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Abstract: Effective resistance to intellectual property theft, reverse engineering, and hardware Trojan
insertion in integrated circuit supply chains is increasingly essential, for which many solutions have
been proposed. Accordingly, strong attacks are also designed in this field. One way to achieve the
above goal is obfuscation. The hardware obfuscation method hides the primary function of the circuit
and the normal Netlist from the attacker by adding several key gates in the original Netlist. The
functionality circuit is correct only if the correct key is applied; otherwise, the circuit is obfuscated.
In recent years, various obfuscation methods have been proposed. One is logic locking, the most
prominent hardware protection technique since it can protect against untrusted items. Logic locking
induces functional and structural changes to a design even before the layout generation. We secured
the circuit against hardware Trojan insertion with a secure logic locking method based on the insertion
of key gates in interference mode. We call our proposed method Secure Interference Logic Locking,
SILL. SILL is based on minimum controllability in paths with maximum fan-out. In this method, we
have reduced the number of key gates required for circuit obfuscation and created the maximum
Hamming distance between normal and obscure outputs. In addition, the key gates are added to
the circuit’s complete interference, and the AES algorithm is used to generate the key. Our proposed
method, SILL, was simulated in the Vivado simulation environment; the algorithms used in this
method were prepared in VHDL language and designed to allow parallel execution, then applied on
the original Netlist of the ISCAS85 benchmark circuits. By analyzing and comparing the results of
this simulation to recent works, the amount of hardware consumption has decreased (about 5% space
consumption and about a 0.15-nanosecond time delay). Then, the SAT attack algorithm was tested
on ISCAS85 benchmark circuits that were obfuscated with SILL. The execution time of the attack in
the second attempt was 0.24 nanoseconds longer compared to similar recent works, and it timed out
in the fourth attempt. The resistance of our proposed method, having less hardware overhead and
higher speed is more effective against SAT attacks than the existing conventional methods.

Keywords: hardware Trojans; hardware obfuscation; logic locking; key interference; convergence

1. Introduction

Manufacturers are shifting to cheaper and faster production in response to the rising
demand for electronics. To speed up design and reduce costs, unreliable, low-cost centers
are responsible for building these components, leaving ICs vulnerable to enemies. One
critical challenge in this field is the insertion of hardware Trojans (HTS) in integrated
circuits. HTs refer to malicious modifications to circuits to leak secret information or
change the performance or functionality of the design. These modifications are added
maliciously to the original design by the attacker for specific purposes. A hardware
Trojan consists of two parts, including a trigger and payload. It is activated by the trigger
output signal propagation toward the payload; the attacker controls this signal. Trojan
insertion is performed in several ways, including changing one or more bits of the bitstream
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configuration for one or more look-up tables (LUTs), changing routing elements and flip
flop (FF) contents, or inserting tiny pieces into the original design.

Enemies try to hide Trojans so that traditional manufacturing tests would not be
capable of detecting them. As a result, Trojan testing and detection mechanisms are costly
and have a low success rate. The timely application of preventive techniques can help
protect ICs against attacks by hardware Trojans. One way to prevent hardware Trojan
insertion is hardware obfuscation. The circuit’s functionality becomes obscure for the
attacker using this method, and reverse engineering becomes difficult. One method of
hardware obfuscation is the logic locking of ICs. By inserting additional logic into the
circuit, its functionality is in two states, normal and obfuscated. The correct key is activated
in normal mode [1,2] if the correct key is available.

Enemies try to insert HTs into the original circuit design so the circuit can be exploited
away from the designer’s view and operate properly in its natural state. They change its
functionality when they want to disrupt or abuse the circuit. As a result, they frequently use
untested signals in normal test patterns. HTs are inserted into trivial or unused hardware
spaces. In a nutshell, they use small, unused spaces and low testability signals. For this
reason, conventional test patterns cannot detect hardware Trojans and require new and
expensive test patterns.

Timely use of preventive techniques can protect ICs against hardware Trojan attacks
at a lower cost. One way to prevent hardware Trojan insertion is hardware obfuscation.
Obfuscation techniques transform one design into another form that is still similar to the
original executable design, while the new design is more resistant to enemies. Additional
logic is inserted into the hardware to hide the original design’s structural and operation
characteristics, preventing hardware Trojan insertion by untrusted factories. Key gates
are inserted gates that use a key-based design for obfuscation. Obfuscated designs are
those in which the design is obfuscated, and the user enters incorrect keys, resulting in
incorrect output.

In recent years, various methods for hardware obfuscation have been proposed, one
of them being logic locking. In logic locking, by adding several key gates to the main
Netlist of the circuit, the function of the circuit is locked to the attacker. Various logic
locking methods have been presented, and new attacks have been designed. Different logic
locking techniques are defined as random, fault analysis-based, key interference-based,
and one-way function-based logic locking [3,4].

In the fault-based logic locking method, the key gates are placed in the circuit locations
obtained in the fault analysis. In interference logic locking, key gates are added to the
circuit in a dependent manner. In one-way function-based logic locking, the key used in
the key gates is generated using cryptographic functions or algorithm [3–7].

Fault-based logic locking is less used because it can be extracted by fault analysis tests
and has little resistance to attacks. Locking logic randomly, while having low complexity,
because it adds key gates regardless of the circuit design, may be placed in the wrong
places of the circuit. The interference logic locking method is more secure than the previous
two methods because the keys are interdependent, and the attack successfully finds all
the keys. Generating keys is one of the security challenges of logic locking methods. Key
generation using cryptographic functions and algorithms can increase the level of security
and complexity of attacks [3,4].

For criteria to calculate security, different logic locking methods are proposed. Criteria
such as output corruptibility, clique size, number of distinguishing input patterns (# of
DIPs), percentage of key bits recovered, and execution time can be expressed to evaluate the
security level of logic locking methods. The amount of output corruption is the Hamming
distance between the correct output and the output obtained when an incorrect key is
provided. The number of key gates that interfere with each other is called the clique
size. Distinctive input patterns are special input patterns that contribute to the success
of key-pruning attacks such as SAT. The execution time of an attack can also be used to
demonstrate the resilience of the logic locking technique against attack. Sometimes, certain
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attacks may achieve correct output by only finding a subset of key bits. The success rate of
these attacks is determined by the percentage of key bits that are correctly recovered [7].

Today, the security of integrated circuits seems necessary to prevent the insertion
of hardware Trojans. Papers [8–11] have presented methods to prevent the insertion of
hardware Trojans. They are examined in detail in Section 3.

In references [8–11] hardware redundancy and delay are greater than usual. In this
paper, our effort is to provide a method that can reduce the delay and hardware overhead
while maintaining the positive features of the previous methods.

The critical challenge of digital technologies is outsourcing production and manufac-
turing to foreign centers due to the need for quick and low-cost construction. Therefore,
the security of the hardware is jeopardized. On the other hand, the integrated circuits have
become small and fast; consuming space and high delay are not acceptable to secure them.
Researchers should propose security solutions for hardware by reducing the overhead of
consumed space and delay.

This research is one with practical goals, facilitating the development of practical
knowledge on the hardware security of integrated circuits to prevent the insertion of
hardware Trojans. This research is quantitative research in which the simulation tool is
used. We used the descriptive method to validate simulation software on the Netlist of
standard benchmark circuits. The things that make this research different from previous
research in providing hardware security in the design stage for integrated circuit factories
are as follows:

• We considered the need for more hardware space for new integrated circuits to add
the number of key gates.

• We paid attention to the speed of today’s integrated circuits and considered the amount
of imposed delay.

• We reviewed new attacks and considered resistance against them.

The remainder of the paper is structured as follows. Section 2 reviews relevant work
in recent years. In Section 3, the primary purpose of the paper is stated, and the steps of the
Secure Interference Logic Locking (SILL) method are described. Section 4 elaborates on the
steps of implementing the proposed method. Section 5 compares our proposed method
with similar methods presented in [10,11]. Finally, Section 6 concludes the paper.

2. Background

HTs are malicious circuits intentionally inserted into the system to change the per-
formance and functionality of the design. Sometimes, these changes are applied to the
circuit to disclose essential and confidential information (sometimes, this malicious circuit
is designed for information leakage without modifying the system specification). They are
sometimes used to change the functionality of the original design. They are also sometimes
utilized to gain control of the system, and the attacker’s purpose is sometimes to fail the
circuit. Recently, various solutions have been proposed to detect and prevent hardware
Trojan insertion [10–12]

It is challenging to test and detect malware due to its specific nature (malicious and
intentional changes). On the other hand, the attacker must have enough information about
the original design to make the most of it. Prevention techniques should consider these
two points. So, the original design must be hidden from the attacker.

It has a small unused space between normal operating cells. Enemies may use these
small slots to insert HTs. Therefore, designers often try to fill unused spaces with non-
operating filter cells and drastically increase the circuit’s compression. On the other hand,
malicious factors can quickly and easily identify the filled circuitry spaces and fill them
with a malicious circuit. Therefore, the filled space must be hidden to prevent HTs from
being inserted with hardware Trojans.

Another solution is to obfuscate the original design (circuit and design functionality)
from an attacker’s point of view. Reverse engineering becomes complicated for the attacker
as the obfuscation becomes complex. In this technique, the design is obscure; therefore, the
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attacker cannot analyze the circuit to manipulate the design. By obfuscating the ICs, the
circuit will function properly if the correct key is inserted. Moreover, eavesdropping may
not be effective because the validity of the outputs depends on the correct key insertion,
which is hidden from the attacker. Therefore, the correct functionality of the design is
hidden from the attacker, who thus cannot disturb it. Various obfuscation methods have
been proposed, including logic locking.

2.1. Hardware Obfuscation Techniques

Obfuscation is a powerful tool to hide circuit design from enemies. Hardware en-
cryption methods and obfuscation techniques hide communications between chips while
keeping input/output signals secret. Furthermore, the functionality of the original design
is hidden from the attacker by using logic locking methods. Obfuscation techniques are
divided into the following three types [3,13–15]:

• Combined Obfuscation

It is a key gate logic-based obfuscation technique developed by the Chakraborty
Research Group in 2009, which many researchers later improved. The idea behind this
technique is to apply additional logic to the original design. Additional logic key gates
are XOR/XNOR and MUX. Operational obfuscation makes reverse engineering extremely
challenging. Therefore, untrusted factories will need help to fully understand the design
under construction, and it will be challenging to insert hidden HTs into the obfuscated
design [1].

• Input Signal Obfuscation

This method prevents enemies from gaining access to the input/output signals and
altering or controlling them to activate the Trojan. Signals will be hashed, and circuit launch
will only be possible if the design is obfuscated by implementing the wrong keys. They
must use a coding method for their input to synchronize the operation of different circuit
parts. Waxman et al. recommend using a uniform encryption method to make encrypted
input data for the system as simple as possible [16].

Study [2], for example, presents the EOP solution for reducing these threats. EOP
uses the flow encryption method to encrypt internal chip communications. Encryption and
decryption are possible thanks to dedicated clock modules in this case. These modules
ensure that the flow encryption is correctly synchronized while preventing manipulation.
In addition, EOP employs a printed circuit board (PCB) level obfuscation method to protect
the equipment from reverse engineering and introducing hardware Trojans (Figure 1).
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Figure 1 depicts blocks of various colors. The blue blocks are encryption-capable circuit
components, while the yellow blocks are obfuscated circuit components that can form
secret encrypted communications with the blue blocks. The chips must support encryption
(blue block), and the yellow blocks employ all obfuscation techniques to ensure hardware
security [2]. Because the circuit parts in the green blocks lack encryption capabilities, all
communications must be normal. The encrypted communications are indicated by the
dotted arrows, while the continuous arrows indicate normal communications. The circuit
section with obfuscation and encrypted communications is, of course, the most secure.

2.2. Logic Locking Techniques

Combined logic locking is a method of hardware obfuscation. This method adds a
group of key gates to the main design. The operation circuit will produce the correct output
when the correct key is pressed on the locked inputs. By controlling the key registers, the
locking mechanism adds XOR and MUX gates to specific circuit paths (Figure 2). Study [4]
presents an Anti-SAT attack approach. It complicates SAT attacks by increasing their key
size, making them computationally infeasible.

1 
 

 
Figure 2. Combined logic locks [4]. The figure depicts a general overview of logic locking techniques,
with a series of key gates and locked key inputs used to lock the circuit. The key input connects to
a memory on the chip to be IC locked. Hence, the only way to maintain proper performance is to
configure the correct key in the chip memory. NOT (a,b), XOR (c), and Multiplexer (d) gates are
examples of these gates [3].

This thesis must include an anti-manipulation chip protector (the AntiSAT) to prevent
internal signal searches in the memory of the key chip.

Various studies have presented various methods for selecting appropriate key gate-
adding signals. Randomly adding key gates to the circuit (random logic locking), in
locations in the test patterns with high error probability (fault analysis-based logic locking),
or adding key gates to create interferences in the circuit (key interference-based logic
locking) are some of these methods [3].

These methods are thoroughly described and compared in studies [5,17,18]. In addi-
tion, we summarize them in the following section.

The XOR/XNOR keys are added to random locations to lock a design using the
random logic locking method. A random logic locking sample with two K1 and K2 key
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gates is shown in Figure 3a. The key gates are distributed evenly throughout using random
logic locking. The random nature of this method is due to its lack of attention to the main
circuit design while adding the key gates, making it vulnerable to attacks [3].
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Logic locking based on fault analysis aims to eliminate chip black boxes. For specific
patterns, random logic locking may produce correct outputs with incorrect keys, but fault
analysis-based logic locking guarantees a maximum output corruption rate when incorrect
keys are used. When using the wrong keys, output corruption is the difference between
correct and incorrect outputs.

Fault analysis-based logic locking places key gates in high-fault-tolerance locations.
The effects of incorrect keys will be the same as those of stuck-at faults in the key gate
outputs. Therefore, fault analysis/simulation software can pinpoint the most efficient
location in any circuit. The fault analysis-based logic locking method is used to lock in
Figure 3b. Because the key gates are often inserted back-to-back, the logic locking security
is weakened because multiple correct key values are created [3,5,19].

Strong logic locking, also known as key interference-based logic locking, reduces
vulnerability by maximizing key gate interferences. As the interference between key gates
grows, the attacker is forced to examine several key combinations [5].

For example, consider Figure 3c. The K1 and K2 key gates, inserted using the key
interference-based logic locking method, are included in this. K1 and K2 create interference
in the path of their main outputs, as can be seen. As a result, the attacker cannot determine
the K1 or K2 sensitivity to an initial output. All keys must be available to restore normal
circuit operation, and more than a single key will be required.

The logic locking block considers two encryption blocks with different keys for
function-based input. They will need more than one key for each input to obtain to
the correct circuit output. By accepting more overhead, this method improves security.

The g1 and g2 functions generate the K1 and K2 keys, respectively, while their AND
function generates the final key, as shown in Figure 4a. The correct key is generated
when two right keys enter the AND gate. However, to increase security, this method adds
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considerable overhead. Two keys require four XOR gates, two g1 and g2 functions, two
AND gates, and one NAND gate, as shown in Figure 4b.
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Figure 4. Complementary logic locks [5].

Like AES, the one-way function-based logic locking (ORF) method generates its final
key using fixed keys. A set of key inputs are connected to the ORF outputs in the locked
circuit, as shown in Figure 5. The tamper-proof memory contains hidden keys for one-way
function inputs. When the logic locking transmits the key inputs into the ORF circuit, the
attacker’s execution time increases dramatically. AES uses a fixed key and runs as a random
simulation function. Two circuits (one-way function circuit and locked) must synthesize to
prevent attacks. Another feature of this fixed AES key is that input calculations based on
its outputs are only possible when the key is known. Thus, determining the AES inputs
and reverse engineering the design outputs becomes impossible [3,5,13].
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2.3. Phase of Hardware Obfuscation

To prevent the insertion of hardware-based Trojans, the hardware is obfuscated. In
this method, several key gates are added to the Netlist of the normal circuit. If the correct
key is entered, the circuit functions as usual; otherwise, the circuit is put in obfuscation
mode. Hardware obfuscation is key-based [5,12,14–16,20].

In general, hardware obfuscation is realized in two main stages. In the first stage of
hardware obfuscation, several items (described in the next paragraph) must be selected,
which is called selection. In the second step, key gates are added to the circuit according to
the items selected in the previous step, called insertion.

In the selection stage, the first task is to select the number of key gates that can be
added to the circuit. For this reason, the circuit hardware must be checked, and the number
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of key gates allowed by adding to it should be considered. The second task is to choose
the place to insert the key gates in the Netlist of the circuit. For this reason, the circuit
hardware must be checked, and the signals and paths that provide the best protection of
the Netlist circuit against the insertion of Trojans should be identified. In the end, the key
generation method is selected. Whether the key is generated with random functions or
using cryptographic algorithms is chosen depending on the cost and the expected level of
security.

In the insertion stage, key gates are added in selected locations with one of the methods
(random, fault tolerance, interference, etc.) [5,6,11,19].

2.4. Convergence Degree

The number of other gates with shared inputs and outputs used as another gate’s
input determines a gate’s convergence degree (gates with the highest effect on the final
circuit output).

The proper key gate location selection criteria are gate convergence degrees. It cal-
culates each gate’s convergence degree from the main and places the first key gate in the
output of the gate with the highest convergence degree. We must calculate the convergence
degree of each gate if we consider the circuit from Figure 6 for the first key gate location
decision making. The number above each gate indicates this value. Gate G3, for example,
converges with gates G1 and G4. All other gates have a value of less than 2. Thus, gates G1
and G3 are potential candidates for the first key gate. By inserting the first key gate G1 or
G3 input, the result is a group size of six, the same as when the first key gate is inserted in
another location. From these two gates, the signal with the lowest testability is chosen. The
testability of G1 is low.
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The first location for inserting the key gate is the gate with the highest convergence
degree. Based on the convergence degree, K1 is added as the first element in the set after
selecting the first key gate. The next stage creates a dependency between the next key gate
and the previous one, making the reverse engineering process more difficult. In Figure 7,
both the G1 and G3 gates, for example, have a high convergence degree. It creates an
interference pattern by combining the K2 and K3 key gates. This circuit can correctly
calculate the y1 and y2 outputs when all three keys are available [13–17].
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2.5. Key Interference-Based Logic Locking

Strong logic locking, also known as key interference-based logic locking, reduces
vulnerability by maximizing key gate interferences. As the interference between key gates
grows, the attacker is forced to examine several key combinations.

The reference papers used for comparison with the proposed method in Section 5 are
presented in this section, along with their benefits and drawbacks.

Paper [8] evaluates multiple logic locking obfuscation methods to present a new
method. The Random Logic Locking (RLL), Logic Cone Size-Based (LCSB), and Secure
Logic Locking (SLL) methods are investigated in this study. The LCSB method calculates
each gate’s fan-in/fan-out value as their cone size using Equation (1). For obfuscation, it
chooses the gates with the largest cone sizes.

pi = 0.5×
(

|FIi|
max(|FIi|)

+
|FOi|

max(|FOi|)

)
(1)

Equation (1) calculates cone sizes [9].
The SLL method weights each group of keys after dividing them into groups. It gives

the convergence keys a weight of 10, the dominant keys a weight of 5, and the isolated
keys a weight of 0 (the key types are described). For all three methods, key gate insertion
algorithmis used to present different key insertion methods (MUX, XOR) (random, SLL,
LCSB). In this study, the key gates are not interdependent. SAT attacks will make it easy for
the attacker to find the keys.

Study [9] uses signal testability and fan-in/fan-out values to find the obfuscation
candidate gates. It uses the AES-128 encryption algorithm to encrypt these gates after
being selected. This study compares the AES encryption method to the MUX and XOR
key gate insertion methods. The results show that AES has a higher level of security. This
method has a high overhead and necessitates encryption chips, so it is not suitable for all
integrated circuits.

The weighting method is used in the study [11]. The key inputs are not directly routed
to the key gates in this method; instead, they are combined first in controller gates (i.e., each
key input directly interferences with at least another key input). In Figure 6, for example,
the attacker must control K2 to propagate K1 using CG1 or vice versa, whereas the same
is true for propagating K1 or K3 using CG2 (they must control K3 and K1, respectively).
They must control all gate input keys to propagate each key bit using each controller gate.
The number of controller gates used for key propagation determines the circuit’s security
and complexity.
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As shown in Figure 8, the method used in this paper is resistant to SAT attacks,
but it has a space overhead due to the use of controller gates alongside key gates with
significant delay.
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The main challenge of integrated circuits arises from the outsourcing of their manufac-
turing to unreliable factories. Meanwhile, intellectual property theft of the IP core, reverse
engineering, and insertion of hardware Trojans all threaten the security of integrated cir-
cuits. In recent years, researchers have paid particular attention to the hardware security
of integrated circuits in the design phase. On the other hand, according to technological
development, circuits have become small and fast. Therefore, there is not enough space
and time to keep them safe. This article focuses on reducing consumed space overhead and
delay while providing a secure method for designing integrated circuits.

3. Prior Work and Motivation

In recent years, hardware Trojan countermeasures for integrated circuits have been
proposed. The most critical challenge in this regard is that they face failure by SAT attacks.
This section discusses a detailed review of recent studies on preventing the insertion of
hardware Trojans in integrated circuits using the logic locking method.

The previous section demonstrates how logic locking is a trust-based integrated
circuit design method. Different techniques for obfuscation with the help of logic locking
techniques are used in studies [8,9,11], all of which create significant overhead to increase
security.

The paper [10] proposed a technique called “Prob-Lock” that can be applied to combi-
national and sequential circuits through a critical selection process. They used a filtering
process to select the best location of key gates based on various constraints. Each step
in the filtering process generates a subset of nodes for each constraint. The first filter,
called the most extended path constraint, separates the subset of nodes on the longest
paths in the circuit network list. The next constraint creates a subset of nodes connected
to low-dependency wires. The output wire of a gate is considered low-dependent if the
input wires to that gate have little effect on the output value. The critical path constraint is
the same as the longest path. However, instead of considering logical depth, they look at
timing information. This restriction is necessary because adding gates on the critical path
can break the circuit’s performance or change the timing characteristics. They removed the
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nodes on the critical path from the set of nodes that moved to this constraint. The resulting
subset leads to the nodes on the longest non-critical path.

The high security of producing keys using the AES encryption algorithm was demon-
strated in [10]. Other research has demonstrated the high security of key generation using
encryption algorithms similar to the ORF (one-way function-based) method. To obfuscate
combination circuits, we used key interference-based logic locking and the AES encryption
algorithm to generate keys.

While having the maximum Hamming distance between the normal and obfuscated
outputs, our proposed method has lower overhead and delay than other methods [9–11].
Hence, it can provide an acceptable level of protection against Trojan insertions for inte-
grated circuits. In the following, we give a detailed description of our method, which we
call SILL.

The method described in Section 2.3 has a shortcoming, as the output may not neces-
sarily be affected when a wrong key is applied. This method may be due to the insertion of
gates at random locations in the design. The proposed method was designed to replace the
random insertion of key gates with insertion based on a fault impact factor or by actuating
the probability of gates [7,21].

Because of the hardware Trojans, this method uses signals from these circuits, known as
rare signals, which cannot be tested using standard testability methods. These signals could
be more controllable, and attackers target signals with low controllability. By increasing the
security of these signals, we can reduce Trojan attacks and prevent attacker access. Because
these key gates can be placed in a more dependent (interfering) manner, finding all of
them could result in proper circuit performance, making the reverse engineering process
more difficult. To achieve higher design security, the difference between obfuscated circuit
output and main circuit output must be as large as possible, forcing the attacker to try as
many times as possible to find the correct performance (analysis). Finding the path that
creates the most obfuscation possible is necessary to increase security [22–25].

In paper [26], the authors examined state-of-the-art and up-to-date papers related to
hardware obfuscation by logic locking, in which the logical lock’s application, feasibility,
and efficiency were considered. They are evaluated and classified according to the following
criteria: effectiveness, lock effect at different levels of abstraction, threat model definition,
flexibility against physical attacks, manipulation, and their application in machine learning.
The authors of the paper argued that as the security and power of existing logic locking
techniques are constantly evolving through sophisticated logical and physical attacks, they
are questioned as rapidly as anti-locking approaches evolve.

1. Primitive: These approaches include EPIC, also known as random logic locking (RLL),
strong (interference-based) logic locking (SLL), and fault-based logic locking (FLL).

2. Point function: This was the first attempt against the Boolean satisfiability (SAT) attack,
which can prune the key space by ruling out incorrect keys in a fast convergence
approach, including (i) a small set of input patterns and (ii) observable at a tiny set of
POs7.

3. Cyclic: Cyclic logic locking will add key gates that control the possibility of adding/removing
combinational cycles into the circuit.

4. LUT/routing: Some logic locking techniques benefit from the full configurability of
look-up tables (LUTs).

5. Scan-based locking/blocking: These approaches, which provide access to the internal
parts of the circuit for test purposes, are almost inevitable in new modern ICs.

6. Timing-based: These methods lock the behavioral properties of the circuit, such as
timing. For example, DLL [6] introduces a custom tunable delay and logic gate.

7. EFPGA-based: Some recent studies have investigated a coarse-grained form of logic
locking in which redaction by the usage of embedded FPGA (EFPGA) is conducted at
the SoC level.

8. High-level RTL/HLS: These logic locking techniques have been implemented at the
gate level (or even at the transistor/layout level). They may need to be more capable of
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targeting all semantic information (defined and described at a higher level, including
high-level locking before synthesis/transition and compound locking (high level +
gate level)).

This paper provides a brief overview of defensive and offensive logistics activities.
This paper examines the main advantages and disadvantages of all the logic locking
techniques presented so far and can help all researchers, IP vendors, and SoC designers
interested in logic locking to move quickly and identify the most advanced technologies.

The research presented in [27,28] investigated different methods of key gate insertion
based on its location. The author of this research divided the logic lock methods based on
key insertion into the following four groups:

• FIC: Focusing on the fan-in cone of primary outputs

Due to the nature of SAT attacks that operate on a structure-like binary decision
tree, deepening the search and branching for the SAT solver increases the complexity
significantly.

• HSC: Focusing on higher skew gates in FIC.

Controllability can be defined as the effort/difficulty metric to control the logic value
of a wire in a circuit. Therefore, cells with lower controllability are better candidates for
locking.

• MFO-HSC: Focusing on gates with minimum fan-out.

The development of FIC is indeed suitable, but the probability of having a fan-in cone
without a common gate with other fan-in cones is almost zero. Therefore, paying attention
to fan-outs with a common gate at the input is necessary.

• MO-HSC: Focusing on gates with the most negligible impact on Pos.

Based on observations in MFO-HSC, some gates have more than one output fan, but
they affect only one output. To have the most significant Hamming distance between the
normal output and the obfuscated output, the gates that have the most negligible effect on
the original output are removed from the list of candidates.

This research that has been conducted in recent years affirms our goal to find the most
efficient way of logic locking. At the same time, they emphasized that wires with low
controllability and paths with maximum fan-in are also suitable for locking.

The primary purpose of the thesis in Ref. [28] is to provide a new method for logic
locking. Unlike almost all previous logic locking solutions that rely on XOR-based locking,
they investigated and evaluated non-XOR-based logic locking solutions, including LUT
and MUX-based solutions. They first introduce LUT-Lock as a logical LUT-based locking
technique that relies on some heuristic placement strategies. Then, they introduce Full-Lock
as a new MUX-based logic lock solution. They show how MUX-based routing blocks
can generate SAT-hard samples while the overhead is significantly lower than the LUT-
based locking solution. They comprehensively evaluated LUT-based locking solutions
in terms of LUT size, the number of LUTs, and replacement strategy. Their experimental
results demonstrate a high overhead rate in this group of techniques. They also introduced
Full-Lock as a new routing-based locking solution, which builds SAT-hard instances at
lower overhead compared to LUT-based locking solutions. Then, they introduced a more
advanced routing-based locking technique called InterLock, which functions by embedding
logic within the routing block.

The authors of the thesis in Ref. [29] introduced a more advanced routing-based
locking technique called InterLock, which functions by embedding logic within the routing
block. They used logic locking for security against hardware Trojan insertion in sequential
and non-sequential circuits. We only refer to its combined part.

In the paper [29], it is shown that the use of various hardware obfuscation techniques
is an effective way to prevent SAT attacks. The methods investigated in this work provide
different resistance levels to SAT attacks. Random gate placement and ORF (one-way
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random function to be used for key generation) insertion provides the highest security,
sometimes increasing the attack time from a fraction of a second to several days. Meanwhile,
they say that each type of implementation and the number of key gates added have a
different amount of overhead to a different level of security provided. They compared the
methods presented in the thesis, such as random, SSL, etc. When using ORF, the overhead
of the key generation algorithm itself must be considered in addition to the obfuscation
overhead. The overhead is one gate per key bit for all logic locking methods discussed.
Their tests showed that the attacks lasted up to five days with the methods they used.

References [27–29] are all works conducted in the past two years. They have provided
solutions that are highly resistant to SAT attacks. We have also presented a solution that, in
addition to using the optimal number of gates for logic locking, is comparable in resistance
to SAT attacks.

Research [7] presents a comprehensive review of recent research in the field of
logic locking. At the same time, it examines logic lock attacks and finally states the
strengths/vulnerabilities of existing logic lock techniques. The authors of this research,
while expressing the security vulnerabilities of the hardware in its supply chain, have
considered locking the Netlist logic as one of the prevention methods. They gave the
following criteria for the security of the logic locking techniques:

Output corruptibility: The amount of output corruption is the Hamming distance
between the correct output and the output obtained when an incorrect key is provided. A
Hamming distance of 50% is desirable because it maximizes ambiguity for an attacker.

Clique size: The number of key gates that interfere with each other is called the Clique
size. By finding a single key bit without knowing the values of other key bits, primary
outputs cannot be accessed. The circuit clique size is the number of key gates that make up
the largest cluster in a clique.

The number of distinguishing input patterns (# of DIPs): Distinctive input patterns
are special input patterns that contribute to the success of key-pruning attacks such as SAT.

Percentage of key bits recovered: Sometimes, specific attacks may achieve correct
output by only finding a subset of key bits. The success rate of these attacks is determined
by the percentage of key bits that are correctly recovered.

Execution time: The execution time of an attack can also be used to demonstrate the
resilience of the logic locking technique against attack. The criteria presented in this paper
can be used to check SILL’s security level.

Paper [3] explains that today, machine learning (ML) has achieved significant success
in various research fields and academic and industrial communities. Hardware security
researchers also use it against hardware Trojan (HT) attacks. This paper described advanced
applications of ML-based approaches in HT defense studies. They identified relevant
achievements, challenges, and potential problems facing current research. The primary
purpose of this paper is to show the latest developments in the application of ML-based
techniques in HT defense sectors to provide a general understanding and a handbook for
those who want to engage in HT defense research.

Ref. [30] pointed out the dangers of outsourcing the manufacturing of integrated
circuits, including hardware Trojans. Various approaches have been developed to detect
and identify them based on conventional methods with machine learning. The testing and
diagnosis of integrated circuits after the hardware Trojan are complicated. In the paper,
they present a comprehensive review of research devoted to countermeasures against HTs
embedded in ICs. The overall work of the article is divided into four main categories: (a)
conventional HT detection approaches, (b) machine learning for external HT actions, (c)
design for security, and (d) runtime monitoring.

Physical solid unclonable function (PUF) is a promising solution for device authentica-
tion in resource-constrained applications but is vulnerable to machine learning attacks [22].

Ref. [31] proposed a new obfuscation technique for robust PUFs, called random set-
based obfuscation (RSO). Genuinely random numbers were used for poof outputs for
security against hardware Trojans. ML attacks become more difficult as the collection was
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updated. Experimental results show its advantages in solid resistance to ML attacks and
low hardware overhead.

In Ref. [32], by using artificial intelligence in the car and recognition with the help
of dimensional (3D) images, the cognitive abilities of vehicles were improved, allowing
them to recognize traffic signs, pedestrians, and obstacles to increase the intelligence of this
transportation system. This idea could be used to detect hardware Trojans in the primary
network Netlist and other security risks.

In Ref. [33], machine learning and artificial intelligence are used for general anomaly
detection methods, with small differences that are hard to discover. In the paper, they
proposed a memory-enhanced autoencoder approach to detect anomalies in IoT data. They
used small anomalies that are difficult to detect and are similar to hardware Trojans in
integrated circuits.

With the current research, we realized that machine learning is more helpful in detect-
ing hardware Trojans. It is used to prevent the insertion of hardware Trojans, which is the
subject of this discussion, only when it is based on PUF, such as in article [31]. Of course,
the purpose of our article is to prevent the insertion of hardware Trojans.

In this section, we have described different types of logic locking techniques estab-
lished in recent years. By examining the advantages and disadvantages of each of the recent
works in this field, it can be understood that all of them have tried to provide a method to
prevent the insertion of hardware Trojans resistant to new attacks by reducing the hard-
ware overhead method. While the secure design of integrated circuits is necessary against
vulnerabilities such as hardware Trojans, hardware overhead is also reduced. Recently,
integrated circuits have become smaller and faster, so they do not accept extra free space
and high delay to create security. This paper provides a secure design against hardware
Trojans with less hardware overhead than before.

4. Proposed Method for Secure Combinational Circuit (SILL)

Intellectual property theft of IP, reverse engineering, and insertion of hardware Trojans
in the supply chain of integrated circuits are the challenges of today’s digital world for
which many solutions have been proposed. Accordingly, strong attacks are also designed
in this field. This paper proposes a method called SILL to solve these challenges. The
following features and how to design and implement SILL are described in detail. At the
beginning of the design, it is necessary to identify the attackers’ threat model using the
features of Trojan-based attacks. In this threat model, the attacker has full access to the
obscure Netlist and has no basic knowledge of the internal functionality of the basic plan.
More precisely, the attacker needs to learn about the hierarchy of modules, synthesis steps,
or gates and signals.

If the design is wholly secured by one of the obfuscation methods, the attacker’s goal
is to find the main Netlist to insert the Trojans, which is possible only if the attacker can
see the correct keys. The attacker must remove the design from the obfuscation and obtain
the gate-level score list using various tools. Therefore, it is necessary to create obfuscation
so that it is difficult and time-consuming for the attacker to initially access the Netlist and
detect the circuit’s operation.

The major challenge of digital technologies is outsourcing production and manufac-
turing to foreign centers due to the need for quick and low-cost construction. Therefore,
the security of the hardware is jeopardized. On the other hand, the integrated circuits have
become small and fast; consuming space and high delay are not acceptable to secure them.
Researchers should propose security solutions for hardware by reducing the overhead of
consumed space and delay.

Our proposed method to prevent the insertion of hardware Trojans in the design stage
of integrated circuits has taken into account the following three factors:

1. Reducing the consumption space. We considered the lack of hardware space for new
integrated circuits to add the number of key gates.
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To reduce the number of key gates added to the circuit, we identified critical signals
and paths and only added key gates to them.

2. Delay reduction. We paid attention to the speed of today’s integrated circuits and
considered the amount of imposed delay.

To reduce the delay, we designed the logic part added to the circuit to execute it in
parallel. As a result, increasing the number of key gates is relatively quick.

3. Proper resistance against SAT attacks. We added key gates in such a way that the
complexity of SAT attacks was high.

When the key gates are added to the interference method, the complexity of the SAT
sentences is equal to the sum of the sentences of the geometric progression, which is more
than 2n.

The steps of this method to achieve factors 1–3 above are described below.
As we have mentioned, the Trojan inserted signals with low controllability. Therefore,

we chose signals with low controllability for obfuscation. We aimed to have the maximum
Hamming distance between the obfuscated and original outputs. Consequently, the most
significant fan-out paths were selected. Finally, a key gate was added to signals with low
controllability in paths with the highest fan-out.

For this purpose, Algorithm 1’s controllability of all circuit signals has been calculated
and sorted in descending order. Then, Algorithm 2 was used to find the critical paths with
the highest fan-out. Finally, in the critical paths, signals with low controllability for the
locking were selected, and the key gates were added to the Netlist of the circuit, completely
interfering with Algorithm 3. Algorithms 1–3 are described below. It should be noted that
the keys are generated in a one-way method with the AES algorithm.

As can be seen in Figure 9, SILL is implemented and implemented in four stages,
which are key generation, finding signals with minimum controllability, finding paths with
maximum fan-out, adding key gates in places with low controllability in paths with high
fan-out in interference, applying these four steps to the main circuit Netlist and creating an
obfuscation Netlist.
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This method selects the locations of key gates using two conditions: low controllability
and high fan-out. For this purpose, using Algorithm 1, the controllability of all signals
of the main Netlist of the circuit is calculated and arranged in descending order. Then,
using Algorithm 2, the number of fan-outs for all circuit paths from the primary inputs
to the main outputs is calculated and arranged in descending order. Finally, signals with
low controllability in paths with high fan-out are blocked by interference with the help of
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Algorithm 3. In the following, Algorithms 1–3 and the effect of each on the results of circuit
obfuscation are described in detail.

Algorithm 1: comput combinational controllability

Input:]
Output:cclist{
For all PIs,set cc0(i) = cc1(i) = 1;
For all other nods n, set cc0(n) = cc1(n) = ∞;
Working from PIs to POs, use cc0,cc1 equation to map logic gate iterate until the controllability
numbers stabilize in the feedback loop;
For any fanout stems z with branches z1,z2, . . . ,zn,cc0(z1) = cc0(z2) = . . . = cc0(z), cc1(z1) = cc1(z2)
= . . . = cc1(z);
For i = 1 to neltistsize, do

{swapped = false;
If cc0(i) > cc0(i + 1) then
swapped (cc(i), cc(i + 1));

swapped = true;} }

The results of Algorithm 1 make it impossible to access the signals targeted by the
hardware Trojan attacker. In addition to making it more difficult for hardware Trojan
attackers, this reduces the number of key gates required for locking logic, resulting in
hardware overhead.

Algorithm 2: calculated gate input size

Input: ]
Output: SNlist
Function: calculate the fan-out size
Assign size number(SN) 0 to all PI;
for any input that is shared with multiple Gates, for every Gate SN = SN + 1;
a label that Gate with the maximum IS of its inputs;
For i = 1 to the number of gates, do

{swapped = false;
If SN(i) > SN(i + 1) then
swapped (SN(i),SN(i + 1));

swapped = true;} }

In the outputs of Algorithm 2, the most effective signal in the output was identified.
At this stage, we aim to maximize the Hamming distance between the main output and
the obscure output. For this purpose, using Algorithm 2, we identify the paths that most
impact the output. These paths are the most significant branches in the circuit Netlist.

By using Algorithms 1–3, the hardware overhead (space consumption, delay) has
been reduced compared to similar tasks. Therefore, this method can be used to obfuscate
hardware that did not have enough space for the previous methods, or the delay of that
method would be a problem for them. Its resistance level against SAT attacks was checked.
For this purpose, we tested the SAT attack on the obfuscation circuit with the help of SILL
against the SAT attack algorithm. The attack execution time in the second attempt was
longer compared to similar tasks, and the attack timed out in the fourth attempt.

Therefore, this method can be used for hardware obfuscation circuits requiring a
higher level of security than previous methods.
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Algorithm 3: key_Gate insertion

Input:], CClist, SNlist, keysize
Output:keygatelocationlist,obfuselist
{ first key_Gate insert from the first Gate in SNlist;

Add the new key_Gate to keygatelocations;
Construct key graph:

For i = 2 to keysize, do{
Foundnon_mutable = false;
For each Gate in ] do{

I Gatej /∈ keygatelocation, then
Edgetype = {};

For each key_Gatek in the key at the location, do
Edgetypek = find Edgetype(Gatej, key_Gatek);

}
If every Edge ε Edgetypes is non_mutable, then{

Select the first signs from CClist that is inputs of Gatej;
Insert a key_Gate at this input of Gate;
Add the new key_Gate to keygatelocations;
}

Foundnon_mutable = true;
Break;}

If Foundnon_mutable == false then{
Select a Gatek _ location from SNlist;
Insert the first signsl from CClist that is input Gatek;
Insert a key_Gate to keygatelocations;}

Update key graph }}

5. Implementation of Our Proposed Method (SILL), the Level of Resistance to Attacks

In addition to explaining how to implement our method, this section tests its resistance
level against SAT attacks.

5.1. Implementation of Our Method (SILL)

In this section, SILL described in the previous section is explained in detail, as outlined
in Figure 9.

As shown in Figure 10, our method is based on three steps. We explain all the steps in
detail below. It should be noted that the circuits on which we implemented our method
are from validated and well-known ISCAS85 benchmark circuits, c499 and c432. We
used the VHDL programming language and then performed the simulation in the Vivado
environment so that both the consumption space and the execution time were clear. The
algorithm was executed in parallel, so increasing the number of key gates at runtime had
little effect. Our prevention method against hardware Trojan insertion in the design phase
is called Secure Interference Logic Locking (SILL).

In the first step, to reduce the number of key gates inserted into the main Netlist of
the circuit, we found signals from the circuit suitable for its insertion due to the nature
of the hardware Trojan. These signals had low controllability. With the help of Algo-
rithm 1, this allows the controllability of all circuit signals to be calculated and arranged in
descending order.

In the second step, to have the most significant Hamming distance between the main
output of the circuit and its obscure output, the paths that have the most significant
impact on the output of the circuit, which are the paths with the largest fan-out, are selected.
Algorithm 2 calculates the number of branches of circuit paths and sorts them in descending
order. Among them, the one with the maximum branching is chosen for obfuscation.

These two algorithms reduce the number of key gates inserted into the circuit and
increase the Hamming distance between the normal and obscure output.
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In the third stage of implementation, to have the necessary resistance against current
attacks such as SAT attack, using Algorithm 3, key gates are inserted into selected signals
from the outputs of Algorithms 1 and 2 based on the key interference method. Therefore,
the attacker needs to find all the keys for the attack to be successful. Because the keys
are dependent on each other, two by two, the complexity of the SAT function will be
geometrically exponential.

To understand the performance of our proposed method, we implemented the algo-
rithms on circuit c499 from the benchmark ISCAS85 and show the outputs below.

To better understand the stages of this method, we implemented the algorithms on the
c499 circuit (with the following specifications). This circuit’s diagram is shown in Figure 10.

Figure 11 depicts a circuit with two modules, TopLevel c499 and Correction. The
primary 111 circuit inputs with a 41-bit structure are R, IC, and ID. The S and ID signals are
the primary 112 internal signals with a 40-bit structure. Finally, the OD signals, which have
a 32-bit structure, are the primary 113 output.

We optimally added the number of used key gates to reduce hardware overhead.
Therefore, the first attempt in the first step is to identify the target signals of the attacker.
Low observable/controllable points in the main design are one type of potential unsecured
site for hardware attacks and the insertion of a functional Trojan, as discussed in Section 3.
With Algorithm 1, low controllability signals are found. Because of the large size of the
c499 and the difficulty of converting the application code into VHDL code, this algorithm
uses 200 clock pulses to sort the array. It can be accomplished with just one clock pulse, but
the resulting circuit is so large that it can be implemented only on high-level FPGAs.

The output of the first algorithm was sorted as follows, taking into account the circuit
signals and VHDL: SubscriptCC0 = { U = 25. E = 12. W = 12. T = 12. S = 11. XD = 7.
G = 4. XE = 3. XC = 2. XB = 2}CC1 = {E = 59. U = 49. T = 487. S = 11. · · ·}.
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Signal controllability of zero and one has been stored in the CC0 and CC1 arrays,
respectively. In both arrays, this method selects the signal with the highest value. The U
and E signals are the most appropriate options in this output. As a result, their OR function
produces the most valuable gate. In this stage, the designer can choose unsecured points
based on the attacker’s goal.

The first attempt in the first step is to identify the circuit input paths that are the most
critical and practical. The most effective paths are those with the highest fan-in/fan-out
values. The fan-in/fan-outs of the circuit, as mentioned in Section 3, have the highest degree
of convergence. To reduce the number of key gates and optimize the circuit overhead,
Algorithm 1 recognizes rare signals in high convergence paths.

Algorithm 2 calculates the convergence degree of the circuit’s gates and finds the best
possible path. The use of Algorithm 2 on the c499 circuit and the analysis of the results
reveal that the NOT gates (the U gate inputs) are the circuit’s most critical path. The S
signals are best for circuit obfuscation because they have the lowest controllability factor.

Then, the designer can choose the unsecured points based on the critical paths relevant
to their goal. Based on the circuit’s nature, this stage calculates the maximum number
of possible key gates (number of input pins and others). According to the output from
Algorithm 2, this stage adds key gates for rare signals in critical paths in an interfering
manner. This stage can run in parallel with the circuit and is unaffected by the number
of additional gates, allowing as many gates as possible to be added without incurring
overhead or delay.

Finally, Algorithm 3 adds the key gates to the circuit in an interfering manner.
Algorithm 3 selects high convergence gates (from the SN list) and low controllable

signals to add the key gates with the highest obfuscation (from the cyclist).
This stage takes the outputs from the previous two stages and analyzes the number of

possible circuit keys before adding the key gates in an interfering manner. We added 32,
64, and 128 key gates to the c499 circuit and calculated its outputs to compare this method
with other studies [10,26,34–36].

The c499 circuit output of Algorithms 1–3, as well as their implementation in the
Vivado 2018.2 environment, are examined in this study. It created a test bench for this
purpose, saving the outputs in the format below rather than displaying them in ISIM.

In this section, we simulated the proposed method (SILL) on the ISCAS85 benchmark
in the Vivado environment. In the next step, we check its resistance against SAT attack.

5.2. Implementation of SAT Attack on the Obfuscated Circuit of SILL

In this section, we check the resistance of our proposed method against SAT attacks.
For this purpose, we rewrote the SAT attack algorithm in Algorithm 4 and applied it

to our obfuscated circuit. It is necessary to explain the logic of this algorithm.
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The main goal of SAT attacks is to reveal the correct key using a few carefully selected
inputs and their correct outputs observed from an activated functional chip. These partic-
ular input/output pairs distinguish input/output (I/O) pairs. Each distinguishing I/O pair
can identify a subset of wrong key combinations, and together, they guarantee that only the
correct key can be consistent with these correct I/O pairs. This implies that a key that
matches the inputs to the outputs for all the distinguishing I/O pairs must be correct. The
crux of the SAT attack is to find this set of distinguishing I/O pairs by solving a sequence
of SAT formulas.

Definition 1. (Wrong key combination):
Consider the logic function y = f (x, k)
The set of key combinations WKi, which results in an incorrect output of the logic circuit (i.e.,

Yi 6= fi (Xi, K), ∀K ∈WKi), is called the set of wrong key combinations identified by the I/O pair
(Xi, Yi). In terms of SAT formula, it can be represented as C (Xi, K, Yi) = False, ∀K ∈WKi.

Definition 2. (Distinguishing input/output pair):
As noted above, SAT attacks shall iteratively solve a set of SAT formulas. Each iteration shall

find a correct I/O pair to identify a subset of wrong key combinations until none remain. An I/O
pair at the i-th iteration is distinguishing

(
xd

i , yd
i

)
. It can identify a “unique” subset of wrong

key combinations. The previous i − 1 cannot identify distinguishing I/O pairs (i.e., WKi 6⊂ (),
where WKi is the set of wrong key combinations identified by the distinguishing I/O pair at the i-th
iteration).

The crux of the SAT attack algorithm relies on finding the distinguishing I/O pairs
iteratively to identify unique wrong key combinations (see Definition 2) until no more can
be found. At this point, all distinguishing I/O pairs identify all wrong key combinations,
thereby unlocking the circuit. The correct key is that which satisfies the following SAT
formula G: one and formula G: G: =∧λ

I=1C (XD
I , K, YD

I ) (1)
(

xd
i , yd

i

)
is the distinguishing

I/O pair from the i-th iteration, and λ is the total number of iterations. It finds a key K that
satisfies the correct functionality for all the identified distinguishing I/O pairs. It must be
the correct key since no other distinguishing I/O pairs exist (see Definition 2).

Take the XOR/XNOR-based locked circuit in Figure 3c as an example. At the first
iteration, h I/O pair

(
xd

i , yd
i

)
= (00,10) is a distinguishing I/O pair because it can rule out

wrong key combinations K= (01), (10), and (11), as these key combinations will result in
incorrect outputs (y1y2) = (11), (00), and (01), respectively. Since this single I/O observation
has already ruled out all incorrect key combinations, we have revealed the correct key
K = (00).

A small number of correct I/O pairs (compared to all possible I/O pairs) is usually
enough to infer the correct key. As a result, SAT attacks are efficient because they require
only a few iterations to find the distinguishing I/O pairs.

In this section, the SAT attack algorithm is presented. As noted above, the central
theme of the SAT attack algorithm is to iteratively find distinguishing I/O pairs until
no new ones can be found. Because they find distinguishing I/O pairs, the SAT attack
algorithm iteratively formulates an SAT formula that SAT solvers can solve. The SAT
formula Fi at the i-th iteration is as follows:

Fione (C (X1, K1, Y1) ∧C (X1, K2, Y2) and 1 6= Y)o ne∧ (∧j=i−1
j=1 C (XD

j , Kj, yD
j ))) (2)

In Formula (2), C (X, K, Y) is the SA formula (CNF form one for a locked circuit on end)
and

(
xd
{1...i−1}, yd

{1...i−1}

)
, (Xd

{1 . . . i−1}, Yd{1 . . . i−1}) represent the distinguishing I/O pairs
found in previous i − 1 iterations. If satisfiable, an assignment for variables X, K1, K2, Y1,
and Y2 will be generated. The first line in Formula (2) evaluates the circuit functionality for
a specific X = XD

I at two different key values, K1 and K2, so the outputs are different (see
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Y1 6= Y2). It guarantees that the input X = XD
I can identify two keys (K1 and K2), which

produce different outputs, meaning that at least one must be wrong. It is not enough to call
X = XD

I a distinguishing input because the previous iteration may have found another input
assignment that could have differentiated between K1 and K2. According to Definition 2,
a distinguishing input in the i-th iteration must find “unique” wrong key combinations
not identified by the previous i − 1 distinguishing I/O pairs. The SAT clauses check this
condition in the second line. In the second line, yD

j is the distinguishing input identified in

the previous j-th iteration, and yD
j is the correct output. This correct output is known from

the activated functional chip obtained from the open market. The second line guarantees
that the keys K1 and K2, which result in “different” outputs in line 1 of this formula,
produce the “correct” outputs for all previous distinguishing I/O pairs. Hence, in this
iteration, we identified at least one incorrect key combination that previous iterations could
not. Therefore, according to Definition 2, the input XD

i (obtained from the SAT solver)
and the corresponding “correct” output yD

j = eval (XD
I ) obtained from the activated chip

represent the i-th distinguishing I/O pair.
The key gates in our method have been added to the circuit in an interfering manner.

Therefore, an attacker must know the first key to find the second key and the first and
second keys to find the third key. Therefore, in the last round, all the previous keys must be
known, which is more complicated than the 2n.

Algorithm 4: SAT Attack Algorithm

Input C, eval obfuscated;
i = 1;
Gi = true;
Fi = c (x, k1, y1) ∧c (x, k2, y2) ∧(y1 6= y2);
While SAT[Fi] do
XD

i = SAT-assignment [Fi];
YDi = eval (XD

i);
Gi+1 = Gi∧c(XD

i, ki, YD
i);

Fi+1 = Fi∧(∧j=i+1
j=i C(XD

j , Kj, yD
j ));

I = I + 1;
End while
Kc = SAT-assignmentk(Gi);

The SAT attack algorithm is shown in Algorithm 4. First, this algorithm solves line
one of Formula (2), and as iterations progress, it adds the clauses in line two of Formula (2).
It stops when the resulting SAT formula is unsatisfiable, indicating that no further distin-
guishing I/O pairs exist. The correct key is obtained by finding a key value that satisfies
the correct I/O behavior of all the distinguishing I/O pairs. This algorithm is guaranteed
to find the correct key.

In addition to reducing the hardware space, our proposed method also reduced the
delay. At the same time, it created a maximum Hamming distance for the outputs and it
had a high resistance to SAT attacks.

Our proposed method has indeed reduced hardware overhead compared to similar
methods. However, it still creates hardware overhead and could be more efficient for
hardware with limited free space or real-time applications. At the same time, this method
is at the gate level, suitable for SOC and ASIC, and cannot be used in FPGA circuits.

6. Analysis of Results

This section has two parts: the amount of overhead (space consumption and delay)
and the resistance level against SAT attacks.

In the first part, we implemented Algorithms 1–3 with VHDL language in the Vivado
simulation environment on the ISCAS85 benchmark circuit netlist and obtained the ob-
fuscation Netlist for them. According to Tables 1–3, we made some adjustments to derive
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the space consumption and delay in detail, analyzed the results, and compared them with
similar works. In the second part, we tested the obfuscated Netlist of the first part with
Algorithm 4, which simulates the SAT attack, and we calculated the execution time of SAT
attack and compared it with similar cases.

Table 1. Device utilization summary (estimated values).

Logic Utilization Used Runtime

Number of slice registers 4510

164.012000Us
Number of slice LUTs 18,047

Number of fully used LUT-FF pairs 4021
Number of bonded IOBs 15,694

Number of BUFG/BUFGCTRLs 4

Table 2. Consumption of space overhead in the proposed method (SILL).

Logic Utilization Used (c499) Used (c499
Obfuscation)

Percentage of
Difference

Number of slice registers 4510 4621 1.02%
Number of slice LUTs 18,047 18,352 1.01%

Number of fully used LUT-FF pairs 4021 4038 1.002%
Number of bonded IOBs 15,694 15,694 0%

Number of BUFG/BUFGCTRLs 4 4 0%

Table 3. Delay in the proposed method (SILL).

Circuit c499 c499 Obfuscation Delay %

Runtime (us) 164.012000Us 164.018000uS 0.03

# of clock pulse 200 202 0.01

6.1. Analysis of Implementation SILL Results and Comparison of Hardware Overhead and Delay

We implemented all SILL steps described in Section 5.1 in the VHDL language in the
Vivado Simulation environment on the ISCAS85 benchmark circuits and compared the
obtained results with similar works presented in papers [18–20]. The analysis of the results
is presented below in Figures 12–14.
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The code execution time (in microseconds) and the space are reported in the test
bench file.

test complete—Run time: 164.012000Us

OD: 00011111001101111000001111111111

E: 00000000000000000000000000000000

The output for calculating the hardware space consumption is shown in the second
column of Table 1, and the execution time is shown in the third column. The numerical
differences between the normal and obfuscated values indicate the method’s overhead
value.

By randomly numbering the k0–k47 keys and comparing their outputs, the Hamming
distance between the obfuscated and main outputs was calculated. The outcomes are
displayed below.

test complete—Run time: 164.012000uS
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OD: 00011111001101111000001111111111,
K = 1111111111111111111111111111111111111111111111

OD: 11100000110010000111110000000000,
k = 00000000000000000000000000000000000000000000000

As the results demonstrate, the highest Hamming distance of 50% occurs when all
keys are incorrect.

The proposed method was compared with other methods [9–11]. The comparison
criteria were space consumption overhead, obfuscation value (Hamming distance), and
delay in obfuscated output.

Random and fault analysis methods were compared in a previous study [9]. These
two methods have also been compared to our proposed method. AES-128-bit encryption
blocks were used in [10], while [11] ensured key gate interference with a series of gates.

By adding more than 32 keys to the c499 circuit, these studies presented two obfusca-
tion methods (random and fault analysis). Since only 32 key gates are added, the proposed
method can achieve a Hamming distance of 20% and a Hamming distance of 50% by
adding 50. These data are depicted in the graph below.

Instead of using a single key input to control each key gate, the proposed technique
uses multiple key inputs (as shown in [9,10]). This method reduces the possibility of
key discovery and increases the system’s security against sensitivity attacks by weighing
key gates.

In SILL, with the help of Algorithm 2, we found the paths with the most significant
impact on the output. We obscured signals with the least controllability in those routes.
Therefore, we created the maximum Hamming distance between the normal output and
the obfuscated output. The chart below shows the results of SILL implementation and its
comparison with similar methods.

Figure 12: The possibility of creating a 50% Hamming distance between the obfuscated
and normal outputs by adding key gates. It occurs because the most critical (effective)
path is selected for key gate insertion. SILL adds key gates for rare signals in critical paths,
creating the highest possible Hemming distance, as Figure 12 shows.

The output implementation is set up so the results can be reported, as shown in Table 1.
The following space consumption overhead results were obtained by comparing the normal
and obfuscated circuit outputs.

The implementation outputs are stored in the second column of Table 1 for hardware
space consumption calculations, as shown in Table 2. The obfuscated values are in the third
column, while the normal c499 space consumption overhead is in the second column. The
overhead percentage is shown in the fourth column. The overhead percentage of this SILL
algorithm is 1%.

The following results show how the proposed method compares to study designs [8,11].
The random method [8] has a higher space consumption overhead than the other

methods, as shown in Figure 13. The proposed method (SILL) has a higher overhead
than the weighting and non-weighing methods in [11], which confirms our descriptions
in Section 3. Multiple factors are used in the SILL method to optimize logic locking. The
first step selects low controllability signals. The next step is to focus on paths with the
highest degree of convergence. The final step is to use circuit placement to control the
key interferences, eliminating the need for extra gates. The overhead of the proposed
SILL method is significantly lower. However, Ref. [11] uses controller gates to control the
key interferences, significantly increasing the overhead. Our method performs parallel
logic locking, and the number of additional key gates does not cause delays. Our method
achieves the maximum Hamming distance.

Using SILL, with Algorithms 1 and 2, we obfuscated the signals with the least con-
trollability in the paths with the greatest impact on the output. Therefore, we were able to
reduce the number of key gates that needed to be added to the circuit. At the same time,
because these gates were added in the target locations of the hardware Trojan attackers, we
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have provided proper security. The chart below shows the results of SILL implementation
and its comparison with similar methods.

As can be seen in Figure 13, our proposed method has created a hardware overhead
that is less than 5% of other similar methods.

The normal c499 execution times are shown in the second column of Table 3. The
obfuscated values are shown in the third column. These figures were derived from the
information in the last column of Table 1. The percentage delay is shown in the fourth
column. Because this application’s parallel execution-based coding changes, adding new
key gates does not increase the delay value; thus, by adding 32 key gates, our proposed
method can achieve a significantly higher security level than other methods.

The algorithms used in the SILL method are of the type that provides the possibility
of parallel execution. Therefore, parallel execution alongside the circuit is a crucial SILL
feature, as shown in Figure 14. The execution time is kept the same by increasing the
number of key gates. Because of the controller gates, Ref. [11] takes a long time to complete.

The above criteria are space overhead, delay, and the Hamming distance between
normal and obfuscated outputs. Because we inserted key gates in input signal gates with
high branches and selected signals with the lowest controllability, our proposed SILL
method has an optimized number of key gates and relatively low overhead. Because our
algorithm runs parallel with the logic locking execution and uses the gates to insert new key
gates, no extra controller gates are required to control key gate interference. It significantly
reduces our delay compared to other methods. Finally, we used controllable NOT gates
created by XOR gates. Our proposed SILL method effectively inserts key gates in critical
paths, resulting in the greatest possible Hamming distance. Our method is highly resistant
to common hardware Trojan insertion methods such as SAT, and maximizes the Hamming
distance and reduces overhead and delay.

6.2. Analysis and Comparison of the Results of the SAT Attack on SILL

We simulated SILL in the Vivado environment on the ISCAS85 benchmark circuits to
produce the obfuscation circuit. At this stage, we tested the obfuscation circuit in Section 5.1
with Algorithm 4, the simulated SAT attack, and the results were obtained. We compared it
with the results of similar works in papers [27,28] in Table 4.

Table 4. Average SAT attack break time (seconds) on ISCAS85 and c432 benchmarks.

Round Fixed Key [27] Fixed Plaintext [27] Full Lock [28] SILL (Our Proposed
Method)

2 0.2870 0.2190 1.5068 1.7458

4 1.1700 0.6200 Timeout Timeout

6 1.6349 0.4774 Timeout Timeout

8 2.9352 Timeout Timeout Timeout

10 1.6600 Timeout Timeout Timeout

To prove our claim that the proposed method is highly resistant to SAT attacks,
considering the nature of our method that all keys are interdependent, we have defined the
SAT function and presented the SAT algorithm corresponding to Algorithm 4. The attacker
must find all the correct keys to access the normal Netlist and its correct operation. On the
other hand, because interference key gates are inserted in our proposed method, all keys
depend on each other. To find the second key, an attacker must try to find both the first
and second keys. In other words, the number of attempts required to find the second key
is 21 + 22, and the number of attempts to find the third key is 21 + 22 + 23. If the number
of inserted keys is N, the following formula is used to determine the required amount of
efoneort:

21 + 22 + · · ·+ 2n−1 + 2n (3)
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As can be observed in Formula (3), the complexity of the SAT attack is a geometric
series whose summation of sentences for that key is equal to:

sn =
a(qn − 1)

q− 1
=

2(2n − 1)
2− 1

= 2n+1 − 2 (4)

By checking the outputs of Algorithm 4 on our obfuscated method, we saw that
Formula (4) was confirmed, and the algorithm failed in the third round. The execution time
of the algorithm on our obfuscated circuit on ISCAS85 benchmarks [33] is collected in the
table below.

An important point to consider when checking the resistance level of the circuit against
SAT attacks is the success time of this kind of attack. The SAT attack execution times with
two methods from [32] and one method from [33], as well as our proposed method (SILL),
are shown in Table 4. The time related to the SILL method is the longest; it timed out in
round 2.

In other words, our proposed method is much more resistant to SAT attacks than the
methods used in [32,33], and in round 2, it requires more time for the attack to be successful.
In round 2 onwards, the attack is also unsuccessful. In our method, adding the number
of key gates is optimal and reduces the hardware overhead. Because Algorithms 1–3 can
parallel execution, increasing the number of bits of the key generates a balanced delay and
reduces the time delay and overhead. Given these advantages, according to Table 4, our
algorithm provides adequate security against SAT attacks.

The simulation results of Algorithms 1–4 on ISCAS85 benchmark circuits showed that
compared to previous similar works, SILL had reduced the space consumption overhead
by about 5% and the delay by about 0.15 nanoseconds. Therefore, the hardware that did
not have enough space and time for the previous methods can be obfuscated with SILL.

7. Conclusions

The insertion of hardware Trojans is one of the challenges of today’s integrated circuit
manufacturers. On the other hand, due to the nature of hardware Trojans, circuit testing
during the construction phase to find hardware Trojans is a difficult, time-consuming,
and expensive task. Therefore, the low-cost way to deal with hardware Trojans is to
prevent them from being inserted into integrated circuits. The main goal of this paper was
to propose a secure method to prevent the insertion of hardware Trojans with minimal
hardware overhead.

In this paper, we proposed a new secure method (SIIL), a probability-based logic
locking technique that uses a filtering process to determine the location of inserted key
gates. To reduce hardware overhead, we used two constraints (low controllability and
maximum branch) to narrow the set of nodes in a Netlist to be used for insertion. As a
result, the number of key gates required to prevent the insertion of hardware Trojans was
reduced, because only signals that hardware Trojan attackers target were obfuscated.

We acted based on low controllability and produced the maximum change in the
primary output. We calculated the controllability of all circuit signals and candidates with
low controllability for obfuscation. Then, we chose the paths with the most significant
impacts on the primary output (i.e., the paths with the most branching). To reduce the
delay, we designed the algorithms used in SILL to execute them in parallel.

Finally, signals with low controllability were obscured in paths with maximum branch-
ing. To provide maximum security and resistance against SAT attacks, we added key gates
to the circuit in an interfering manner. We also used the one-way method to generate the
keys. The algorithm used for this purpose was the AES algorithm.

We implemented SIIL in the Vivado environment. For this purpose, we wrote Algo-
rithms 1–3 in VHDL language and implemented them on the ISCAS85 benchmark circuits.
We checked the results of the implementation of our method on the circuit c4499, c432,
and c3388 families of ISCAS85 benchmarks. We wrote Algorithm 1 such that it runs in
parallel and does not significantly increase the execution time by increasing the number
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of key gates. Therefore, we created a lower delay by having the same number of key
gates as the methods presented in [26]. Since only signals with low controllability are
obfuscated in paths with the maximum branches, our method yielded lower hardware
overhead than the methods presented in [9,26]. Since the paths with the most branches
have the most significant impact on the primary output of the circuit, we then chose these
paths for obfuscation. In our proposed method, we measured the distance between the
normal output and the obfuscated output of the circuit (i.e., the Hamming distance). A
comparison of this distance with the distances reported in similar works [9,10] showed that
our method produced the maximum Hamming distance.

We calculated the resistance of our obfuscated SIIL circuit against SAT attacks. For
this reason, we implemented the SAT algorithm on the obfuscation circuit using the SIIL
method and obtained its success time to find the key values. Until the second round, more
time was spent to successfully find the key values in our method than similar methods
in other articles [32,33], and the attack failed in round 4. Since the SIIL method is based
on obfuscation using a logic lock, it reduces the hardware overhead (delay and space
consumption) while exhibiting high resistance against SAT attacks, defeating such attacks
in round 4.

The paper [7] proposes criteria to calculate security and different logic locking methods.
Criteria such as output corruptibility, clique size, number of distinguishing input patterns
(# of DIPs), percentage of key bits recovered, and execution time can be expressed to
evaluate the security level of logic locking methods. The amount of output corruption
is the Hamming distance between the correct output and the output obtained when an
incorrect key is provided. The number of key gates that interfere with each other is called
the clique size. Distinctive input patterns are special input patterns that contribute to the
success of key-pruning attacks such as SAT. The execution time of an attack can also be
used to demonstrate the resilience of the logic locking technique against attack. Sometimes,
certain attacks may achieve correct output by only finding a subset of key bits. The success
rate of these attacks is determined by the percentage of key bits that are correctly recovered.
We also evaluated our proposed method with these criteria. As explained in the previous
paragraph, SILL produced the most significant Hamming distance, covering the maximum
output corruptibility. Moreover, the key gates are added to the Netlist of the circuit in
a complete interference way, which leads to supporting two evaluation criteria, namely
the maximum clique size and the highest percentage of key bits recovered. Finally, by
analyzing the results of the implementation of SILL against the SAT attack, our method
also meets the criterion of long attack execution time. Only the criterion of the number of
distinct input patterns has yet to be considered, and it is necessary to pay attention to this
limitation in our future works.

In this paper, we presented a new method using SIIL logic locking interference to
prevent the insertion of hardware Trojans. Analyzing the results, SILL implementation
reduced the hardware overhead by about 2% and the delay by about 0.15 (ns) compared
to similar methods. We tested SILL against SAT attack and measured how long it took
the attack to find the key value successfully. By analyzing the simulation results of this
attack, we reached an increase in the execution time of the attack by about 0.23 nanoseconds
compared to similar methods in other articles [27,28].

Our proposed method (SILL) reduced the hardware overhead while maintaining its
quality. With the parallel implementation of the algorithms used in SILL, the delay was
reduced. In addition, the resistance against known attacks such as SAT increased.
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19. Šišejković, D.; Leupers, R.; Ascheid, G.; Metzner, S. A Unifying Logic Encryption Security Metric. In Proceedings of the 18th
International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, Pythagorion, Samos Island,
Greece, 15–19 July 2018.

20. Mobaraki, S.; Amirkhani, A.; Atani, R.E. A Novel PUF based Logic Encryption Technique to Prevent SAT Attacks and Trojan
Insertion. In Proceedings of the 2018 9th International Symposium on Telecommunications, Tehran, Iran, 17–19 December 2018.

21. Blocklove, J. Hardware Intellectual Property Protection Through Obfuscation Methods. Master’s Thesis, RIT University, Rochester,
NY, USA, 30 June 2020.

22. Rajendran, J.; Pino, Y.; Sinanoglu, O.; Karri, R. Security analysis of logic obfuscation. In Proceedings of the DAC Design
Automation Conference 2012, San Francisco, CA, USA, 3–7 June 2012; pp. 83–89.

23. Enamul Quadir, M.S.; Chandy, J.A. Key Generation for Hardware Obfuscation Using Strong PUFs. Cryptography 2019, 3, 17.
[CrossRef]

24. Labafniya, M.; Borujeni, S.E.; Saeidi, R. Hardware Trojan Prevention and Detection by Filling Unused Space Using Shift registers,
Gate-chain and Extra Routing. ISC Int. J. Inf. Secur. 2021, 13, 47–51.

25. Rajendran, J.; Zhang, H.; Zhang, C.; Rose, G.S.; Pino, Y.; Sinanoglu, O.; Karri, R. Fault Analysis-Based Logic Encryption. IEEE
Trans. Comput. 2013, 64, 410–424. [CrossRef]

http://doi.org/10.3390/s21238126
http://www.ncbi.nlm.nih.gov/pubmed/34884130
http://doi.org/10.1007/s41635-018-0036-3
http://doi.org/10.1007/s10836-011-5255-2
http://doi.org/10.3390/cryptography3030017
http://doi.org/10.1109/TC.2013.193


Electronics 2023, 12, 1107 29 of 29

26. Karousos, N.; Pexaras, K.; Karybali, I.G.; Kalligeros, E. Weighted logic locking: A new approach for ic piracy protection. In
Proceedings of the 2017 IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS), Thessaloniki,
Greece, 3–5 July 2017; pp. 224–226.

27. Kamali, H.M.; Azar, K.Z.; Farahmandi, F.; Tehranipoor, M. Advances in Logic Locking: Past, Present, and Prospects. Cryptol.
Eprint Arch. 2022.

28. Yue, M.; Tehranipoor, F. Probability-Based Logic Locking on Integrated Circuits. Ph.D. Thesis, Department of Electrical and
Computer Engineering of Santa Clara University, Santa Clara, CA, USA, 2021.

29. Kamali, H.M. The Evolution of Logic Locking: Towards Next Generation Logic Locking Countermeasures. Ph.D. Thesis, George
Mason University, Fairfax, VA, USA, 2021.

30. Huang, Z.; Wang, Q.; Chen, Y.; Jiang, X. A Survey on Machine Learning Against Hardware Trojan Attacks: Recent Advances and
Challenges. IEEE Access 2020, 8, 10796–10826. [CrossRef]

31. Liakos, K.; Georgakilas, G.; Moustakidis, S.; Sklavos, N.; Plessas, F. Conventional and machine learning approaches as counter-
measures against hardware trojan attacks. Microprocess. Microsyst. 2020, 79, 103295. [CrossRef]

32. Zhang, J.; Shen, C. Set-based Obfuscation for Strong PUFs against Machine Learning Attacks. arXiv 2019, arXiv:1806.02011v4.
[CrossRef]

33. Gao, H.; Fang, D.; Xiao, J.; Hussain, W.; Kim, J.Y. CAMRL: A Joint Method of Channel Attention and Multidimensional Regression
Loss for 3D Object Detection in Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2022. [CrossRef]

34. Gao, H.; Qiu, B.; Barroso, R.J.D.; Hussain, W.; Xu, Y.; Wang, X. TSMAE: A Novel Anomaly Detection Approach for Internet of
Things Time Series Data Using Memory-Augmented Autoencoder. IEEE Trans. Netw. 2022. [CrossRef]

35. Available online: http://web.eecs.umich.edu/~jhayes/iscas.restore/c499.html (accessed on 11 December 2022).
36. Amir, S.; Shakya, B.; Xu, X.; Forte, D. Comparative Analysis of Hardware Obfuscation for IP Protection. In Proceedings of the on

Great Lakes Symposium on VLSI 2017, Banff, AB, Canada, 10 May 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2020.2965016
http://doi.org/10.1016/j.micpro.2020.103295
http://doi.org/10.1109/TCSI.2020.3028508
http://doi.org/10.1109/TITS.2022.3219474
http://doi.org/10.1109/TNSE.2022.3163144
http://web.eecs.umich.edu/~jhayes/iscas.restore/c499.html

	Introduction 
	Background 
	Hardware Obfuscation Techniques 
	Logic Locking Techniques 
	Phase of Hardware Obfuscation 
	Convergence Degree 
	Key Interference-Based Logic Locking 

	Prior Work and Motivation 
	Proposed Method for Secure Combinational Circuit (SILL) 
	Implementation of Our Proposed Method (SILL), the Level of Resistance to Attacks 
	Implementation of Our Method (SILL) 
	Implementation of SAT Attack on the Obfuscated Circuit of SILL 

	Analysis of Results 
	Analysis of Implementation SILL Results and Comparison of Hardware Overhead and Delay 
	Analysis and Comparison of the Results of the SAT Attack on SILL 

	Conclusions 
	References

