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia, 8 Department of

Mathematics and Statistics, Faculty of Science, Mansoura University, Mansoura, Egypt

* mseliwa@mans.edu.eg

Abstract

Lifetime distributions are an important statistical tools to model the different characteristics

of lifetime data sets. The statistical literature contains very sophisticated distributions to ana-

lyze these kind of data sets. However, these distributions have many parameters which

cause a problem in estimation step. To open a new opportunity in modeling these kind of

data sets, we propose a new extension of half-logistic distribution by using the odd Lindley-

G family of distributions. The proposed distribution has only one parameter and simple

mathematical forms. The statistical properties of the proposed distributions, including com-

plete and incomplete moments, quantile function and Rényi entropy, are studied in detail.

The unknown model parameter is estimated by using the different estimation methods,

namely, maximum likelihood, least square, weighted least square and Cramer-von Mises.

The extensive simulation study is given to compare the finite sample performance of param-

eter estimation methods based on the complete and progressive Type-II censored samples.

Additionally, a new log-location-scale regression model is introduced based on a new distri-

bution. The residual analysis of a new regression model is given comprehensively. To con-

vince the readers in favour of the proposed distribution, three real data sets are analyzed

and compared with competitive models. Empirical findings show that the proposed one-

parameter lifetime distribution produces better results than the other extensions of half-

logistic distribution.

1 Introduction

There are many distributions in the statistics literature. However, each data sings its song.

Therefore, finding a suitable probability distribution for each data is an important issue to

catch all parts of the song. In the data analysis process, we encounter two types of data. These
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are discrete and continuous data sets. It is necessary to decide on the appropriate distribution

for each data type. To increase the accuracy in data modeling, the researchers have introduced

flexible distributions for both discrete and continuous cases. However, the aim of the pre-

sented manuscript complies on the continuous probability distributions. [1–17] have intro-

duced flexible continuous distri-butions based on the T-X family of [18]. In these studies,

researchers have generalized the baseline distributions by adding one or more additional

shape parameters to increase the flexibility of the baseline distributions. The generalization of

the exponential, Weibull, generalized half-normal and Lindley distributions have gained atten-

tion by researchers because of their importance in lifetime and reliability modeling. Apart

from these distributions, the Half-logistic (HL) is also an important distribution for reliability

analysis and increased its popularity in recent years. The detail information on HL distribution

can be found in [19]. The probability density function (pdf) of the HL distribution is

gðxÞ ¼
2e� x

ð1þ e� xÞ2
; x > 0: ð1Þ

The corresponding cumulative distribution function (cdf) to (1) is

GðxÞ ¼
1 � e� x

1þ e� x
; x > 0: ð2Þ

The several generalizations of (1) have been introduced such as exponential half-logistic

additive model by [20], extended half-logistic distribution by [21], type-I half-logistic distribu-

tion by [22], exponentiated half-logistic-G by [23], transmuted half-logistic distribution by

[24] and half-logistic inverse Rayleigh by [25].

In this study, we use the odd Lindley-G family of [8] to introduce a new generalization of

HL distribution. The reason for the use of odd Lindley-G (OLi-G) family is that it has only one

additional shape parameter. It means that the proposed distribution will also have only one

parameter. Increasing the parameter space of the probability distributions causes a problem in

the estimation step. The parsimony rule says the best model is a model which requires less

assumptions and parameters. Therefore, it is more preferred to study with less parameters and

less complexity. However, more complex models are still needed to model the different charac-

teristics of the data sets. The cdf and pdf of the OLi-G family are given, respectively, by

Fðx; l; ZÞ ¼ 1 �
lþ �Gðx; ZÞ
ð1þ lÞ�Gðx; ZÞ

e� l
Gðx;ZÞ
�Gðx;ZÞ; x � 0; ð3Þ

f ðx; l; ZÞ ¼
l

2gðx; ZÞ
ð1þ lÞ�Gðx; ZÞ3

e� l
Gðx;ZÞ
�Gðx;ZÞ; x � 0; ð4Þ

where �Gðx; ZÞ ¼ 1 � Gðx; ZÞ represents the reliability function. As seen from (3) and (4), the

OLi-G family has simple forms for its pdf and cdf. This property of the OLi-G family has

attracted us to use it for a new generalization of the HL distribution.

The remaining parts of the presented study are arranged as follows. In Section 2, we define

the OLiHL distribution and studied its important statistical properties. The parameter estima-

tion problem of the OLiHL distribution is discussed in Section 3 with four different estimation

methods. Section 4 deals with a new location-scale regression model based on the OLiHL dis-

tribution for modeling extremely left-skewed lifetime variables with covariates. In Section 5,

the finite sample performance of the different estimation methods is compared with the simu-

lation study. In Section 6, two real data sets are analyzed with the proposed models. The dis-

cussions on the empirical results are given in Section 7. The conclusions are given in Section 8.
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2 The OLiHL distribution

Now, we introduce a new generalization of the HL distribution, OLiHL distribution, by insert-

ing (2) in (3). Let the random variable X follows an OLiHL distribution if its cdf is given by

Fðx; lÞ ¼ 1 �
lex þ lþ 2

2ðlþ 1Þ
e� l2ðex � 1Þ; x > 0; ð5Þ

where λ> 0. The pdf of the OLiHL distribution is

f ðx; lÞ ¼
l

2
ð1þ exÞ

4ð1þ lÞ
e� l2ðex � 1Þþx; x > 0: ð6Þ

The corresponding hazard rate function (hrf) to (6) is

hðx; lÞ ¼
l

2
ð1þ exÞ

2½lð1þ e� xÞ þ 2e� x�
; x > 0: ð7Þ

The possible shapes of the pdf and hrf are displayed in Fig 1 which shows that the OLiHL

distribution could be a proper distribution for right-skewed and unimodal data sets with

increasing hrf shapes.

Following the work of [8], the physical interpretation of the OLiHL distribution can be

given as follows. Let the random variable X represents lifetimes of individuals following the

HL distribution, given in 1. Consider that we are interested to model the odds that an individ-

ual dies before a given time X which is given by F(x)/(1 − F(x)) where F(x) is the cdf of the HL

distribution, given in 2. Let consider that we requires to model the randomness of the odds by

the random variable Y, follows the Lindley distribution. Then, we can write

PrðY < yÞ ¼ FY
FðxÞ

1 � FðxÞ

� �

¼ FY
1 � e� x

2e� x

� �

¼ 1 �
lex þ lþ 2

2ðlþ 1Þ
e� l2ðex � 1Þ

ð8Þ

which is identical to 5.

The statistical properties of the OLiHL distribution such as raw and central moments,

incomplete moments, generating functions can be obtained following the results of [8]. [8]

introduced the general representation of the OLi-G family for all baseline distributions. There-

fore, using the HL distribution as a baseline distribution of the OLi-G family, one can easily

obtain the required expansions for the moments and generating functions of the OLiHL distri-

bution. Since these expansions are accessible in the work of [8], we omit them in this study.

However, the numerical values of the mean, variance, skewness, and kurtosis measures of the

OLiHL distribution are computed and displayed in Fig 2 which shows that the mean and vari-

ance of the OLiHL distribution are decreasing function of the parameter λ. The OLiHL distri-

bution can be left or right-skewed. The distribution is nearly symmetric when the parameter

λffi 0.81. The OLiHL distribution has also playtokurtic and leptokurtic shapes based on its

kurtosis values.

The quantile function (qf) is an important function to generate random variables from a

specific continuous probability distribution. The qf is a solution of F(x) = u equation for x,

PLOS ONE A new one-parameter lifetime distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0246969 February 19, 2021 3 / 19

https://doi.org/10.1371/journal.pone.0246969


then F(u)−1 = x represents the qf which is denoted as Q(u). The qf of the OLiHL distribution is

QðuÞ ¼ ln
� 2

l
1þW� 1 1þ lð Þðu � 1Þe� ð1þlÞ

� �� �
� 1

� �

; ð9Þ

where u 2 (0, 1) and W−1 is the negative branch of the Lambert-W function. The random vari-

ables from OLiHL distribution can be generated by using the qf in (9). To do this, the following

algorithm steps can be implemented.
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Fig 1. The pdf (left) and hrf (right) plots of the OLiHL distribution.

https://doi.org/10.1371/journal.pone.0246969.g001
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1. Set the parameter λ.

2. Generate u� U(0, 1).

3. Using the generated u, calculate

QðuÞ ¼ ln
� 2

l
1þW� 1 1þ lð Þðu � 1Þe� ð1þlÞ

� �� �
� 1

� �

ð10Þ

4. Repeat the steps 2 and 3 N times.

3 Different estimation methods

The parameter estimation problem of the OLiHL distribution is discussed in detail. The four-

parameter estimation methods are used to estimate the unknown parameter of the OLiHL
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Fig 2. The mean, variance, skewness and kurtosis measures of the OLiHL distribution.

https://doi.org/10.1371/journal.pone.0246969.g002
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distribution. The rest of this section is devoted to the mathematical framework of these estima-

tion methods.

3.1 Maximum likelihood estimation

Let X1, X2, . . ., Xn come from the OLiHL distribution unknown parameter λ. The maximum

likelihood estimation (MLE) of λ, say l̂MLE, is obtained by maximizing the following log-likeli-

hood equation

‘ðlÞ ¼
Xn

i¼1

log f ðxi; lÞ

¼ 2n ln l � n lnð4þ 4lÞ þ
Xn

i¼1

lnð1þ exiÞ

�
l

2

Xn

i¼1

ðexi � 1Þ þ
Xn

i¼1

xi:

ð11Þ

Alternatively, the direct maximization of (11) is equal to solve the first derivative of (11) for the

parameter λ for zero, which is given by

nð2þ l̂Þ
l̂ð1þ l̂Þ

�
1

2

Xn

i¼1

ðexi � 1Þ ¼ 0:

Since there is no explicit solution of this equation for λ, one should use iterative methods to

solve it. More information on MLE method can be found in [26, 27].

3.2 Least square and weighted least square estimations

The least-square estimation (LSE) and weighted LSE (WLSE) methods are based on the mini-

mization of the distance between the empirical and theoretical distribution functions. Assume

that x(1), x(2), � � �, x(n) represents the ordered sample of a random sample with known cdf, F(�).

Let F(X(j)) represents the jth order statistics from standard uniform distribution, U(0, 1). It is

well-known that the jth order statistics of U(0, 1) is distributed as Beta(j, n − j − 1) (see [28]).

So, we have

E FðXðjÞÞ
h i

¼
j

nþ 1
; ð12Þ

Var FðXðjÞÞ
h i

¼
jðn � jþ 1Þ

ðnþ 1Þ
2
ðnþ 2Þ

: ð13Þ

The LSE of the parameter of the OLiHL distribution is obtained by minimizing the follow-

ing function.

LSE lð Þ ¼
Xn

j¼1

F XðjÞjl
� �

�
j

nþ 1

� �2

; ð14Þ

where F(X(j)|λ) is the cdf of the OLiHL distribution, given in (5). Substituting F(X(j)|λ) with (5)
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in (14), we have

Xn

j¼1

1 �
lexðjÞ þ lþ 2

2ðlþ 1Þ
e�

l
2
e
xðjÞ � 1ð Þ �

j
nþ 1

� �

: ð15Þ

The WLSE of the parameter of the OLiHL distribution is obtained by minimizing the follow-

ing function.

WLSE lð Þ ¼
Pn

j¼1
wj FðXðjÞjlÞ �

j
nþ1

h i2

: ð16Þ

where wj ¼
1

Var½FðXjÞ�
. Substituting F(X(j)|λ) with (5) in (16), we have

Xn

j¼1

ðnþ 1Þ
2
ðnþ 2Þ

jðn � jþ 1Þ

� 1 �
lexðjÞ þ lþ 2

2ðlþ 1Þ
e�

l
2
e
xðjÞ � 1ð Þ �

j
nþ 1

� �
ð17Þ

3.3 Cramér-von Mises minimum distance estimation

Cramér-von Mises estimation (CVME) method is also based on the minimization of the dis-

tance between the empirical and theoretical distribution functions. The CVME and WLSE use

different weighting functions and the biases CVME is less than those of WLSE. The WLSE of

the parameter λ is obtained by minimizing the below function for the parameter λ.

CVMEðlÞ ¼
1

12n
þ
Xn

j¼1

F xðjÞjl
� �

�
2j � 1

2n

� �2

: ð18Þ

4 The log-OLiHL regression model

The log-location-scale regression models are popular models to analyze the censored response

variable with some covariates. In the last decade, researchers have introduced flexible location-

scale regression models to analyze the different characteristics of the data sets. The important

papers on location-scale can be cited as follows: log-generalized odd log-logistic-Weibull

regression model by [29], log-odd log-logistic Burr XII regression model by [30], log-odd log-

logistic generalized half-normal regression model by [31]. These types of regression models

were introduced based on the Y = log (X) transformation and suitable re-parametrization on

the baseline distribution.

Now, we adopt this approach to the OLiHL distribution. Let the random variable X follows

an OLiHL distribution with the parameter λ. Using the transformation Y = log(X) and adding

location and scale parameters, we have

f ðy; l; m; sÞ ¼
l

2

sð4lþ 4Þ
exp exp

y � m
s

h i� �
þ 1

h i

� exp
y � m
s
þ exp

y � m
s

h i
�
l exp exp

y � m
s

h i� �
� 1

� �

2

2

4

3

5;

ð19Þ

where y 2 <, μ 2 < and σ> 0. The parameters μ and σ are the location and scale parameters of

the LOLiHL distribution. Hereafter, the pdf in Eq (19) is called as log-OLiHL (LOLiHL)
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distribution. The corresponding cdf and survival function (sf) to Eq (19) are given, respec-

tively, by

S yð Þ ¼
lþ l exp exp y� m

s

� �� �
þ 2

2lþ 2

�exp �
l

2
exp exp

y � m
s

h i� �
þ 1

� �� �

:

ð20Þ

The pdf shapes of the LOLiHL distribution are displayed in Fig 3. As seen from these fig-

ures, the LOLiHL distribution has increasing failure rate and can be used to analyze the left-

skewed lifetimes.

Consider the following regression model,

yi ¼ xTi βþ szi; ð21Þ

where the response variable yi has the density given in Eq (19). The covariates are linked to

location of yi with identity link function mi ¼ xTi b where X = (x1, x2, . . ., xN)T is the model

matrix consists of the observations of independent variables and β = (β0, β1, . . ., βk) is the

unknown regression coefficients. Let the random sample y1, y2, . . ., yn follow a LOLiHL distri-

bution and the response variable is defined as yi = min(xi, ci) where ci is the censoring time and

xi is the observed lifetime. Assume that the censoring times and lifetimes are independent.

Let F and C are the sets representing the observed lifetimes and censoring times. The gen-

eral formulation of the log-likelihood function for the model given in (21) is given by

‘ðθÞ ¼
X

i2F

log ½f ðyiÞ� þ
X

i2C

log ½SðyiÞ� ð22Þ

where θ is the unknown parameter vector, log[f(yi)] and log[S(yi)] are given in Eqs (19) and

(20), respectively. Inserting Eqs (19) and (20) in Eq (22), we have following the log-likelihood

function for the LOLiHL regression model

‘ θð Þ ¼ r 1þ ln
l

2

sð4lþ 4Þ

� �� �

þ2
X

i2F

exp
yi � xTi β

s

� �� �

þ
X

i2F

yi � xTi β
s

� �

�
X

i2F

2� 1l exp exp
yi � xTi β

s

� �� �

� 1

� �

þ
X

i2C

ln
lþ lexp exp

yi � xTi β
s

� �� �

þ 2

2lþ 2

0

B
B
@

1

C
C
A

�
X

i2C

l

2
exp exp

yi � xTi β
s

� �� �

þ 1

� �

;

where r is the number of uncensored observations and θ = (λ, β, σ) is the unknown parameter

vector. The unknown parameter vector, θ, is estimated by using the MLE method. The minus

of the log-likelihood function is minimized by optim function of R software. The observed
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information matrix evaluated at θ̂ is used to obtain corresponding standard errors to construct

asymptotic confidence intervals.

4.1 Residual analysis

Residual analysis is an important step of any regression analysis to check the sufficiency of the

fitted model. If the fitted model is accurate for the data used, the residuals have to meet the

−
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Fig 3. The pdf (left) and hrf (right) plots of LOLiHL distribution.

https://doi.org/10.1371/journal.pone.0246969.g003
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distributional assumptions. Here, we used two kinds of residuals: modified deviance and mar-

tingale residuals. The martingale residuals under the LOLiHL regression model are given by

rMi
¼

1þ ln

lþ lexp ðuiÞ þ 2

2lþ 2

�exp �
l

2
exp ðuiÞ þ 1ð Þ

� �

0

B
B
B
B
@

1

C
C
C
C
A
; if i 2 F

ln

lþ lexp ðuiÞ þ 2

2lþ 2

�exp �
l

2
exp ðuiÞ þ 1ð Þ

� �

0

B
B
B
B
@

1

C
C
C
C
A
; if i 2 C

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

where ui ¼ exp ððyi � x>i βÞ=sÞ. The modified deviance residual of LOLiHL model is

rDi ¼
signðrMi

Þf � 2½rMi
þ logð1 � rMi

Þ�g
1= 2

; if i 2 F

signðrMi
Þf � 2rMi

g
1= 2 if i 2 C

8
<

:

where rMi
is the martingale residual.

5 Simulation results

The relative performance of the MLE, LSE, WLSE, and CVME methods are discussed. The

below simulation steps are carried out.

1. Set the simulation replication N = 1000 and the parameter value λ = 0.1

2. Generate random samples from OLiHL with sample sizes n = 20, 25, 30, . . ., 100

3. For each generated sample, obtain the MLE, LSE, WLSE and CVME of the parameter λ, say

l̂ j for j = 1, 2, . . ., 1000.

4. Using the estimated value of λ and true parameter value, calculate the biases and means

square errors (MSEs) for each parameter estimation methods by using the below equations.

Biasl nð Þ ¼
1

N

XN

i¼1

l̂i � l
� �

MSEl nð Þ ¼
1

N

XN

i¼1

ðl̂i � lÞ
2

where i = 1, 2, 3, . . ., N.

The empirical results are graphically summarized in Fig 4. As seen from these results, the

estimated biases and MSEs approach to zero for all parameter estimation methods. There are

no clear differences between the performance of the estimation methods. However, the LSE

method approach to desired values of the biases and MSEs faster than other estimation

methods.
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6 Empirical results

Two data sets are considered to show the flexibility of the OLiHL distribution against the sev-

eral competitive models. We make the computational codes available at https://github.com/

emrahaltun/Computational-codes-of-OLiHL-distribution.git.
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Fig 4. The bias and MSE for λ = 0.1.

https://doi.org/10.1371/journal.pone.0246969.g004
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6.1 Carbon fibers data

The fitting performance of the OLiHL distribution is compared with the below competitive

models.

1. Exponentiated HL (EHL)

FEHLðx; lÞ ¼
1 � e� x

1þ e� x

� �l

; x; l > 0;

2. Generalized HL (GHL)

FGHLðx; lÞ ¼ 1 �
2e� x

1þ e� x

� �l

; x; l > 0;

3. Lindley (Li)

FLiðx; lÞ ¼ 1 � 1þ
lx

1þ l

� �

e� lx; x; l > 0;

4. Inverse Lindley (ILi)

FILiðx; lÞ ¼ 1þ
l

ð1þ lÞx

� �

e� lx; x; l > 0;

5. Transmuted HL (THL)

FTHL x; lð Þ ¼
ðex � 1Þð1þ 2lþ exÞ

ð1þ exÞ2
; x > 0;

jlj < 1;

ð23Þ

6. Exponential (Exp)

FExpðx; lÞ ¼ 1 � e� lx; x > 0;l > 0: ð24Þ

We use the results of the Kolmogorov-Smirnov test (KS) with its p-value, Anderson-Dar-

ling (A?) and Cramér-von Mises (W?) as well as estimated −ℓ to decide the best-fitted model

for the data used. The lowest value of the KS, A? and W? test statistics and the lowest value of

−ℓ show the best-fitted model. The data set contains the breaking stress of carbon fibers. The

number of observations is n = 66 and this data was reported by [32]. Table 1 contains the esti-

mated parameter values of the all fitted model with asymptotic standard errors (SEs) as well as

the goodness of fit statistics. The results in Table 1 reveal that the OLiHL could be chosen as

Table 1. The estimated parameters of the fitted models with goodness-of-fit tests.

Distributions Estimated parameters SEs −ℓ A� W� KS p-value

OLiHL 0.168 0.015 89.925 0.851 0.116 0.110 0.407

EHL 5.067 0.624 93.703 1.534 0.283 0.136 0.172

GHL 0.464 0.057 122.359 1.199 0.223 0.315 <0.001

THL 5.149×10−8 1.046×10−5 147.855 1.086 0.203 0.580 <0.001

Li 0.590 0.053 122.384 1.148 0.214 0.298 <0.001

ILi 2.891 0.296 134.669 4.070 0.721 0.370 <0.001

Exp 0.362 0.045 132.994 1.334 0.246 0.358 <0.001

https://doi.org/10.1371/journal.pone.0246969.t001
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the best model for the data used, since it has the lowest values of the goodness-of-fit statistics.

The asymptotic confidence interval of the parameter λ of the OLiHL distribution is (0.139,

197).

Table 2 shows various estimation methods of the OLiHL parameter for the breaking stress

of carbonfibers. The test statistics value of KS tests of the LSE, WLSE, and CVME methods are

smaller than those of the MLE method for the OLiHL distribution. This result shows the fact

that LSE, WLSE, and CVME methods could be more appropriate estimation methods than

MLE for this data set. As mentioned in the simulation study, the LSE is a more appropriate

method especially for small sample sizes which is consistent with the results obtained in this

application.

Fig 5(top) displays the fitted pdfs of the competitive models on the histogram of the data.

As seen from these figures, the OLiHL distribution is the best model to describe the character-

istics of the modelled data set. Fig 5(bottom) displays the fitted functions of the OLiHL distri-

bution such as fitted pdf, cdf and survival functions with Kaplan-Meier (KM) curve as well as

corresponding probability-probability (PP) plot. These figures also reveal that the OLiHL dis-

tribution provides superior fit to the modelled data set.

Fig 6 displays the PP plots of the OLiHL distribution obtained under the LSE, WLSE and

CVME estimation methods. These estimation methods produce similar results since they are

all based on the minimization of the distance between the empirical and theoretical distribu-

tion functions.

Table 2. The results of the LSE, WLSE and CVME methods for the breaking stress of carbon fibers.

Statistic #Method! LSE WLSE CVME

λ 0.1909 0.1902 0.1911

KS 0.064 0.064 0.063

p-value 0.950 0.952 0.949

https://doi.org/10.1371/journal.pone.0246969.t002
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Fig 5. The fitted pdfs of the competitive models (top panel) and estimated functions of the OLiHL (bottom panel) distribution.

https://doi.org/10.1371/journal.pone.0246969.g005
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Finally, the total test time (TTT) plot, introduced by [33], is displayed in Fig 7 to see the

empirical behavior of the hrf function. The TTT plot shows that the used data has increasing

hrf which means that the OLiHL distribution can be used to model this data.

6.2 HIV+ data

We compare the performance of the LOLiHL regression model with log-exponential (LE) and

log-Burr-Hatke-exponential (LBHE) regression models (see, [34], for details of LBHE and LE

regression models). The modeled data set consists of 100 individuals having HIV+. The

detailed information on the data set can be obtained from Bolstad2 package of R software.

The used data set was modeled by [34]. The depended variable, yi—observed survival time (in

months) with censoring indicator censi (0 = alive, 1 = death), is modeled with two covariates:

the history of drug use, xi1(1 = yes, 0 = no) and the ages of patients, xi2. The following model is

fitted by LOLiHL, LBHE, and LE regression models.

yi ¼ b0 þ b1xi1 þ b2xi2 þ szi:
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Fig 6. The PP plots of OLiHL distribution obtained under LSE, WLSE and CVME methods for the carbon fibers data

set.

https://doi.org/10.1371/journal.pone.0246969.g006
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The above regression model is fitted by MLE and estimated parameter value, standard

errors, the negative value of log-likelihood, and Akaike Information Criteria (AIC) are

reported in Table 3. The AIC statistics is widely used to decide the best model among other

competitive models (see [35, 36]). More information on the AIC statistics can be found in

[37]. Since the LOLiHL regression model has the lowest value of AIC statistic, we conclude

that the LOLiHL regression model produces a better fit than the other two regression model:

LBHE and LE regression models. The regression parameters β0, β1 and β2 are found statisti-

cally significant 1% level. According to the estimated regression parameters, the individuals

having drug use have lower lifetimes than non-drug use individuals. Moreover, when the ages

of individuals increase, the lifetimes decrease.

Fig 8 displays the results of the residual analysis for the LOLiHL regression model. As seen

from Fig 8, there is no observation to be considered as possible outliers which reveals that the

LOLiHL regression model provides an adequate fit to the used data set.
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Fig 7. The TTT plots of the carbon fibers data set.

https://doi.org/10.1371/journal.pone.0246969.g007

Table 3. The estimated parameters of regression models and AIC statistic.

Parameters L-E LBHE LOLiHL

Estimates Sth. Errors p values Estimates Sth. Errors p values Estimates Sth. Errors p values

λ 1.599 13.783 - 1.508 13.659 - 17.490 18.132 -

σ 0.839 0.072 - 0.778 0.067 - 0.991 0.114 -

β0 6.542 7.256 0.367 6.883 7.064 0.330 2.090 0.158 <0.001

β1 -0.091 0.014 <0.001 -0.091 0.014 <0.001 -0.015 0.004 <0.001

β2 -1.049 0.189 <0.001 -1.021 0.193 <0.001 -0.306 0.087 <0.001

−ℓ 128.502 128.059 125.527

AIC 267.005 266.117 261.055

https://doi.org/10.1371/journal.pone.0246969.t003
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7 Discussions

The performance of the OLiHL distribution is compared with one-parameter competitive

models. The OLiHL distribution has achieved to exhibit better modeling ability than Li, ILi,

GHL and EHL distributions. Because the parameters of the Li and ILi distributions treat as

location parameters. The location parameters do not affect the flexibility of the distribution.

The parameter of the EHL distribution controls the shape of the distribution. However, the
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Fig 8. The plot of the modified deviance residual (a) and Q-Q plot of the modified deviance residual.

https://doi.org/10.1371/journal.pone.0246969.g008
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odd Lindley-G family provides more flexibility than the Exponentiated-G family. Therefore,

OLiHL distribution works better than other competitive models.

8 Conclusion and future research

This study proposes a new one-parameter lifetime distribution, called as odd Lindley half-

logistic distribution, shortly OLiHL distribution. The advantage of the OLiHL distribution is

that it has only one parameter and this parameter controls the shape of the distribution which

can be left-skewed, right-skewed, or nearly symmetric. This flexibility of the OLiHL distribu-

tion provides an opportunity to data scientists in modeling the different types of data sets.

Additionally, the LOLiHL regression model will be a useful choice for practitioners studying

in the field of survival analysis. As a future work of this study, we plan to develop the heterosce-

dastic regression model of the OLiHL distribution with its influence diagnostics and residuals

analysis. We hope that the OLiHL distribution will find a wider application area in the near

future.
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