
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2016-08-20

A new open source platform for lowering the barrier for A new open source platform for lowering the barrier for

environmental web app development environmental web app development

Nathan R. Swain

Scott D. Christensen
United States Army Engineer Research and Development Center

Alan D. Snow
United States Army Engineer Research and Development Center

Herman Dolder

Gonzola Espinoza-Dávalos
UNESCO-IHE

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Other Civil and Environmental Engineering Commons

Original Publication Citation Original Publication Citation

Swain, N. R., S. D. Christensen, A. D. Snow, H. Dolder, G. Espinoza-Dávalos, E. Goharian, N. L.

Jones, E. J. Nelson, D. P. Ames and S. J. Burian (2016). "A new open source platform for

lowering the barrier for environmental web app development."Environmental Modelling &

Software 85: 11-26.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation

Swain, Nathan R.; Christensen, Scott D.; Snow, Alan D.; Dolder, Herman; Espinoza-Dávalos, Gonzola;

Goharian, Erfan; Jones, Norman L.; Nelson, E. James; Ames, Daniel P.; and Burian, Steven J., "A new open

source platform for lowering the barrier for environmental web app development" (2016). Faculty

Publications. 4273.

https://scholarsarchive.byu.edu/facpub/4273

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F4273&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/257?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F4273&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/4273?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F4273&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Authors Authors
Nathan R. Swain, Scott D. Christensen, Alan D. Snow, Herman Dolder, Gonzola Espinoza-Dávalos, Erfan
Goharian, Norman L. Jones, E. James Nelson, Daniel P. Ames, and Steven J. Burian

This peer-reviewed article is available at BYU ScholarsArchive: https://scholarsarchive.byu.edu/facpub/4273

https://scholarsarchive.byu.edu/facpub/4273

A new open source platform for lowering the barrier for

environmental web app development

Nathan R. Swain a, *, Scott D. Christensen b, Alan D. Snow c, Herman Dolder a,
Gonzalo Espinoza-D�avalos d, Erfan Goharian e, Norman L. Jones f, E. James Nelson f,
Daniel P. Ames f, Steven J. Burian g

a Aquaveo, LLC, Provo, UT, USA
b Information and Technology Laboratory, United States Army Engineer Research and Development Center, Vicksburg, MS, USA
c Coastal and Hydraulics Laboratory, United States Army Engineer Research and Development Center, Vicksburg, MS, USA
d Department of Integrated Water Systems and Governance, UNESCO-IHE, Delft, The Netherlands
e Department of Land, Air and Water Resource, University of California, Davis, CA, USA
f Civil and Environmental Engineering, Brigham Young University, Provo, UT, USA
g Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, USA

a r t i c l e i n f o

Article history:

Received 12 February 2016

Received in revised form

2 August 2016

Accepted 8 August 2016

Available online 20 August 2016

Keywords:

Tethys platform

Web app development

Environmental

Decision support

Hydrologic modeling

a b s t r a c t

The interactive nature of web applications or “web apps” makes them a well-suited medium for

conveying complex scientific concepts to lay audiences and creating decision support tools that harness

cutting edge modeling techniques and promote the work of environmental scientists and engineers.

Despite this potential, the technical expertise required to develop web apps represents a formidable

barrierdeven for scientists and engineers who are skilled programmers. This paper describes four

hurdles that contribute to this barrier and introduces an approach to overcoming these hurdles. We

present an open source implementation of this approach, a development and hosting environment for

environmental web apps called Tethys Platform. Several case studies are provided that demonstrates

how the approach, as implemented within Tethys Platform, successfully lowers the barrier to web app

development in the environmental domain.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrologic and other types of environmental model simulations

are often used in decision making to estimate and analyze water-

shed responses to specific scenarios (Bhuyan et al., 2003; Goodrich

et al., 2008; Lam et al., 2004; Miller et al., 2007; Santhi et al., 2006).

However, typical stakeholders and decision makers do not have the

technical expertise required to properly configure a simulation for a

particular scenario. The process becomes even more daunting for

physics-based hydrologic models, because of the challenges of data

collection and management of large spatial and temporal datasets.

Environmental web applications or “web apps” can overcome

many of the challenges of using hydrologic simulations in decision-

making (e.g.: Demir and Krajewski, 2013; Goodrich et al., 2008;

Kulkarni et al., 2014; Sun, 2013). In the context of this work we

define an environmental web app as a narrowly-focused, web-

accessed application for performing common tasks related to

environmental modeling. In a web environment, environmental

web apps can be hosted on a remote server that can be accessed

simultaneously by multiple users via a web interface. This elimi-

nates the need for the end user to procure and maintain the high

performance hardware required by the models, deal with issues

related to software installation and operating system in-

compatibilities, or monitor and install software updates. All that is

needed to use the web app is an internet connection and a web

browser.

Despite the potential of web apps for promoting the work of

environmental scientists and engineers, the technical expertise

required to develop them represents a significant barrier for

would-be developers whose primary background is environmental

modeling. The barrier can be characterized by several hurdles a

novice developer would need to overcome to successfully develop

an environmental web app.* Corresponding author.

E-mail address: nswain@aquaveo.com (N.R. Swain).

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

http://dx.doi.org/10.1016/j.envsoft.2016.08.003

1364-8152/© 2016 Elsevier Ltd. All rights reserved.

Environmental Modelling & Software 85 (2016) 11e26

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:nswain@aquaveo.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2016.08.003&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2016.08.003
http://dx.doi.org/10.1016/j.envsoft.2016.08.003
http://dx.doi.org/10.1016/j.envsoft.2016.08.003

One hurdle is the need to discover and select software packages

that address the spatial needs of environmental web apps. These

spatial needs can be addressed using existing free and open source

software (FOSS) for geographic information systems (FOSS4G), but

the abundance of FOSS4G that are available can be overwhelming

to new developers. For example, the Open Geospatial Consortium

(OGC), an organization that creates standards for GIS software,

publishes a database of over 800 registered products (Open

Geospatial Consortium, 2015). Moreover, of the 34 geospatial

software packages promoted by the Open Source Geospatial

Foundation (OSGeo) 14 are for web mapping applications (includes

fully adopted projects and those in “incubation”mode). Swain et al.

(2015) addressed this challenge of navigating the daunting open

source technology space by performing a review of the state-of-

the-art FOSS4G and FOSS for web software packages that have

been used in earth science web apps in the literature.

There are many benefits of using FOSS4G packages to address

the needs of environmental web apps, but using FOSS4G packages

often requires orchestrating the use of more than one package to

achieve the desired functionality. FOSS4G packages tend to bemore

narrowly focused in terms of functionality than their proprietary

counterparts. Whereas proprietary software vendors typically offer

a wide variety of GIS functionality (e.g. web mapping services,

geoprocessing, and spatial storage) in a single software package,

FOSS4G packages tend to focus on a single category of functionality

(Steiniger and Weibel, 2010). Consequently, creating an environ-

mental web app using FOSS4G usually requires the developer to

synthesize several packages and orchestrate their use via code.

Another hurdle that developers encounter is caused by the

multi-lingual nature of web app development. Developing a dy-

namic, interactive web app requires the use of HTML, CSS, and

JavaScript for creating the user interface; a scripting language such

as PHP, Python, or Ruby for handling logic on the server; and

structured query language (SQL) for interacting with a database.

Successful web app development also requires the use of a software

architectural pattern such as model-view-controller (MVC) or some

variant to prevent the source code from becoming unmanageable

(Buschmann et al., 1996; Feng et al., 2011; Gamma et al., 1995;

Jansson and Moon, 2001; Mason et al., 2014; Walker and Chapra,

2014). We classify the above-mentioned challenges into four ma-

jor hurdles: (1) the software hurdle, (2) the orchestration hurdle,

(3) the web development hurdle, and (4) the deployment hurdle

(summarized in Table 1).

Our primary objective in this work was to demonstrate an

approach for lowering the barrier for environmental web app

development so as to make it a more viable medium for environ-

mental scientists and engineers who have some scientific pro-

gramming experience. Our approach lowers the barrier to water

resource web development by addressing each of the four hurdles

by providing: (1) open source software that meets the spatial and

computational capabilities commonly required for environmental

modeling; (2) a programmatic means to use each of the recom-

mended software tools in a single programming language; (3) a

reduction of the web development skills required to develop web

apps; and (4) aweb-safemechanism for deploying the finishedweb

apps that is flexible enough towork on themost common hardware

(i.e. university cloud, commercial cloud, private data centers). As a

means of illustrating this approach, we present an implementation

of this approach, a development and hosting environment for

environmental web apps called Tethys Platform.

The remainder of this paper is organized as follows. A descrip-

tion of the three primary components of Tethys Platform and their

design is presented in Section 2. The capabilities of Tethys Platform

are demonstrated in Section 3 with descriptions of several web

apps that were developed. A detailed discussion on how the barrier

to web app development has been successfully lowered by Tethys

Platform is presented in Section 4.

2. Software description

Tethys Platform is a development and hosting environment for

environmental web apps. Although it aims to lower the barrier to

water resource web app development, web apps developed using

Tethys Platform are created programmaticallydnot using a

graphical drag-and-drop type editor. It is targeted at motivated

scientists and engineers who have some scientific programming

experience, but not necessarily web development experience. We

assume that users of Tethys Platform recognize the value of

disseminating their work through web app medium, but are either

daunted by the prospect of learning web development and/or have

little patience for the sometimes tedious task of developing visually

appealing web user interfaces. We selected Python, an all-purpose

scripting language (Python Software Foundation, 2016) as the

programming language of Tethys Platform, because it is relatively

easy to learn and it has gained popularity among scientists and

engineers in recent years (Millman and Aivazis, 2011; Oliphant,

2007).

Tethys Platform consists of three major components: Tethys

Software Suite, Tethys Software Development Kit (SDK), and Tethys

Portal. Each component was designed to address one ormore of the

four hurdles and effectively lower the barrier for development.

Tethys Software Suite overcomes the software hurdle by providing

suite of 3rd party FOSS and FOSS4G software tools to address many

of the common needs encountered in environmental web app

development. Tethys SDK addresses both the web development

hurdle and the orchestration hurdle by providing a Python MVC

framework for streamlined development of the web apps and Py-

thon APIs that allow programmatic control over each of the soft-

ware suite component. Tethys Portal overcomes the deployment

hurdle, by providing the primary runtime environment for Tethys

Platform web apps. Fig. 1 summarizes the major components of

Tethys Platform, which are discussed in more detail in this section.

2.1. Tethys Software Suite

Tethys Software Suite is the component of Tethys Platform that

provides access to resources and functionality that are commonly

required to develop environmental web apps. The primary moti-

vation of creating the Tethys Software Suite was to address the

software hurdle discussed previously. Some of the more specialized

needs environmental app must provide arise from the spatial data

components of the models that are used in the apps. Distributed

Table 1

Summary of the four challenges identified.

Challenges Description

Software hurdle Selecting from many available FOSS and FOSS4G to provide the spatial and computing capabilities required by environmental web apps.

Orchestration hurdle Synthesize multiple FOSS and FOSS4G to provide a broad range of capabilities.

Web development hurdle Learn multiple languages such as HTML, CSS, JavaScript, Python, PHP, Ruby and code management approach such as model-view-controller.

Deployment hurdle Deploy the completed web apps in a safe and secure way on varying hardware and data center environments.

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e2612

hydrologic models, for example, are parameterized using raster or

vector layers such as land use maps, digital elevation models, and

rainfall intensity grids. Consequently, a majority of the 3rd party

software tools included in the software suite are web GIS products

that can be used to acquire, modify, store, visualize, and analyze

spatial data. We have selected GIS software that implement OGC

standards in an effort to prevent a dependence on any one software

tool. Though only four of the applicable software packages were

included in Tethys Platform at the time of writing this paper,

eventually it may include support for many more of the primary

software that provide OGC standard implementations. Tethys

Software Suite includes other 3rd party software tools to address

computing and visualization needs of environmental web apps.

The software packages that have been included as part of Tethys

Software Suite are the product of open source projects meaning

they are governed by an open source license. For convenience, the

license of each software described in this section is included as part

of its description. Open source licenses not only guarantee free

access to the code, but also include the freedom to freely redis-

tribute the software as part of other software distributions where

the license of the software distribution does not conflict with the

terms of the open source license (Open Source Initiative, 2016). This

feature of FOSS is what allows Tethys Platform the right to redis-

tribute the software in Tethys Software Suite.

The following sections describe the included software in terms

of the functionality they provide to environmental web app de-

velopers. The last section describes the strategy that is taken to

reduce the burden of installing the many requisite software pack-

ages, which is a side effect of providing a suite of software to

address the software hurdle.

2.1.1. Spatial database

We elected to include PostgreSQL (PostgreSQL License) database

with PostGIS (General Public License) spatial database extension

(Holl and Plum, 2009; Nguyen, 2009) to provide spatial data stor-

age capabilities for Tethys web apps, because it had the most fea-

tures of the open source spatial database implementations and it is

the preferred open-source spatial database solution for earth sci-

enceweb applications (Swain et al., 2015). PostGIS adds spatial field

types to the PostgreSQL database including raster, geometry, and

geography as well as database functions for basic analysis of GIS

objects and coordinate transformation. It also provides an extensive

implementation of the applicable OGC standards (Steiniger and

Hunter, 2013).

2.1.2. Geoprocessing

52�North WPS (General Public License) is included in Tethys

software suite as one means for supporting geoprocessing needs in

environmental web app development. 52�NorthWPS is a full open-

source implementation of the OGC-WPS standard ((52 �North,

2014); Schut and Whiteside, 2007) and was selected over other

similar implementations, because it provides the most “out-of-the-

box” geoprocessing capabilities (Swain et al., 2015) including sup-

port for GRASS (GRASS Development Team, 2014), Sextante (Olaya

and Gimenez, 2011), and ArcGIS® Server integration (ESRI, 2004).

52�North WPS also allows developers to publish custom Python

(Python Software Foundation, 2016) and R (Chambers, 2013) scripts

as web services.

PostGIS provides a second option for performing geoprocessing

capabilities on data that are stored in spatially-enabled databases.

PostGIS includes a library of SQL functions that can be used to

perform geoprocessing operations on raster and vector types. It

includes functions for vectorizing rasters, clipping rasters with

vectors, and running stats on rasters by geometric region (Holl and

Plum, 2009).

2.1.3. Map rendering

GeoServer (General Public License) is included for publishing

spatial data as web services. The role of a map server is to render

the spatial data in web friendly formats (e.g.: PNG, KML, GML, and

GeoJSON) and publish the data as standardized web services. Swain

et al. (2015) found that two map servers were preferred in earth

science web applications: MapServer and GeoServer. We chose to

include GeoServer in Tethys, rather than MapServer, because Geo-

Server provides a web administration interface that can be used to

configure and maintain it without needing to sign on to the actual

machine where GeoServer is running, whereas MapServer is

configured via a file on the server. Furthermore, GeoServer provides

Fig. 1. The component diagram for Tethys Platform.

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e26 13

a configuration API that can be used to programmatically manage

the data and resources remotely, a feature of which Tethys SDK

takes advantage. GeoServer is a Java-based implementation of

several OGC web service standards including Web Map Service

(OGC-WMS), Web Feature Services (OGC-WFS), and Web Coverage

Service (OGC-WCS) (Michaelis and Ames, 2008; Iacovella and

Youngblood, 2013). GeoServer also implements the OGC-Styled

Layer Descriptor (OGC-SLD) standard to provide a mechanism for

styling layers. It is capable of serving many common spatial files

types including Shapefiles, ArcGRID, GeoTIFF and it can be used to

publish features stored in PostGIS spatial database tables.

2.1.4. Visualization

Two alternatives for interactively visualizing spatial datasets in

web apps are included: OpenLayers 3 (2-Clause BSD License) and

Google Maps™ (not open source), both of which were equally

preferred for earth science web app development in our review

(Swain et al., 2015). OpenLayers is a JavaScript web-mapping client

library (Steiniger and Hunter, 2013) for rendering interactive maps

that allow users to pan, zoom, and select features on a web page

(Hazzard, 2011). It is capable of displaying 2D maps of OGC web

services and other spatial formats. Google Maps™ provides the

ability to render spatial data in a 2D mapping environment similar

to OpenLayers (Google, 2014), but it only supports displaying data

in KML formats and data that are added via JavaScript API. Both

map libraries provide interactive drawing capabilities to allow

users to draw features on the map as a means of obtaining spatial

input for web apps.

Plotting capabilities are provided by Highcharts, a JavaScript

library created by Highsoft AS, and D3. The plots created using

Highcharts are interactive with hovering effects, pan and zoom

capabilities, and the ability to export the plots as images. Supported

plots include line, spline, area, area spline, column, bar, pie, scatter,

angular gauges, area range, area spline range, column range, bub-

ble, box plot, error bars, funnel, waterfall and polar chart types.

Highcharts is free to use for some applications, but requires the

purchase of a license for government and commercial use (Highsoft

AS, 2014).

D3 is provided as an open-source alternative for plotting and

does not have the same license restrictions (Bostock, 2015). D3 can

be used to create interactive plots similar to those of Highcharts,

but we found that D3 required greater effort to implement plotting

support than Highcharts. Tethys app developers, however, can use

either plotting library interchangeably, because the Tethys SDK

provides the same interface for both Highcharts and D3 plots.

2.1.5. Distributed computing

To facilitate the large-scale computing that is often required by

environmental applications, Tethys Software Suite leverages the

computing management middleware HTCondor (Apache License).

HTCondor is both a resource management and a job scheduling

software. It was developed at the University of Wisconsin-Madison

with the primary goal of scavenging idle computing time on net-

worked desktop workstations (Litzkow et al., 1988). It has matured

to be a flexible and powerful computing resource management

system that canmake use of supercomputers, computing grids, and

cloud computing. HTCondor facilitates High-Throughput

Computing (HTC). HTC differs from High Performance Computing

(HPC) in that its main objective is to provide a large amount of

computing power over a long period of time (days to months)

whereas HPC focuses on providing a large amount of computing

power per second (Livny et al., 1997). HTC systems are very well

suited to performing loosely coupled or uncoupled (embarrassingly

parallel) tasks. These types of computing tasks, which include

stochastic analysis and parameter sweeps, are commonly

encountered in environmental modeling.

2.1.6. Docker installation

The 3rd party software tools included in Tethys Software Suite

each have their own unique installation instructions, which could

make installation of Tethys Platform a burden. To overcome this

hurdle, we developed Docker images that simplify installation.

Docker builds on Linux virtualization capabilities to provide a

lightweight mechanism for packaging and distributing web appli-

cations (Docker Inc., 2015). Specifically, we created Docker images

for PostgreSQL with the PostGIS extension, GeoServer, and

52�North WPS. Docker images are used to create containers, which

are essentially stripped down virtual machines running only the

software included in the image. Unlike virtual machines, the

Docker containers do not partition the resources of your computer

(processors, RAM, storage), but instead run as processes with full

access to the resources of the computer. Although Docker virtual-

ization technology is in its infancy, we selected it because it has the

advantage of providing a platform agnostic approach to installation

of the software suite and reduces the installation procedure to

three simple steps: install Docker, download the Docker images,

and create Docker containers. Docker also containerizes or sand-

boxes each of the software components, which provides an added

measure of security. It has also been adopted by many well-known

companies and organizations as a solution for scalable web

development including eBay, BBC News, The New York Times, Uber,

Orbitz, and PayPal (Docker Inc., 2016). However, users may still

install the 3rd party software tools without Docker and use them

with Tethys Platform.

2.2. Tethys Software Development Kit

Tethys SDK was designed to address web development and

software orchestration hurdles. It includes a framework for devel-

oping web apps, a command line interface (CLI) for simplifying

common management tasks, and application programming in-

terfaces (APIs) for each component of Tethys Software Suite. We

have assumed the primary developers that would use Tethys

Platform would be scientist and engineers with some scientific

scripting experience but with limited experience with web devel-

opment. As such, we selected Python as the language of Tethys SDK,

because of its growing popularity within the scientific and engi-

neering communities (Swain et al., 2015). The major components of

Tethys SDK are discussed in limited detail in the following sections

for brevity. For detailed documentation and explanations of Tethys

SDK visit http://docs.tethysplatform.org.

2.2.1. Software APIs

Tethys SDK addresses the software orchestration hurdle by

providing Python APIs for each of the software in the software suite.

This makes it possible for app developers to orchestrate the func-

tionality of the software in their scripts using a common scripting

language. The APIs make use of existing Python modules where

possible to prevent reinventing the wheel, but also include custom

Python modules to further simplify and fill in the gaps.

For example, the Persistent Stores API consists of a popular

database management Python module called SQLAlchemy (Bayer,

2015) and custom functions to streamline the creation of data-

bases (termed persistent stores) as a means for scripting to the

PostgreSQL databases. The Spatial Dataset Services API, on the

other hand, is an amalgamation of a custom module, tethys_da-

tatset_services, that provides a simplified interface for an existing

module, and gsconfig, to provide a method for managing GeoServer

programmatically. Additionally, Tethys SDK provides APIs for

external services such as the Dataset Services API, which can be

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e2614

http://docs.tethysplatform.org

used to manage file datasets using either CKAN instances (Open

Knowledge Foundation, 2014) or HydroShare (Tarboton et al.,

2014).

Tethys SDK also provides APIs for managing computing infra-

structure and job submission. The Compute API provides a way to

programmatically provision cloud-computing resources and

configure them into an HTC system with HTCondor, while Jobs API

can be used to create and submit jobs to those resources. To facil-

itate jobs that may take a long time to run, submitting jobs is

handled asynchronously, meaning that when a request is made to

the server to run a job the server will submit the job, but it will not

wait for the job to complete before responding to the request. The

server will then poll the job periodically to check the job's status, or

the job can be configured with a callback URI to let the server know

when it has completed. A summary of the key APIs in Tethys SDK

and how they are related to Python modules and elements of the

software suite is shown in Table 2.

2.2.2. App development framework

Tethys SDK addresses theweb development hurdle by providing

an app development framework and the Template Gizmos API.

Rather than starting from scratch, the Tethys app development

framework extends Django, a popular Python web framework

(Django Software Foundation, 2015), to give it the core web capa-

bilities required for web apps. The framework simplifies web

development by providing a structured approach for building and

configuring apps. It helps developers create more manageable code

by using the model-view-controller (MVC) software architectural

pattern, in which the code is organized into three categories: the

model, code that comprises the data management components of

the app; the views, which includes the user interface code or web

pages of the app; and the controllers, which consists of the logic of

the app.

Much of Tethys app development uses the structures and con-

ventions provided by Django, but Tethys includes a layer designed

to simplify some aspects of Django development. For example, the

mechanism for designing URLs with variables in Django requires

the use of regular expressionsda sequence of characters that form

a search patterndusing a syntax that would prove difficult for

inexperienced developers (see Fig. 2). Tethys provides a layer of

abstraction to simplify URL design using a simple syntax. Fig. 2 il-

lustrates this difference in approach to URL design.

Another major simplification provided by the Tethys web

framework is that it provides a base template that includes a

standard layout for app pages delineated into areas for a header,

navigation links, action buttons, and primary content (see Fig. 3).

This base template reduces the amount of repetitive template

coding required for the creation of new pages often referred to as

boilerplate codedessentially the code that is required before you

are able to start on the primary task at hand. It also dramatically

reduces the amount of HTML and CSS that is required to develop

Tethys web apps.

The other major simplification to web development is afforded

by The Template Gizmos API. It simplifies the development of dy-

namic user interfaces of an app by providing a set of common

interface elements called “gizmos”. Using gizmos developers can

add date-pickers, plots, and maps to their apps using Python and a

Django template tag in the HTML pagedwithout writing JavaScript.

Gizmos reduce the need to work in multiple languages by auto-

matically inserting or referencing the necessary HTML, CSS, and

JavaScript libraries in place of the gizmo template tag. Fig. 4 shows

an example of how to create a map using the Map View gizmo,

which inserts an OpenLayers map.

2.2.3. Command Line interface

The Tethys SDK provides a command line interface to automate

some of the common management tasks associated with devel-

oping web apps with Tethys Platform. For example, it includes a

scaffolding command for generating new app projects, a command

for managing app databases, commands to assist with installation

and updating Tethys Platform, and commands for managing the

software suite Docker images and containers.

2.3. Tethys Portal

Tethys Portal was designed to overcome the app deployment

hurdle. It is implemented as a Djangowebsite project and leverages

the capabilities of Django to provide the core website functionality

that is often taken for granted in modern web applications. It in-

cludes a user account system complete with user profiles and a

password reset mechanism for forgotten passwords. User accounts

are necessary to allow app developers to customize user experi-

ence, grant or restrict access to data or functionality provided by

Table 2

Relationship between APIs, Python modules, and software components.

API Python modules Software components

Template Gizmos Django templating language OpenLayers

Google Maps™

HighCharts

Dataset services tethys_dataset_services CKAN

HydroShare

Spatial dataset services tethys_dataset_services

gsconfig

GeoServer

Persistent stores SQLAlchemy PostgreSQL

Spatial persistent stores SQLAlchemy

GeoAlchemy

PostgreSQL w/PostGIS

Web processing services OWSLib 52� North WPS

Jobs CondorPy HTCondor

Compute TethysCluster Amazon Web Services

Microsoft Azure

Note: The names of custom Python modules developed for Tethys Platform are italicized.

Fig. 2. Comparison of Django URL specification with regular expressions (top) and

Tethys URL specification (bottom).

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e26 15

the app, and protect privacy rights of the users. App developers are

not required to restrict access to their apps to users that are logged-

in allowing for openly accessible apps. The user account system can

also be used in conjunction with the OAuth 2.0 standard to allow

users to log in with social media accounts like Google, Facebook,

and LinkedIn.

Fig. 3. An illustration of the layout provided by the base template for apps, which includes areas for (a) a header, (b) navigation links, (c) main content, and (d) action buttons.

Fig. 4. Example of how to configure a Map View gizmo using Python and the gizmo tag in the HTML.

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e2616

One important note on the user account system is that it is only

used to authorize and grant access rights to the portal itself, and not

to each of the underlying software components (e.g.: GeoServer,

PostGIS). Access rights to the software components is governed by

the app developer and the portal administrator in a safe and secure

way. When deploying Tethys Portal, each of the software compo-

nents are setup as independent services, each with their own

controls or access, by the portal administrator. App developers

request certain services and the portal administrator links the app

with those services during installation of the app in such away that

the app developer doesn't need to know the credentials of the

service to use it in the app. In other words, usernames, passwords,

and other credentials for the software components are never used

anywhere in the code for apps and they are only known to the

portal administrator adding security.

Tethys Portal also provides a landing page that can be used to

showcase the capabilities of the Tethys Platform instance and an

app library page that serves as the access point for installed apps

(Fig. 5). It includes an administrator backend that can be used to

manage user accounts, permissions, link apps to elements of the

software suite, and customize the website to match the hosting

organization branding. The title, theme, logos, and content on the

homepage can easily be changed through the administrative

backend.

3. Results

Tethys Platform was designed to lower the barrier to develop-

ment for scientists and engineers who wish to convey their data

and models via interactive web apps. The purpose of this section is

to demonstrate its capabilities. Section 3.1 describes four web ap-

plications developed using Tethys Platform and Section 3.2 de-

scribes a few of the known deployments of Tethys Portal.

3.1. Applications

To date, Tethys Platform has been used to develop at least 24

known environmental web applications. These existing apps have

been developed at the U.S. Army Engineer Research and Develop-

ment Center, Brigham Young University, University of Texas at

Austin, CUAHSI, and by at least one private consulting company

(Aquaveo). These Tethys apps have been developed to support a

variety of commercial, government, and academic projects

including HydroShare, CI-Water, and the CUAHSI Water Data Cen-

ter. We anticipate the number of available apps and app portals to

grow rapidly in the coming years as the software gains wider

attention. Most of the existing apps, including those described in

this section, are accessible at either the official Tethys Demo Portal

(http://demo.tethysplatform.org/apps), the Brigham Young Uni-

versity portal (http://tethys.byu.edu), the HydroShare Apps Portal

(https://apps.hydroshare.org) and/or the HydroShare Apps Devel-

opment Portal (https://appsdev.hydroshare.org).

3.1.1. Streamflow Prediction Tool

Snow (2015) developed aweb service that automatically queries

the latest global runoff forecasts published by the European Center

for Medium-Range Weather Forecasts (ECMWF), downscales the

forecast to a higher resolution catchments using Esri's RAPID

Toolbox, and routes the resulting runoff through a high resolution

stream network using the Routing Application for Parallel compu-

tatIon of Discharge (RAPID; David et al., 2011) model. The result is a

high-resolution dataset of two-week stream flow forecasts every

12 h with the potential for nationwide or even global coverage. In

order to provide a context for the severity of a forecasted event an

initial simulation of the watersheds and reaches is performed using

the ERA-Interim reanalysis data assembled by ECMWF (Dee et al.,

2011). This one-time simulation generates a 35-year “model

Fig. 5. Tethys Portal includes an app library pages, which serves as the launching point for installed apps.

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e26 17

http://demo.tethysplatform.org/apps
http://tethys.byu.edu
https://apps.hydroshare.org
https://appsdev.hydroshare.org

hydrology” that can be used to derive a return period for each reach

modeled that provides a localized context of hydrologic severity for

subsequent forecasts.

To manage and visualize resulting forecasts, Snow developed a

web app using Tethys Platform to view the recent streamflow

forecasts called the Streamflow Prediction Tool (Fig. 6). The com-

putations are performed via the web service twice daily as the

ECMWF runoff prediction datasets become available. After the

computations are finished, they are then deposited into a data store

such as HydroShare or CKAN. The web app automatically retrieves

the most recent week-worth of predictions from the data store for

visualization by the user.

Upon launching the app, users are prompted to select one or

more watersheds to display on a map, fromwhich they can select a

reach and view a time series of the forecasted flow two weeks in

advance. The ECMWF forecast is an ensemble of 52 different sce-

narios, so results are displayed showing min, mean, std. deviation,

andmax. Because the 35-year reanalysis model hydrology exists for

each reach awarning point corresponding to the 2 (yellow),10 (red)

and 25 (purple) return period can be indicated both as a warning

triangle on the map and in the context of a displayed hydrograph

for a selected reach. Where USGS gages are available, observed data

can also be queried as a web service and displayed with the current

or previous forecast of a selected reach.

The Streamflow Prediction Tool was a demonstration project as

part of the National Flood Interoperability Experiment (NFIE) held

at the new national water center in Tuscaloosa, Alabama during the

summer of 2015 (Snow et al., 2016). The entire 2.7 million reach/

watershed of the US National Hydrography Dataset Plus (NHD-

Plus) was made operational and continues to today to produce the

twice-daily forecasts at demo.tethysplatform.org.

3.1.2. Canned GSSHA

The Canned GSSHA web app was developed to demonstrate the

Canned Modeling method of flood forecasting (Dolder et al., 2015).

The premise of the Canned Modeling method is that when a flood

event is imminent, there is limited time to execute hydrologic

model runs in an attempt to predict the outcome of the flood event.

The solution provided by the Canned Modeling method is to pre-

run a large number of models with varying input parameters,

called “scenarios”, and store or “can” the results for lookup in the

time of a crisis. When a potential flood event occurs, the canned

model database is queried using the current or forecasted condi-

tions and the model run with the closest match is instantly

returned. The Canned Modeling method can be applied to any

hydrologic model, or even any combination of different hydrologic

models.

A Gridded Surface Subsurface Hydrologic Analysis (GSSHA;

Downer and Ogden, 2004) model was developed for a 2.5 km2 test

watershed, and seven input parameters were selected to generate

scenarios that would produce both snowmelt and rain-driven

floods. A Latin Hypercube approach was used to create different

combinations of the selected input parameters uniformly over the

entire parameter space resulting in 2187 scenarios. The GSSHA

model was executed for each of the generated scenarios and the

resulting hydrographs were stored in a database.

The Canned GSSHA app provides an intuitive, single-page user

interface that allows users to alter the observed or forecasted input

parameters and view the computed hydrograph of the closest

match (Fig. 7). A cluster of sliders on the left-hand side of the screen

can be used to modify the input parameters. The polar plot at the

center shows normalized values of the parameters selected by the

user in yellow and the normalized values of the parameters from

the pre-computed model that most closely matches the user input

in green. The plot on the right-hand side of the screen displays the

hydrograph of the closest matching model. Each time the user

changes the value of any of the sliders, the lookup is near instan-

taneous and the polar plot and hydrograph update immediately.

Fig. 6. The Streamflow Prediction Tool web app for computing 15-day streamflow forecasts based on ECMWF weather forecasts.

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e2618

http://demo.tethysplatform.org

3.1.3. Parley's Creek Management Tool

The Parley's Creek Management Tool was developed to make

water management research products more accessible to decision

makers (Goharian and Burian, 2014). Parley's Watershed is one of

four major drainages that are included in the Salt Lake City (SLC),

Utah, USA protected watershed canyons (USDA Forest Service,

2015). Parley's Creek Basin, located on western slope of Wasatch

Mountains, includes two reservoirs, Little Dell and Mountain Dell.

The reservoirs were developed with the primary use of municipal

and industrial water supply and secondary use of flood control. The

main inflows to the reservoirs are generated from Lambs Creek and

Dell Creek. Moreover, the outflow from Little Dell reservoir dis-

charges into Mountain Dell. The bypassed water from Parley's

water treatment facility flows into the Parley's Creek and passes

through the urbanized area of SLC into the Jordan River and ends at

the Great Salt Lake.

Goharian et al. (2015) worked with Parley's Creek reservoir

managers to develop a systems dynamic model using GoldSim, a

Monte-Carlo simulation software for dynamicmodeling of complex

systems (GoldSim Technology Group, 2015). The model allows

managers and stakeholders to explore various management sce-

narios for the Parley's Creek system. It also allows managers to

explore the impact of various climate change projections on reli-

ability and vulnerability of system.

The Parley's Creek Management Tool web app provides a simple

user interface and structured workflow for the Parleys Creek

Management GoldSimmodel. Theworkflow consists of 4 or 5 pages

(depending on the type of climate scenario selected) that prompt

the user to select a climate scenario, modify reservoir characteris-

tics, adjust the inflow as a multiplier of the historical average on a

monthly basis, adjust demand rates on a monthly basis, and view a

summary of the parameters. The GoldSimmodel is hosted as a web

service using 52� NorthWPS, which can be executed from a page in

the web app. After a model run has been completed the user can

view several plots and download the results as an excel spreadsheet

from a results page (shown in Fig. 8). The results include the inflow

to the reservoirs, volume of water in reservoirs, releases, and spills

as well as the reliability of system to meet the water demand from

SLC.

3.1.4. Data Rods Explorer

The Data Rods Explorer web app was developed by the Uni-

versity of Texas in support of a NASA grant focused on enabling

access to NASA earth observation datasets as time series data. This

app allows users to quickly obtain, plot, and map hydrologic data

from various publicly available datasets. The datasets available

include (1) LDAS for the North-American (NLDAS) and the global

(GLDAS) Noah models (Mitchell, 2004; Xia et al., 2012), (2) the

Tropical Rainfall Measuring Missing (TRMM) (Simpson et al., 1996),

and (3) the Gravity Recovery and Climate Experiment (GRACE)

(Tapley et al., 2004).

The Data Rods Explorer web app combines data from different

sources: raster images that come from a WMS server (Goddard

Earth Sciences Data and Information Services Center, 2015a) and

time series that come from a Data Rods server (Goddard Earth

Sciences Data and Information Services Center, 2015b) for com-

parison. Fig. 9 shows an example of comparing different years for a

single location in the Data Rods Explorer. The plot (bottom) over-

lays total evapotranspiration data (NLDAS-Noah) at Los Angeles, CA

for five years: 2010e2014. The map (top) shows the total evapo-

transpiration raster for California and the southwest on July 1, 2015.

The map shows the persistent low evapotranspiration values (yel-

low) in comparison from larger values (blue).

Fig. 7. The Canned GSSHA web app for exploring pre-computed hydrographs for specified conditions.

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e26 19

3.1.5. Snow Inspector App

The Snow Inspector app (Kadlec and Ames, 2014; Kadlec et al.,

2016) is another example of an app developed outside of the

original CI-Water project. Snow Inspector was developed to enable

simple discovery and access of the snow cover history derived from

the Terra Snow Cover Daily L3 Global 500 Terra daily snow cover

dataset for any point on Earth (Hall et al., 2006). The user can

specify a number of historical days to retrieve, then use the inter-

active map to select a location, retrieve historical snow coverage

data at the selected point, display a time series of snow percent

coverage, and download the processed data in WaterML or CSV file

format (Fig. 10). The data source used by this app is the NASA's

Global Image Browse Services (GIBS; Cechini et al., 2013; Thompson

et al., 2014) Web Map Tile Service (WMTS) server. The original

dataset is the MOD10A1 fractional snow cover grid with 500 m

resolution. The app depends on the open-source pypng library for

extracting values from the WMTS images.

3.1.6. EPANET web app

The EPANET Web App was developed as a commercial product

by Aquaveo LLC for municipalities and water districts. The app

provides a means for visualizing EPANET (Rossman, 2000) water

distribution system models from any device including tablets and

phones of operators in the field. Users upload an EPANET input file

and a corresponding report file and the network geometry (e.g.:

pipes, junctions, tanks) and model results are displayed on an

interactive map that allows users to select network elements, view

their properties and values, and plot values over time for extended

period models (Fig. 11). Future developments for this app include

the ability to make slight modifications to the model and execute

the model using cloud computing resources as a means of scenario

exploration and performing diagnostics in the field.

3.2. Deployments

Web apps developed using Tethys Platform are deployed

through an instance of Tethys Portal. Tethys Platform aims to

simplify the process of deployment as much as possible by

providing Docker images for installing the software suite and

detailed instructions for installing Tethys Portal in a production

mode (http://docs.tethysplatform.org). However, there is still a

hurdle of obtaining andmaintaining the server onwhich the Tethys

Portal runs. The advent of commercial cloud computing services

has provided one cost effective means that most organizations

could harness. Researchers at universities may also be able to take

advantage of services provided by the university at discounted

rates. This section provides descriptions of a few of the existing

Tethys Portal instances as examples of how Tethys apps have been

successfully deployed.

3.2.1. Tethys Platform demo server

The longest running instance of Tethys Portal is the official

Tethys Platform Demo Server (http://demo.tethysplatform.org). At

the time of writing, the server had been running since the initial

Tethys Platform release or about 1 year, was hosting 10 web ap-

plications developed by 6 developers and had over 150 registered

users. The Tethys Demo server was configured in a distributed

fashion consisting of 5 servers, with one server operating as the

primary web server with Tethys Portal, and the others dedicated to

one element of the software suite (GeoServer, PostGIS, 52� North

WPS, and CKAN). The servers are maintained by the Environmental

Modeling and Research Laboratory at Brigham Young University

and operate out of a data center at the University of Utah.

3.2.2. HydroShare

The next most prominent instances of Tethys Portal are two

servers maintained by the HydroShare research group: HydroShare

Fig. 8. The Parley's Creek Management web app showing inflows at Dell Creek, Utah.

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e2620

http://docs.tethysplatform.org
http://demo.tethysplatform.org

Apps Server (https://apps.hydroshare.org) and HydroShare Apps

Dev Server (https://appsdev.hydroshare.org). The former hosts

officially released apps for the HydroShare project, while the latter

is used as a staging server for apps under development or in

experimental release. The HydroShare Apps server had been

running for 8 months, though recently wiped clean and re-

deployed, and had 5 apps running on it and had 40 registered

users. The HydroShare Apps Dev server had been operating for

Fig. 9. The NASA Data Rods Explorer web app showing NLDAS-Noah Land Surface Model results.

Fig. 10. The Snow Inspector web app showing historical percent snow coverage near Old Faithful Geyser, Yellowstone National Park, USA.

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e26 21

https://apps.hydroshare.org
https://appsdev.hydroshare.org

about 5 months at the time of writing, had 21 registered users and

10 web applications. Both HydroShare Tethys Portals were config-

ured with the entire Tethys Platform installed on a single, though

more powerful, server. The HydroShare Apps Server was originally

deployed in the Digital Ocean (Digital Ocean Inc., 2016) commercial

cloud provider and later moved to a server provided by the Re-

naissance Computing Institute (Rennaissance Computing Institute,

2016) where the HydroShare Apps Dev server is also operating.

3.3. Community

Tethys Platform has a growing number of users and efforts have

been made to accommodate its use and ensure it is sustainable. In

an effort to promote the development of a community a forum has

been setup for users to post questions and document answers

(https://groups.google.com/forum/#!members/tethysplatform)

and the issues tracker on the primary GitHub repository is being

used to track bugs and feature requests (https://github.com/

tethysplatform/tethys/issues). To date there are 15 registered

members of the Tethys Platform forum, half of which are not

members of the primary Tethys development team with approxi-

mately 25 answered posts. The GitHub issue tracker is being

actively used with 48 open issues and 153 closed issues and 2

contributions by developers other than the primary development

team via pull request.

Tethys Platform is backed by a consortium of partners from

academia, government, and the private sector including Brigham

Young University, CUAHSI, the Army Corp of Engineers, and Aqua-

veo LLC. The project is governed by a project steering committee

that consists of at least 3 members who meet regularly to discuss

development priorities. The proposals for new features and selec-

tion of project steering committee members is performed demo-

cratically according to the procedures outlined in the Tethys

Platform Project Steering Committee document (Tethys Platform,

2016).

3.4. Qualitative analysis

As a more qualitative measure of how Tethys Platform lowers

the barrier, we performed an analysis of the language composition

of each app and compared it with the language composition of

Tethys Platform as an example of a website project created from

scratch. We used the Count Lines of Code (CLOC) program to count

the number of lines of each of the four major languages (Python,

JavaScript, HTML, and CSS). The line counts exclude blank lines,

comment lines, and third party libraries. We also subtracted

number of lines of code that were generated by the scaffold from

the totals for each app (Python: 65, JavaScript: 0, HTML: 42, CSS: 0).

Absent from this analysis is the language composition of the EPA-

NET web app, which is proprietary. A summary of the language

composition of Tethys Platform and each app is shown in Table 3.

One of the aims of Tethys Platform is to reduce the need to learn

multiple languages to overcome the web development hurdle. This

is evident by the reduced amount of CSS used in each app, ranging

from 0 to 9% as compared to 17% for Tethys Platform, and the

reduced amount of HTML for three of the apps, ranging from 1 to

14% as compared to 17% for Tethys Platform. However, most of the

apps still display a high usage of JavaScript with only one app

displaying a significant reduction in the use of JavaScript as

compared with Tethys Platform. Despite this fact, all of the apps

used as much or more Python, ranging from 33 to 63% as compared

to 33% for Tethys Platform, indicating a heavier reliance on Python.

Using Tethys Platform results in a significant reduction in the

total number of lines of code written for each app as compared to

Tethys Platform. Table 4 shows the lines of code for each app

divided by the lines of code for Tethys Platform by language. At the

Fig. 11. The EPANET web app for visualizing EPANET water distribution system models.

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e2622

https://groups.google.com/forum/#!members/tethysplatform
https://github.com/tethysplatform/tethys/issues
https://github.com/tethysplatform/tethys/issues

time of writing Tethys platformwas composed of over 20,000 lines

of code and the apps ranged from about 600 to 8100 lines of code.

On average the apps had only about 14% the total number of lines of

code as Tethys Platform.

4. Discussion

In the introduction we described four hurdles that need to be

addressed to effectively lower the barrier to environmental web

app development including: (1) the software hurdle, (2) the

orchestration hurdle, (3) the web development hurdle, and (4) the

deployment hurdle. We also presented an approach that can be

used to address these four hurdles and we introduced Tethys

Platform as an implementation of this approach. In this section we

discuss how this approach, as demonstrated by Tethys Platform,

overcomes each of these hurdles in more detail. We also discuss

other important considerations such as sustainability and broader

implications.

4.1. Software hurdle

In our approach, we recommend overcoming the software bar-

rier by providing software that meets the spatial and computa-

tional capabilities commonly required for environmental modeling.

Our implementation of this approach is embodied in the Tethys

Software Suite, a prepackaged suite of software which was the

result of an extensive review of FOSS and FOSS4G (Swain et al.,

2015). Overcoming this hurdle involved over a year of research

and careful consideration for the 3rd party software tools that are

included in the Tethys Software Suite.

We emphasize that there is a one aspect of the software hurdle

that would not be addressed by simply providing a recommenda-

tion of software that is useful for environmental web app devel-

opment: installing many of these 3rd party FOSS and FOSS4G can

be an intensive process and a deterrent for potential developers.

Installation instructions for FOSS4G are written for experienced

developers and often require a great deal of troubleshooting to

account for the differences in operating system environments.

Encapsulated in each of the Docker images that were developed to

automate installation are weeks-to months-worth of effort toward

installation, troubleshooting, and configuration of the software.

4.2. Orchestration hurdle

Our recommendation overcoming the orchestration hurdle is to

provide a programmatic means of managing each of the recom-

mended software in a single programming language. This approach

is demonstrated by the Python software APIs included in the Tethys

SDK. Most of the software in the software suite provide some

means of programmatic management, but they vary in form. For

example, SQL can be used to interact with the PostGIS database,

while GeoServer provides a web API. However, using these native

APIs would require the developer to learn both SQL and how to

formulate web requests to the control these two elements of the

software suite. The Python APIs in Tethys SDK lessen the learning

curve by simplifying the specifics of interacting with the software

to a series of objects and functions in a common programming

language. More concretely, rather than writing SQL to add data to

the database, the developer uses Python objects and instead of

having to learn how to create a multipart form request to upload a

shapefile to GeoServer through its native web API, the developer

uses a Python function that takes the path to the shapefile.

One criticism of this approach is that the effort to simplify and

prescribe often results in limited functionality and lessens the

control the developer has over the software. However, the simpli-

fied APIs provided by Tethys SDK do not restrict access to the

software through their native APIs. Building on the examples pre-

viously, if an advanced developer wishes to write SQL, rather than

use the Python approach, they can do so. But if that same developer

is not familiar with formulating web requests, she can still benefit

from the Python API provided for GeoServer.

4.3. Web development hurdle

Our recommended approach for overcoming the web develop-

ment hurdle was to reduce the web development skills required to

develop web apps. The part of Tethys Platform that demonstrates

this approach is the app development framework included in

Tethys SDK. A major task of web development is writing the

foundational code, often called boilerplate code, which includes the

HTML that is common to all pages and provides unified layout the

web app, the CSS that provides a theme and style for the web app,

and JavaScript that is used for dynamic elements such asmenus and

user interface logic. Tethys SDK provides a base template, theme,

and core JavaScript libraries to overcomes this significant web

Table 3

Language composition of each web app and Tethys Platform.

Language Tethys Platform Canned GSSHA NASA data rods Snow inspector Parleys creek Streamflow

Lines Percent Lines Percent Lines Percent Lines Percent Lines Percent Lines Percent

Python 6729 33% 420 63% 570 34% 637 39% 1281 63% 2693 33%

JavaScript 6786 33% 179 27% 659 39% 714 44% 110 5% 4221 52%

CSS 3433 17% 58 9% 0 0% 78 5% 143 7% 88 1%

HTML 3454 17% 8 1% 450 27% 201 12% 499 25% 1149 14%

Totals 20,402 100% 665 100% 1679 100% 1630 100% 2033 100% 8151 100%

Table 4

Lines of code for each app divided by lines of code for Tethys Platform.

Language Canned GSSHA NASA data rods Snow inspector Parleys creek Streamflow prediction

Python 6% 8% 9% 19% 40%

JavaScript 3% 10% 11% 2% 62%

CSS 2% 0% 2% 4% 3%

HTML 0% 13% 6% 14% 33%

All 3% 8% 8% 10% 40%

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e26 23

development hurdle. The design and development of the base

template for Tethys SDK required several months of tedious work.

For scientists and engineers who are primarily concerned with

developing cutting edge workflows and models or collecting and

analyzing data, the boilerplate code for aweb app is often perceived

as a distraction to the main objectivedto make their work acces-

sible. However, this results in the poor user experience typical of

existing scientific- or engineering-based web applications and,

ironically, does not convey the idea that the user is participating in

the latest science or technology. The base template allows de-

velopers to immediately start working on the logic and workflow of

the app without the need of worrying about how it looks or feels.

Another of the challenges faced by environmental web app

developers is the multilingual nature of web development. HTML

and CSS are required to provide the structure and theme of each

page of the web app and JavaScript is used to provide dynamic

capabilities such as plotting and mapping. A scripting language

such as PHP, Python, or Ruby is also required on the server to

handle the logic of the app and interact with the database. The

Template Gizmos API, one of the APIs that is part of the app

development framework in Tethys, demonstrates an approach that

can be taken to reduces the amount of multilingual coding.

As an example, the Map View gizmo allows developers to add a

dynamic OpenLayers-based map to a page in their app. The Map

View gizmo consists of HTML, CSS and over 1000 lines of JavaScript

and represents several months of development. In contrast, Tethys

app developers are able to insert a map by first defining the map

object in Python and then adding a single template tag to the HTML

pagedno JavaScript or CSS required. The template tag is automat-

ically replaced by the necessary HTML, CSS, and JavaScript of the

gizmo to create the map. To be fair, creating maps with advanced

features such as clicking on a feature on a map and displaying a plot

associated with that feature would require additional JavaScript

and CSS, but the amount of coding in multiple languages is signif-

icantly reduced by the use of the Template Gizmos API.

4.4. Deployment hurdle

Our recommendation to overcoming the deployment hurdle

was to provide a web-safe mechanism for deploying the finished

web apps that is flexible enough to work on the most common

means for obtaining hardware. The implementation of Tethys

Portal illustrates one way this can be achieved. Tethys Portal is a

fully featured web site for hosting the finished web apps. It is built

on Django, a mature web development framework that is under

active development and provides web security features to keep the

portal safe from the hostile environment of the internet. Tethys

Portal can be installed on most Linux distributions that are

commonly available at most data centers, giving it flexibility for

deployment.

Tethys Portal eliminates the boilerplate code associated with

creating a new web site, similar to the manner in which the base

template reduces the amount of boilerplate code needed to de-

velops apps. Specifically, it provides a user account management

system including user profiles that allow users to edit their iden-

tifying information and a mechanism for resetting forgotten pass-

words, authentication and authorization a homepage, an apps

library page that acts as an access point for the installed apps,

administrator pages, and web security features. Tethys Platform

leverages Django features to provide much of this functionality, but

development of these features still required several months.

Tethys Portal is also easily customizable allowing the theme and

content to be changed via the admin pages, so that deployed in-

stances can be rebranded to match the organization that hosts it.

Tethys Portal makes it significantly easier for organizations to host

web apps that they have developed using Tethys Platform.

5. Conclusion

We surmise there are four major hurdles that deter scientists

and engineers, even those with scientific programming experience,

from developing environmental web applications: (1) the software

hurdle, (2) the orchestration hurdle, (3) the web development

hurdle, and (4) the deployment hurdle. We have also presented an

approach for overcoming these hurdles which includes providing:

(1) software that meets the spatial and computational capabilities

commonly required for environmental modeling; (2) a program-

matic means to use each of the recommended software in a single

programming language; (3) a reduction to the web development

skills required to develop web apps; and (4) a web-safe mechanism

for deploying the finished web apps that is flexible enough to work

on the most common means for obtaining hardware (i.e. university

cloud, commercial cloud, private data centers). Tethys Platform, a

development and hosting environment for environmental web

apps, was presented as an implementation of this approach. Tethys

Platform consists of three primary components that were designed

to address one of the four hurdles: Tethys Software Suite, Tethys

Software Development Kit, and Tethys Portal.

Tethys Software Suite addresses the software hurdle by

including free and open source software solutions for GIS and

distributed computing functionality in environmental web apps. It

includes four FOSS4G packages to address the web GIS needs of

environmental web apps: PostGIS, 52� North Web Processing Ser-

vice, and OpenLayers for creating dynamic interactive maps.

Additionally, HTCondor is included to manage computing re-

sources. Tethys Software Development kit addresses both the

orchestration hurdle and the web development hurdle by

providing APIs for each of the software and a framework for

developing web apps. Tethys Portal addresses the deployment

hurdle by providing a runtime environment for Tethys web apps.

This web portal can be easily rebranded and customized to match

the organization hosting it. Tethys Platform facilitates making

environmental web apps more commonplace, which will serve to

narrow the gap between research and practice.

Software availability

Tethys Platform is available under the BSD 2-Clause open source

license and the source code is available in the following GitHub

repositories:

� https://github.com/tethysplatform/tethys

� https://github.com/tethysplatform/tethys_dataset_services

� https://github.com/tethysplatform/tethys_docker

An overview of Tethys Platform and links to documentation, bug

reporting, and support forum are available online at http://www.

tethysplatform.org. Live demos of apps developed using Tethys

Platform can be found at

� http://demo.tethysplatform.org/apps

� https://apps.hydroshare.org or https://appsdev.hydroshare.org

The source code for all of the example web apps, with the

exception of the commercially developed EPANET Web App, are

available on GitHub in the following repositories:

� Streamflow Prediction Tool: https://github.com/erdc-cm/

tethysapp-streamflow_prediction_tool

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e2624

https://github.com/tethysplatform/tethys
https://github.com/tethysplatform/tethys_dataset_services
https://github.com/tethysplatform/tethys_docker
http://www.tethysplatform.org
http://www.tethysplatform.org
http://demo.tethysplatform.org/apps
https://apps.hydroshare.org
https://appsdev.hydroshare.org
https://github.com/erdc-cm/tethysapp-streamflow_prediction_tool
https://github.com/erdc-cm/tethysapp-streamflow_prediction_tool

� Canned GSSHA: https://github.com/CI-WATER/tethysapp-

canned_gssha

� Parely's Creek Management Tool: https://github.com/CI-

WATER/tethysapp-parleys_creek_management

� NASA Data Rods Explorer: https://github.com/gespinoza/

datarodsexplorer

� HydroShare Snow Inspector App: https://github.com/

jirikadlec2/snow-inspector

Acknowledgements

This material is based upon work supported by the National

Science Foundation under Grant No. 1135482.

References

52 �North, 2014. Home e 52�North Initiative for Geospatial Open Source Software
GmbH. Retrieved from. http://52north.org/.

Bayer, M., 2015. SQLAlchemy: the Database Toolkit for Python. Retrieved from.

http://www.sqlalchemy.org/.
Bhuyan, S.J., Koelliker, J.K., Marzen, L.J., Harrington Jr., J.A., 2003. An integrated

approach for water quality assessment of a Kansas watershed. Environ. Model.
Softw. 18 (5), 473e484. http://dx.doi.org/10.1016/S1364-8152(03)00021-5.

Bostock, M., 2015. D3.js - Data Driven Documents. Retrieved from. http://d3js.org/.
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996. In: Pattern-

oriented Software Architectures: a System of Patterns, vol. 1. Wiley.

Cechini, M., Murphy, K., Boller, R., Schmaltz, J., Thompson, C., Huang, T., McGann, J.,
Ilavajhala, S., Alarcon, C., Roberts, J., 2013. Expanding Access and Usage of NASA

Near Real-Time Imagery and Data, AGU Fall Meeting Abstracts, p. 04.
Chambers, J., 2013. The R Project for Statistical Computing. Retrieved from. http://

www.r-project.org/.

David, C.H., Maidment, D.R., Niu, G.-Y., Yang, Z.-L., Habets, F., Eijkhout, V., 2011. River
network routing on the NHDPlus dataset. J. Hydrometeorol. 12 (5), 913e934.

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S.,
Bechtold, P., 2011. The ERA-Interim reanalysis: configuration and performance

of the data assimilation system. Q. J. R. Meteorol. Soc. 137 (656), 553e597.
Demir, I., Krajewski, W.F., 2013. Towards an integrated flood information system:

centralized data access, analysis, and visualization. Environ. Model. Softw. 50,

77e84.
Digital Ocean Inc, 2016. Simple Cloud Infrastructure for Developers j Digital Ocean.

Retrieved from. https://www.digitalocean.com/.
Django Software Foundation, 2015. The Web Framework for Perfectionists with

Deadlines e Django. Retrieved from. https://www.djangoproject.com/.

Docker Inc, 2015. Docker: Build, Ship, and Run Any App, Anywhere. Retrieved from.
https://www.docker.com/.

Docker Inc, 2016. Customers j Docker. Retrieved from. https://www.docker.com/
customers/.

Dolder, H., Jones, N., Nelson, E.J., 2015. Simple method for using precomputed hy-

drologic models in flood forecasting with uniform rainfall and soil moisture
pattern. J. Hydrol. Eng. 0 (0), 04015039. http://dx.doi.org/10.1061/(ASCE)

HE.1943-5584.0001232.
Downer, C.W., Ogden, F.L., 2004. GSSHA: model to simulate diverse stream flow

producing processes. J. Hydrol. Eng. 9 (3), 161e174. http://dx.doi.org/10.1061/
(asce)1084-0699(2004)9:3(161).

ESRI, 2004. ArcGIS Server: ESRI's Enterprise GIS Application Server. Retrieved from.

http://downloads.esri.com/support/whitepapers/other_/arcgis-server_90.pdf.
http://downloads.esri.com/support/whitepapers/other_/arcgis-server_90.pdf.

Feng, M., Liu, S., Euliss Jr., N.H., Young, C., Mushet, D.M., 2011. Prototyping an online
wetland ecosystem services model using open model sharing standards. En-

viron. Model. Softw. 26 (4), 458e468. http://dx.doi.org/10.1016/

j.envsoft.2010.10.008.
Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of

Reusable Object-oriented Software. Addison-Wesley.
Goddard Earth Scienes Data and Information Services Center, 2015a. OGC WMS for

NASA Giovanni. Retrieved November 1, 2015, from. http://giovanni.gsfc.nasa.
gov/giovanni/daacbin/wms_ag4?VERSION¼1.1.

1&REQUEST¼Getcapabilities&service¼wms.

Goddard Earth Scienes Data and Information Services Center, 2015b. Data Rods
(Time Series Data). Retrieved November 1, 2015, from. http://disc.sci.gsfc.nasa.

gov/hydrology/data-rods-time-series-data.
Goharian, E., Burian, S.J., 2014. Integrated urban water resources modeling in a

semi-arid mountainous region using a cyber-infrastructure framework. In:

Proceedings of 11th International Conference on Hydroinformatics (HIC2014),
New York City, New York, USA. CUNY Academic Works. http://academicworks.

cuny.edu/cc_conf_hic/230.
Goharian, E., Burian, S., Bardsley, T., Strong, C., 2015. Incorporating potential severity

into vulnerability assessment of water supply systems under climate change
conditions. J. Water Resour. Plann. Manage. 10.1061/(ASCE)WR.1943-

5452.0000579, 04015051.

GoldSim Technology Group, 2015. Monte Carlo Simulation Software - GoldSim.

Retrieved from. http://www.goldsim.com/Home/.

Goodrich, D.C., Guertin, D.P., Burns, I.S., Nearing, M.A., Stone, J.J., Wei, H., Pierson, F.,
2008. RHEM Web Tool: Rangeland Hydrology Erosion Model Web Tool. Ran-

gelands. Retrieved from. http://apps.tucson.ars.ag.gov/rhem/.
Google, 2014. Google Maps JavaScript API v3. Retrieved from. https://developers.

google.com/maps/web/.

GRASS Development Team, 2014. GRASS GIS: the World's Leading Free GIS Soft-
ware. Retrieved from. http://grass.osgeo.org/download/.

Hall, D., Salomonson, V., Riggs, G., 2006. MODIS/Terra Snow Cover Daily L3 Global
500m Grid. Version 5. National Snow and Ice Data Center, Boulder, Colorado

USA.
Hazzard, E., 2011. OpenLayers 2.10: Beginner's Guide. Packt Publishing, Birmingham.

Highsoft AS, 2014. Highcharts - Interactive JavaScript Charts for Your Web Projects.

Retrieved from. http://www.highcharts.com/.
Holl, S., Plum, H., 2009. PostGIS. GeoInformatics, 03/2009, 34e36 doi:citeulike-

article-id:4463470.
Iacovella, S., Youngblood, B., 2013. GeoServer Beginner's Guide. Packt Publishing.

Jansson, P.-E., Moon, D.S., 2001. A coupled model of water, heat and mass transfer

using object orientation to improve flexibility and functionality. Environ. Model.
Softw. 16 (1), 37e46. http://dx.doi.org/10.1016/S1364-8152(00)00062-1.

Kadlec, J., Ames, D.P., 2014, December. Design of a high resolution open access
global snow cover web map service using ground and satellite observations. In:

AGU Fall Meeting Abstracts, 1, p. 1208.

Kadlec, J., Woodruff Miller, A., Ames, Daniel P., 2016. Extracting snow cover time
series data from open access web mapping tile services. J. Am. Water Resour.

Assoc. (JAWRA) 52 (4), 916e932. http://dx.doi.org/10.1111/1752-1688.12387.
Kulkarni, A., Mohanty, J., Eldho, T., Rao, E., Mohan, B., 2014. A web GIS based inte-

grated flood assessment modeling tool for coastal urban watersheds. Comput.
Geosci. 64, 7e14.

Lam, D., Leon, L., Hamilton, S., Crookshank, N., Bonin, D., Swayne, D., 2004. Multi-

model integration in a decision support system: a technical user interface
approach for watershed and lake management scenarios. Environ. Model.

Softw. 19 (3), 317e324. http://dx.doi.org/10.1016/S1364-8152(03)00156-7.
Litzkow, M.J., Livny, M., Mutka, M.W., 1988, 13e17 Jun 1988. Condor-a hunter of idle

workstations. Paper presented at the Distributed Computing Systems, 1988. In:

8th International Conference on.
Livny, M., Basney, J., Raman, R., Tannenbaum, T., 1997. Mechanisms for high

throughput computing. SPEEDUP J. 11 (1), 36e40.
Mason, S.J.K., Cleveland, S.B., Llovet, P., Izurieta, C., Poole, G.C., 2014. A centralized

tool for managing, archiving, and serving point-in-time data in ecological
research laboratories. Environ. Model. Softw. 51 (0), 59e69. http://dx.doi.org/

10.1016/j.envsoft.2013.09.008.

Michaelis, C., Ames, D.P., 2008. Web Mapping Service (WMS) web feature service
(WFS) web processing service (WPS). In: Encyclopedia of GIS. Sashi Shekhar and

Hui Xiong. Springer, New York, pp. 1259e1261.
Miller, S.N., Semmens, D.J., Goodrich, D.C., Hernandez, M., Miller, R.C., Kepner, W.G.,

Guertin, D.P., 2007. The automated geospatial watershed assessment tool. En-

viron. Model. Softw. 22 (3), 365e377. http://dx.doi.org/10.1016/
j.envsoft.2005.12.004.

Millman, K.J., Aivazis, M., 2011. Python for scientists and engineers. Comput. Sci.
Eng. 13 (2), 9e12.

Mitchell, K.E., 2004. The multi-institution North American Land Data Assimilation
System (NLDAS): utilizing multiple GCIP products and partners in a continental

distributed hydrological modeling system. J. Geophys. Res. 109 (D7), D07S90.

http://dx.doi.org/10.1029/2003JD003823.
Nguyen, T.T., 2009. Indexing PostGIS databases and spatial query performance

evalutations. Int. J. Geoinform. 5, 1e9.
Olaya, V., Gimenez, J.C., 2011. SEXTANTE, a Versatile Open-source Library for Spatial

Data Analysis.

Oliphant, T.E., 2007. Python for scientific computing. Comput. Sci. Eng. 9 (3), 10e20.
Open Geospatial Consortium, 2015. Implementing Products. Retrieved from. http://

www.opengeospatial.org/resource/products.
Open Knowledge Foundation, 2014. Ckan e the Open Source Data Portal Software.

Retrieved from. http://ckan.org/.
Open Source Initiative, 2016. The Open Source Definition (Annotated). Retrieved

from. http://opensource.org/osd-annotated.

Python Software Foundation, 2016. Python. Retrieved from. http://python.org/
about/.

Rennaisance Computing Institute, 2016. Rennaisance Computing Institute.
Retrieved from. http://renci.org/.

Rossman, L.A., 2000. EPANET 2 Users Manual, US Environmental Protection Agency.

Water Supply and Water Resources Division. National Risk Management
Research Laboratory, Cincinnati, OH, p. 45268.

Santhi, C., Srinivasan, R., Arnold, J.G., Williams, J.R., 2006. A modeling approach to
evaluate the impacts of water quality management plans implemented in a

watershed in Texas. Environ. Model. Softw. 21 (8), 1141e1157. http://dx.doi.org/

10.1016/j.envsoft.2005.05.013.
Schut, P., Whiteside, A., 2007. OpenGIS Web Processing Service. OGC Project

Document.
Simpson, J., Kummerow, C., Tao, W.-K., Adler, R.F., 1996. On the Tropical Rainfall

Measuring Mission (TRMM). Meteorol. Atmos. Phys. 60 (1e3), 19e36. http://doi.
org/10.1007/BF01029783.

Snow, A., 2015. A New Global Forecasting Model to Produce High-resolution Stream

Forecasts. (Master of Science). Brigham Young University, Provo, Utah, USA.
Snow, A.D., Christensen, S.D., Swain, N.R., Nelson, E.J., Ames, D.P., Jones, N.L.,

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e26 25

https://github.com/CI-WATER/tethysapp-canned_gssha
https://github.com/CI-WATER/tethysapp-canned_gssha
https://github.com/CI-WATER/tethysapp-parleys_creek_management
https://github.com/CI-WATER/tethysapp-parleys_creek_management
https://github.com/gespinoza/datarodsexplorer
https://github.com/gespinoza/datarodsexplorer
https://github.com/jirikadlec2/snow-inspector
https://github.com/jirikadlec2/snow-inspector
http://52north.org/
http://www.sqlalchemy.org/
http://dx.doi.org/10.1016/S1364-8152(03)00021-5
http://d3js.org/
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref5
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref5
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref70
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref70
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref70
http://www.r-project.org/
http://www.r-project.org/
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref7
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref7
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref7
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref8
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref8
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref8
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref8
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref9
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref9
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref9
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref9
https://www.digitalocean.com/
https://www.djangoproject.com/
https://www.docker.com/
https://www.docker.com/customers/
https://www.docker.com/customers/
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001232
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001232
http://dx.doi.org/10.1061/(asce)1084-0699(2004)9:3(161)
http://dx.doi.org/10.1061/(asce)1084-0699(2004)9:3(161)
http://downloads.esri.com/support/whitepapers/other_/arcgis-server_90.pdf
http://downloads.esri.com/support/whitepapers/other_/arcgis-server_90.pdf
http://dx.doi.org/10.1016/j.envsoft.2010.10.008
http://dx.doi.org/10.1016/j.envsoft.2010.10.008
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref18
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref18
http://giovanni.gsfc.nasa.gov/giovanni/daacbin/wms_ag4?VERSION=1.1.1&REQUEST=Getcapabilities&service=wms
http://giovanni.gsfc.nasa.gov/giovanni/daacbin/wms_ag4?VERSION=1.1.1&REQUEST=Getcapabilities&service=wms
http://giovanni.gsfc.nasa.gov/giovanni/daacbin/wms_ag4?VERSION=1.1.1&REQUEST=Getcapabilities&service=wms
http://giovanni.gsfc.nasa.gov/giovanni/daacbin/wms_ag4?VERSION=1.1.1&REQUEST=Getcapabilities&service=wms
http://giovanni.gsfc.nasa.gov/giovanni/daacbin/wms_ag4?VERSION=1.1.1&REQUEST=Getcapabilities&service=wms
http://giovanni.gsfc.nasa.gov/giovanni/daacbin/wms_ag4?VERSION=1.1.1&REQUEST=Getcapabilities&service=wms
http://giovanni.gsfc.nasa.gov/giovanni/daacbin/wms_ag4?VERSION=1.1.1&REQUEST=Getcapabilities&service=wms
http://giovanni.gsfc.nasa.gov/giovanni/daacbin/wms_ag4?VERSION=1.1.1&REQUEST=Getcapabilities&service=wms
http://disc.sci.gsfc.nasa.gov/hydrology/data-rods-time-series-data
http://disc.sci.gsfc.nasa.gov/hydrology/data-rods-time-series-data
http://academicworks.cuny.edu/cc_conf_hic/230
http://academicworks.cuny.edu/cc_conf_hic/230
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref23
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref23
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref23
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref23
http://www.goldsim.com/Home/
http://apps.tucson.ars.ag.gov/rhem/
https://developers.google.com/maps/web/
https://developers.google.com/maps/web/
http://grass.osgeo.org/download/
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref71
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref71
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref71
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref30
http://www.highcharts.com/
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref32
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref32
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref32
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref33
http://dx.doi.org/10.1016/S1364-8152(00)00062-1
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref35
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref35
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref35
http://dx.doi.org/10.1111/1752-1688.12387
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref37
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref37
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref37
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref37
http://dx.doi.org/10.1016/S1364-8152(03)00156-7
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref39
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref39
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref39
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref39
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref40
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref40
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref40
http://dx.doi.org/10.1016/j.envsoft.2013.09.008
http://dx.doi.org/10.1016/j.envsoft.2013.09.008
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref42
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref42
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref42
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref42
http://dx.doi.org/10.1016/j.envsoft.2005.12.004
http://dx.doi.org/10.1016/j.envsoft.2005.12.004
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref44
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref44
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref44
http://dx.doi.org/10.1029/2003JD003823
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref46
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref46
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref46
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref47
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref47
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref48
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref48
http://www.opengeospatial.org/resource/products
http://www.opengeospatial.org/resource/products
http://ckan.org/
http://opensource.org/osd-annotated
http://python.org/about/
http://python.org/about/
http://renci.org/
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref54
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref54
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref54
http://dx.doi.org/10.1016/j.envsoft.2005.05.013
http://dx.doi.org/10.1016/j.envsoft.2005.05.013
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref56
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref56
http://doi.org/10.1007/BF01029783
http://doi.org/10.1007/BF01029783
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref58
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref58

Ding, D., Noman, N.S., David, C.H., Pappenberger, F., Zsoter, E., 2016. A high-

resolution national-scale hydrologic forecast system from a global ensemble
land surface model. J. Am. Water Resour. Assoc. 52 (4), 950e964. http://

dx.doi.org/10.1111/1752-1688.12434.
Steiniger, Stefan, Hunter, Andrew J.S., May 2013. The 2012 free and open source GIS

software map e a guide to facilitate research, development, and adoption.

Comput. Environ. Urban Syst. 39, 136e150. ISSN 0198-9715 http://dx.doi.org/10.
1016/j.compenvurbsys.2012.10.003.

Steiniger, S., Weibel, R., 2010. GIS Software: a Description in 1000 Word. Retrieved
from London CB. http://www.zora.uzh.ch/41354/1/Steiniger_Weibel_GIS_

Software_2010.pdf.
Sun, A., 2013. Enabling collaborative decision-making in watershed management

using cloud-computing services. Environ. Model. Softw. 41, 93e97.

Swain, N.R., Latu, K., Christensen, S.D., Jones, N.L., Nelson, E.J., Ames, D.P.,
Williams, G.P., 2015. A review of open source software solutions for developing

water resources web applications. Environ. Model. Softw. 67 (0), 108e117.
http://dx.doi.org/10.1016/j.envsoft.2015.01.014.

Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C., 2004. The gravity recovery and

climate experiment: mission overview and early results. Geophys. Res. Lett. 31
(9), 1e4. http://dx.doi.org/10.1029/2004GL019920.

Tarboton, D., Idaszak, R., Horsburgh, J., Heard, J., Ames, D., Goodall, J., Arrigo, J., 2014.

HydroShare: advancing collaboration through hydrologic data and model
sharing. In: Ames, D.P., Quinn, N. (Eds.), Paper Presented at the International

Environmental Modelling and Software Society (IEMSs) 7th International
Congress on Environmental Modelling and Software San Diego, California, USA.

In: http://www.iemss.org/society/index.php/iemss-2014-proceedings.

Tethys Platform, 2016. Tethys Platform Project Steering Committee. Retrieved from.
http://www.tethysplatform.org/project-steering-committee.

Thompson, C., Cechini, M., Huang, T., Roberts, J., Alarcon, C., Boller, R., Murphy, K.,
Plesea, L., Ilavajhala, S., Schmaltz, J., 2014. Gibs: a Rich Visual Interface to NASA's

Earth Science Data Holdings, AGU Fall Meeting Abstracts, p. 3799.
USDA Forest Service, 2015. Uinta-wasatch-cache National Forest - Resource Man-

agement. Retrieved from. http://www.fs.usda.gov/detailfull/uwcnf/

landmanagement/resourcemanagement/?cid¼fsem_035491&width¼full.
Walker, J.D., Chapra, S.C., 2014. A client-side web application for interactive envi-

ronmental simulation modeling. Environ. Model. Softw. 55 (0), 49e60. http://
dx.doi.org/10.1016/j.envsoft.2014.01.023.

Xia, Y., Ek, M., Wei, H., Meng, J., 2012. Comparative analysis of relationships between

NLDAS-2 forcings and model outputs. Hydrol. Process. 26 (3), 467e474. http://
dx.doi.org/10.1002/hyp.8240.

N.R. Swain et al. / Environmental Modelling & Software 85 (2016) 11e2626

http://dx.doi.org/10.1111/1752-1688.12434
http://dx.doi.org/10.1111/1752-1688.12434
http://dx.doi.org/10.1016/j.compenvurbsys.2012.10.003
http://dx.doi.org/10.1016/j.compenvurbsys.2012.10.003
http://www.zora.uzh.ch/41354/1/Steiniger_Weibel_GIS_Software_2010.pdf
http://www.zora.uzh.ch/41354/1/Steiniger_Weibel_GIS_Software_2010.pdf
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref62
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref62
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref62
http://dx.doi.org/10.1016/j.envsoft.2015.01.014
http://dx.doi.org/10.1029/2004GL019920
http://www.iemss.org/society/index.php/iemss-2014-proceedings
http://www.tethysplatform.org/project-steering-committee
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref72
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref72
http://refhub.elsevier.com/S1364-8152(16)30462-5/sref72
http://www.fs.usda.gov/detailfull/uwcnf/landmanagement/resourcemanagement/?cid=fsem_035491&width=full
http://www.fs.usda.gov/detailfull/uwcnf/landmanagement/resourcemanagement/?cid=fsem_035491&width=full
http://www.fs.usda.gov/detailfull/uwcnf/landmanagement/resourcemanagement/?cid=fsem_035491&width=full
http://www.fs.usda.gov/detailfull/uwcnf/landmanagement/resourcemanagement/?cid=fsem_035491&width=full
http://www.fs.usda.gov/detailfull/uwcnf/landmanagement/resourcemanagement/?cid=fsem_035491&width=full
http://dx.doi.org/10.1016/j.envsoft.2014.01.023
http://dx.doi.org/10.1016/j.envsoft.2014.01.023
http://dx.doi.org/10.1002/hyp.8240
http://dx.doi.org/10.1002/hyp.8240

	A new open source platform for lowering the barrier for environmental web app development
	Original Publication Citation
	BYU ScholarsArchive Citation
	Authors

	A new open source platform for lowering the barrier for environmental web app development
	1. Introduction
	2. Software description
	2.1. Tethys Software Suite
	2.1.1. Spatial database
	2.1.2. Geoprocessing
	2.1.3. Map rendering
	2.1.4. Visualization
	2.1.5. Distributed computing
	2.1.6. Docker installation

	2.2. Tethys Software Development Kit
	2.2.1. Software APIs
	2.2.2. App development framework
	2.2.3. Command Line interface

	2.3. Tethys Portal

	3. Results
	3.1. Applications
	3.1.1. Streamflow Prediction Tool
	3.1.2. Canned GSSHA
	3.1.3. Parley's Creek Management Tool
	3.1.4. Data Rods Explorer
	3.1.5. Snow Inspector App
	3.1.6. EPANET web app

	3.2. Deployments
	3.2.1. Tethys Platform demo server
	3.2.2. HydroShare

	3.3. Community
	3.4. Qualitative analysis

	4. Discussion
	4.1. Software hurdle
	4.2. Orchestration hurdle
	4.3. Web development hurdle
	4.4. Deployment hurdle

	5. Conclusion
	Software availability
	Acknowledgements
	References

