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In this paper, a new optimization algorithm called the search and rescue optimization algorithm (SAR) is proposed for solving
single-objective continuous optimization problems. SAR is inspired by the explorations carried out by humans during search and
rescue operations.'e performance of SAR was evaluated on fifty-five optimization functions including a set of classic benchmark
functions and a set of modern CEC 2013 benchmark functions from the literature. 'e obtained results were compared with
twelve optimization algorithms including well-known optimization algorithms, recent variants of GA, DE, CMA-ES, and PSO,
and recent metaheuristic algorithms. 'eWilcoxon signed-rank test was used for some of the comparisons, and the convergence
behavior of SAR was investigated. 'e statistical results indicated SAR is highly competitive with the compared algorithms. Also,
in order to evaluate the application of SAR on real-world optimization problems, it was applied to three engineering design
problems, and the results revealed that SAR is able to find more accurate solutions with fewer function evaluations in comparison
with the other existing algorithms. 'us, the proposed algorithm can be considered an efficient optimization method for real-
world optimization problems.

1. Introduction

In our world, there are many optimization problems for
which different optimization algorithms are used. 'ese
algorithms can be classified into deterministic and stochastic
optimization algorithms. 'e deterministic algorithms al-
ways produce the same outputs for particular inputs. 'ese
algorithms often are used as local search algorithms. Unlike
deterministic algorithms, stochastic algorithms have ran-
dom components and produce different outputs for par-
ticular inputs. Many metaheuristic algorithms implement
some form of stochastic optimization algorithms [1]. In
recent decades, many metaheuristic algorithms have been
proposed to solve optimization problems. 'e genetic al-
gorithm (GA) [2, 3], particle swarm optimization (PSO)
[4, 5], and ant colony optimization (ACO) [6, 7] are some of
the most widely used metaheuristic algorithms. Some

features of these algorithms include simple implementation,
flexibility, and capability for finding the local optimum.
Most metaheuristic algorithms are inspired by physical or
natural phenomena, i.e., animals’ movement to find food
sources. Consequently, these algorithms are easily un-
derstandable and reproducible as software programs for
various optimization problems. 'ese algorithms are able to
find optimal solutions regardless of the physical nature of the
problem. Unlike other optimization methods, metaheuristic
algorithms can find global optimal solutions for the prob-
lems where there are many local solutions due to their
random nature. 'ese reasons have led to extensive use of
such algorithms in solving various optimization problems.

In recent years, researchers have carried out extensive
studies on metaheuristic algorithms such as harmony search
(HS) [8, 9], artificial bee colony (ABC) [10, 11], cuckoo
search (CS) [12], imperialist competitive algorithm (ICA)
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[13], teaching-learning-based optimization (TLBO) [14],
backtracking search optimization algorithm (BSA) [15],
firefly algorithm (FA) [16], Yin-Yang-pair optimization
(YYPO) [17], and squirrel search algorithm (SSA) [18].
Besides, many metaheuristic algorithms have been enhanced
to solve real-world optimization problems such as a de-
composition-based multiobjective firefly algorithm de-
veloped for RFID network planning [19] and a novel
diffusion particle swarm optimization proposed for opti-
mizing sink placement [20]. Based on the “no free lunch”
theorem (NFL) [21, 22], there is no optimization algorithm
that works well on all optimization problems. An optimi-
zation algorithm may achieve very good results on a set of
optimization problems, while it is not suitable for others.
'erefore, various metaheuristic algorithms might be good
for a series of optimization problems, but not for others.

'e metaheuristic algorithms can be categorized
according to their nature into different groups such as
evolution-based, swarm-based, physics-based, and human-
based algorithms.

(i) Evolution-based algorithms are developed, based on
evolution techniques. 'e GA, biogeography-based
optimizer (BBO) [23, 24], and differential evolution
(DE) algorithm [25, 26] are examples of this group
of metaheuristic algorithms. For example, the ge-
netic algorithm is inspired by evolution theory.

(ii) In nature, many living beings live socially and
search for a variety of goals such as hunting and
finding food sources as groups. 'ey use different
strategies for searching [27]. Some metaheuristic
algorithms solve the optimization problems
through modelling the social behavior of living
organisms in nature. 'ese types of metaheuristic
algorithms are called population-based swarm in-
telligence (SI) or swarm-based algorithms. Algo-
rithms such as PSO, ABC, ACO, FA, CS, krill herd
(KH) [28], simplified dolphin echolocation (SDE)
[29], and grey wolf optimizer (GWO) [30] are
categorized in this group. For example, PSO has
been inspired by movement of organisms in a bird
flock or fish collection to search for food sources.

(iii) Physics-based algorithms are inspired by physical
phenomena. Algorithms like Big Bang-Big Crunch
(BB-BC) [31], colliding bodies optimization (CBO)
[32], gravitational search algorithm (GSA) [33, 34],
star graph [35], water wave optimization (WWO)
[36], and ray optimization [37] are located in this
group. For example, WWO is inspired by refraction
and breaking rules of water surface waves.

(iv) Human-based algorithms are algorithms that are
based on human behavior like tabu search (TS)
[38, 39], human mental search (HMS) [40], ICA,
and TLBO algorithms. For example, TS and TLBO
algorithms have been inspired by human memory
function and the way of human learning and
training method in the classroom, respectively.

In this paper, a new metaheuristic algorithm is in-
troduced which is based on how to search in search and
rescue operations. Humans’ search methods have evolved
over thousands of years, and there are not any algorithms
that used humans’ behaviors during this type of search for
solving optimization problems. So they encouraged authors
to propose a new metaheuristic for solving optimization
problems based on these features. 'is algorithm is cate-
gorized as a human-based algorithm. 'is article is orga-
nized as follows: after the introduction in Section 1, Section 2
gives an introduction to search and rescue operations.
Section 3 presents the proposed algorithm. In Section 4,
comparative tests and benchmarking functions for com-
paring algorithms are introduced. Section 5 presents the
results and discussions, and finally in Section 6, conclusions
of this paper are presented.

2. Search and Rescue Operations

Like other living creatures, human beings search for dif-
ferent purposes as groups. Search can be done for a variety of
goals such as hunting, finding food sources, or finding lost
people. One type of group searches is “search and rescue
operations.” Search is a systematic operation using available
personnel and facilities to locate persons in distress. Rescue
is an operation to retrieve persons in distress and deliver
them to a safe place [41]. One of the world’s earliest search
and rescue efforts ensued following the 1656 wreck of the
Dutch merchant ship Vergulde Draeck off the west coast of
Australia [42].

Search and rescue operations are divided into several
types such as mountain rescue, ground search and rescue,
urban search and rescue, air-sea rescue, and combat search
[43]. In the United States, institutions such as the American
Society for Testing and Materials (ASTM) and the National
Fire Protection Association (NFPA) provide codes for search
and rescue operations [44]. Search and rescue operations are
sometimes done to find specific people who are lost. Codes
also provide some requirements for searches that increase
the chances of successful finding. In the following, the
procedure of finding lost people is described considering the
main concepts in this operation. Humans can identify the
clues and traces of lost people based on the received training.
'e found clues have different values relative to each other
and provide different information about lost people. For
example, some clues indicate the likelihood of the presence
of lost people in that location. Each group member evaluates
clues based on his/her training and delivers this information
on found clues through communication equipment to other
members. Finally, they can search based on the importance
degree of these clues and information that can be obtained
from them. Typically, group members search around the
clues or seek in directions created by connecting the clues
[45]. 'erefore, human searches, in search and rescue op-
erations, are divided into two phases: social and individual.
In the social phase, the group members search based on the
position of found clues and their quality in areas that are
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likely to get better clues. In the individual search phase, the
searching is done regardless of the position and amount of
clues found by others. Clues can be divided into the fol-
lowing two categories:

(1) Hold clue: onemember of the search group is present
and searches around it.

(2) Abandoned clue: group members have found the
clue and there is no one in that position. In other
words, the human who found the clue has left it to
find better clues, but the information about that clue
is available for group members.

In Figure 1, points A and B are the locations of a group
member (human) and a clue, respectively. Path 1, Path 2,
and Path 3 are three assumed paths that the lost person has
likely passed through. 'e arrows show the movement di-
rections. In the social phase, the human at position A selects
the search direction based on the position of clue B. Since
searching around better clues increases the probability of
finding the lost person, the area that has better clues in the
direction of AB will be selected. In other words, if there are
better clues in area 1 compared to area 2, area 1 is chosen;
otherwise, area 2 is selected to keep searching. In the sample
case depicted in Figure 1, both Path 1 and Path 2 pass
through points A and B. If the lost person has passed Path 1
or Path 2, this simple strategy will increase the chances of
finding better clues in the social phase. In the individual
phase, the human at point A searches around the best clue
that is found. 'is search is done in an area, let us say area 3.
If the lost person has passed Path 3, the probability to find
him/her is higher during the individual phase compared to
the social phase. When a new location is searched by one of
these two phases, and the location has better clues than in the
previous location (position A), the said location becomes the
new position of the group member.

3. A Search and Rescue Optimization
Algorithm Proposal

In this section, the mathematical model of the proposed
algorithm for solving a “maximization problem” is de-
scribed. In SAR, the humans’ positions are equal to the
solutions of the optimization problem, and the amount of
clues found in these positions represents the objective
function for these solutions. 'e flowchart of SAR is shown
in Figure 2.

3.1. Clues. 'e group members gather clue information
during the search. 'ey left some clues whenever they found
better clues in other positions, but information on them are
used to improve searching operations. In the model we
proposed, the left clues’ positions are stored in the memory
matrix (matrixM), whereas the humans’ positions are stored

in a position matrix (matrix X). 'e dimensions of the
matrixM are equal to those of the matrix X. 'ey are N×D
matrices, where D is the dimension of the problem and N is
the number of humans. 'e clues matrix (matrix C) is a
matrix containing the positions of found clues. 'is matrix
consists of twomatrices X andM. Equation (1) shows how to
create C. All new solutions in social and individual phases
are created based on the clues matrix, and it is an important
part of SAR. 'e matrices X, M, and C are updated in each
human search phase:

C �
X

M
􏼢 􏼣 �

X11 · · · X1D

⋮ ⋱ ⋮
XN1 · · · XND

M11 · · · M1D

⋮ ⋱ ⋮
MN1 · · · MND

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

whereM and X are memory and humans’ position matrices,
respectively, and XN1 is the position of the 1st dimension for
the Nth human. Also, M1D is the position of the Dth di-
mension for the 1st memory. 'e two phases of human
searches, including the “social phase” and “individual
phase,” are modelled as follows.

3.2. Social Phase. Considering the explanations given in the
previous section, and taking into account a random clue
among found clues, the search direction is obtained using
the following equation:

SDi � Xi − Ck( 􏼁, k≠ i, (2)

where Xi, Ck, and SDi are the position of the ith human, the
position of the kth clue, and the search direction of the ith

human, respectively. k is a random integer number ranging
between 1 and 2N and chosen in a way that k≠ i.

It is important to point out that humans normally search
in such a way that all desired areas are searched and any
repeated location is not searched again.'erefore, the search
should be done in a manner that movement of the group
members toward each other is limited. To this end, all di-
mensions of Xi should not be changed by moving in the
direction of equation (2). To apply this constraint, the bi-
nomial crossover operator has been used. Also as explained
in the previous section, if the considered clue is better than
the clue related to the current position (the objective
function value for solution B is greater than the objective
function value for solution A in Figure 1), an area around
SDi direction and around the position of that clue is searched
(area 1 in Figure 1); otherwise, the search will continue
around the current location along the SDi direction (area 2
in Figure 1). Finally, the following equation is used for the
social phase:
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X′i,j �

Ck,j + r1 × Xi,j − Ck,j􏼐 􏼑, if f Ck( 􏼁>f Xi( 􏼁,
Xi,j + r1 × Xi,j − Ck,j􏼐 􏼑, otherwise,

⎧⎪⎨⎪⎩ if r2< SE or j � jrand,

Xi,j, otherwise,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (j � 1, . . . , D), (3)
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where Xi,j
′ is the new position of the jth dimension for the ith

human; Ck,j is the position of the jth dimension for the kth

found clue; f(Ck) and f(Xi) are the objective function
values for the solutions Ck and Xi, respectively; r1 is a
random number with a uniform distribution in the range
[− 1, 1]; r2 is a uniformly distributed random number in the
range [0, 1] and is different for each dimension, but r1 is
fixed for all dimensions; jrand is a random integer number
ranging between 1 and D which ensures that at least one
dimension of Xi,j

′ is different from Xi,j; and SE is an algo-
rithm parameter ranging between 0 and 1. Equation (3) is
used to obtain a new position of the ith human in all
dimensions.

3.3. Individual Phase. In the individual phase, humans
search around their current position, and the idea of con-
necting different clues used in the social phase is applied to
search. Contrary to the social phase, all dimensions of Xi
change in the individual phase. 'e new position of the ith

human is obtained by the following equation:

Xi
′ � Xi + r3 × Ck − Cm( 􏼁, i≠ k≠m, (4)

where k and m are random integer numbers ranging be-
tween 1 and 2N. To prevent movement along with other
clues, k andm are chosen in such a way that i≠ k≠m. r3 is a
random number with a uniform distribution ranging be-
tween 0 and 1.

3.4. Boundary Control. In all metaheuristic algorithms, all
solutions should be located in the solution space, and if they
are out of the allowable solution space, they should be
modified. So if the new position of a human is out of the
solution space, the following equation is used to modify the
new position:

Xi,j
′ �

Xi,j +Xmax
j􏼐 􏼑

2
, if Xi,j

′ >Xmax
j ,

Xi,j +Xmin
j􏼐 􏼑

2
, if Xi,j

′ <Xmin
j ,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(j � 1, . . . , D),

(5)
where Xmax

j and Xmin
j are the values of the maximum and

minimum threshold for the jth dimension, respectively.

3.5. Updating Information and Positions. In each iteration,
the group members will search according to these two
phases, and after each phase, if the value of objective
function in position Xi

′(f(Xi
′)) is greater than the previous

one (f(Xi)), the previous position (Xi) will be stored in a
random position of the memory matrix (M) using equation
(6) and this position will be accepted as a new position using
equation (7). Otherwise, this position is left and the memory
is not updated:

Mn �
Xi, if f Xi

′( 􏼁>f Xi( 􏼁,
Mn, otherwise,

⎧⎨⎩ (6)

Xi �
Xi
′, if f Xi

′( 􏼁>f Xi( 􏼁,
Xi, otherwise,

􏼨 (7)

whereMn is the position of the nth stored clue in the memory
matrix and n is a random integer number ranging between 1
and N. Using this type of memory updating increases the
diversity of the algorithm and the ability of the algorithm to
find the global optimum as well.

3.6. Abandoning Clues. In search and rescue operations,
time is a very important factor because the lost people may
be injured and the delay of search and rescue teams may
result in their deaths. 'erefore, these operations must be
done in such a way that the largest space is searched in the
shortest possible time. So if a human cannot find better clues
after a certain number of searches around his/her current
position, he/she leaves the current position and goes to a new
position. To model this behavior, at first, unsuccessful search
number (USN) is set to 0 for each human being. Whenever a
human finds better clues in the first or second phase of the
search, the USN is set to 0 for that human; otherwise, it will
increase by 1 point as presented in the following equation:

USNi �
USNi + 1, if f Xi

′( 􏼁<f Xi( 􏼁,
0, otherwise,

⎧⎨⎩ (8)

where USNi indicates the number of times the human i has
not been able to find better clues. When the USN for a
human is greater than the maximum unsuccessful search
number (MU), he/she goes to a random position in the
search space using equation (9), and the USNi is set to 0 for
that human:

Xi,j � X
min
j + r4 × Xmax

j − Xmin
j􏼐 􏼑, j � 1, . . . , D, (9)

where r4 is a random number with a uniform distribution
ranging between 0 and 1. It is different for each dimension.

3.7. Control Parameters of SAR. SAR has two control pa-
rameters: SE (social effect) and MU (maximum unsuccessful
search number). 'e SE is used to control the effect of group
members on each other in the social phase. 'is parameter
ranges within [0, 1]. Greater values of the SE increase the
convergence rate and also decrease the global search ability
of the algorithms. 'e MU parameter indicates the maxi-
mum number of unsuccessful searches before leaving a clue.
It ranges within [0, 2×Tmax], where 2×Tmax is the maxi-
mum number of searches done by each human and Tmax is
the maximum number of iterations. For greater values of the
MU, humans will never leave the clues. On the one hand,
small values of this parameter lead to the group 3 member
finish searching around the current clue and go to other
locations before he/she can completely search around it. On
the other hand, large values of this parameter cause an
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increase in searches around one clue and a reduction of the
chances of searching in other regions. 'e MU directly
relates to the dimension of the problem. As the search space
increases, the maximum number of unsuccessful searches is
increased, too.

For all the following tests, the value of the SE was set to
0.05 and the value of the MU was obtained by equation (10).
'e analysis of SAR parameters has shown that these values
for the SE and MU are suitable for solving single-objective
continuous optimization problems.

MU � 70 ×D. (10)

3.8. Pseudocode of Search and Rescue Optimization Algorithm
(SAR). 'e pseudocode of this algorithm is presented in
Algorithm 1 for solving a maximization problem. Position
sorting is performed only once before the iterations begin.

3.9. Conceptual Comparison of SAR with Other Metaheuristic
Algorithms. In each iteration of SAR, two new solutions are
generated in two phases for each algorithm particle. 'e
concepts of searching in these phases are different. In the
social phase, new solutions are generated based on locations
and objective functions of other solutions. In this phase, each
particle can move toward the other particles. But in the
individual phase, new solutions are generated around cur-
rent solutions and each particle does not move toward the
other particles. In this algorithm, only a new solution which
is better than the current solution is accepted and the current
solution is stored in an archive (memory). 'e archive is
used to generate new solutions.

SAR such as PSO, ABC, DE, GSA, and TLBO is a pop-
ulation-based optimization algorithm. Similarity and differ-
ence of SAR and these algorithms are explained as follows.

3.9.1. SAR versus PSO

Similarity. Both of them utilize social and individual
information and memory to generate new solutions.

Difference. In PSO, a combination of the global best
position (social information) and local best position
(individual information) is used to generate a new so-
lution. But SAR separately uses social and individual
information to generate two new solutions. Besides, the
global best solution is not considered by SAR in these
phases. PSO accepts all new solutions, but SAR only
accepts new solutions which are better than current
solutions. Unlike PSO, SAR leaves unimproved solutions.
Also, SAR considers objective function values to generate
new solutions in the social phase. Besides, the memory
update mechanisms of these methods are different.

3.9.2. SAR versus ABC

Similarity. To produce a new solution, objective
function values are considered by both of these

algorithms. 'ey only accept a new solution which is
better than the current solution. Both of them leave
unimproved solutions.

Difference. ABC has not any kinds of memories. It
selects solutions by the roulette wheel mechanism and
generates new solutions by changing only one di-
mension of the selected solutions. But SAR selects clues
randomly and uses them to generate new solutions by
changing some or all dimensions of current solutions.
So they use different strategies to generate new solu-
tions, and SAR produces two new solutions for each
agent in each iteration.

3.9.3. SAR versus DE

Similarity. 'ey accept only new solutions which are
better than current solutions.'e crossover mechanism
used in the social phase of SAR is similar to the
crossover mechanism of DE.

Difference. DE does not consider the previous solutions
to generate new solutions, and it is a memoryless al-
gorithm. Although both of these algorithms utilize the
same crossover mechanism, the equations applied to
generate new solutions are different. DE does not leave
unimproved solutions and does not consider objective
functions values to produce new solutions. Also, DE
produces only a new solution for each agent in each
iteration.

3.9.4. SAR versus TLBO

Similarity. Both of them include two searching phases
and consider values of objective function to generate
new solutions. 'ey accept only new solutions which
are better than current solutions.

Difference. 'e previous solutions are not used by
TLBO, and it is a memoryless algorithm. Unlike this
algorithm, SAR leaves unimproved solutions after a
certain number of unsuccessful objective function
evaluations. SAR and TLBO obtain new solutions using
entirely different strategies.

Furthermore, in comparison with the above algorithms,
the boundary control strategy of SAR is different.

3.10. Computational Complexity. In this section, the com-
putational complexity of SAR is discussed. 'e population
initialization process requires O(2 × n× d) times, where n
and d indicate the number of humans and the dimension of
the problem. 'e proposed algorithm requires O(2n · log
(2n)) times to sort population in the initialization phase.
'e complexity of the social and individual phases is
O(n × d) times in the worst case. 'e complexity of the
abandon clue process is O(n) and O(n × d) in the best and
the worst case. 'us, the computational complexity of SAR
is as follows:

6 Mathematical Problems in Engineering



(1) Begin:
(2) Randomly initialize a population of 2N solutions uniformly distributed in the range [Xmin

j , Xmax
j ], j� 1, . . ., D

(3) Sort the solutions in the decreasing order and find the best position (Xbest)
(4) Use the first half of the sorted solutions for human position matrix (X) and the others for memory matrix (M)
(5) Define the algorithm parameters (SE, MU) and set USNi� 0 where i� 1, . . ., N
(6) While stop criterion is not satisfied do
(7) For i� 1 to N do

Social phase

(8) C � X
M
􏼢 􏼣

(9) SDi � (Xi − Ck), k is randomly selected in such away that i≠ k
(10) jrand � rand int[1, D]
(11) r1 � rand[− 1, 1]
(12) For j� 1 to D do

(13) Xi,j
′ �

Ck,j + r1 × SDi,j, if f(Ck)>f(Xi),
Xi,j + r1 × SDi,j, otherwise

􏼨 if rand[0, 1]< SE or j � jrand
Xi,j, otherwise

⎧⎪⎨⎪⎩
(14) Xi,j

′ �
(Xi,j +Xmax

j )/2, if Xi,j
′ >Xmax

j

(Xi,j +Xmin
j )/2, if Xi,j

′ <Xmin
j

􏼨
(15) End For

(16) Mn �
Xi, if f(Xi

′)>f(Xi),
Mn, otherwise,

􏼨 n randomly selected

(17) Xi �
Xi
′, if f(Xi

′)>f(Xi)
Xi, otherwise

􏼨
(18) USNi �

USNi + 1, if f(Xi
′)<f(Xi)

0, otherwise
􏼨

Individual phase

(19) C � X
M
􏼢 􏼣

(20) Xi
′ � Xi + rand[0, 1] × (Ck − Cm), k andm are randomly selected in such away that i≠ k≠m

(21) For j� 1 to D do

(22) Xi,j
′ �

(Xi,j +Xmax
j )/2, if Xi,j

′ >Xmax
j

(Xi,j +Xmin
j )/2, if Xi,j

′ <Xmin
j

􏼨
(23) End For

(24) Mn �
Xi, if f(Xi

′)>f(Xi),
Mn, otherwise,

􏼨 n randomly selected

(25) Xi �
Xi
′, if f(Xi

′)>f(Xi)
Xi, otherwise

􏼨
(26) USNi �

USNi + 1, if f(Xi
′)<f(Xi)

0, otherwise
􏼨

(27) If USNi > MU do
(28) For j� 1 to D do
(29) Xi,j � Xmin

j + rand[0, 1] × (Xmax
j − Xmin

j )
(30) End for
(31) USNi � 0
(32) End If
(33) End for
(34) Find the current best position and update Xbest
(35) End while
(36) Return Xbest
(37) End

ALGORITHM 1: Pseudocode of the search and rescue optimization algorithm (SAR).
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O(SAR) � O(initialization) +Maxit ×(O(social phase)
+ O(individual phase) + O(abandon clue))

� O(2 × n × d) + O(2n log(2n)) +Maxit

×(O(n × d) + O(n × d) + O(n × d)),
(11)

where Maxit is the maximum number of iterations.
According to the above discussion, the total computational
complexity of SAR is O(Maxit× n× d).

4. Numerical Results

To evaluate the performance of SAR, four tests were con-
sidered. Classic benchmark functions were used in test 1 and
test 2, while modern benchmarks have been used in test 3.
Finally, some structural engineering design problems were
utilized in test 4. All runs were executed on a 64 bit computer
with 32GB of RAM having an Intel i7 (3.4GHz) CPU
running Windows 10.

4.1. Test 1. As discussed in Introduction, metaheuristic al-
gorithms are inherently divided into four groups. One well-
known algorithm was selected from each group to compare
with the proposed algorithm. Artificial bee colony (ABC),
gravitational search algorithm (GSA), differential evolution
(DE), and teaching-learning-based optimization (TLBO)
algorithms were considered swarm-based, physics-based,
evolution-based, and human-based algorithms, respectively.
'e population size and control parameters of these algo-
rithms are given in Table 1, as suggested in [46], [33], [25],
and [47]. TLBO has no control parameter.

In the first test, the performance of SAR was compared
with that of ABC, GSA, DE, and TLBO on 27 benchmark
functions. 'ese functions used by various researchers
[16, 48–50] are presented in Table 2. In this table, type, D,
range, and fmin represent the type of the benchmark func-
tion, the dimensions of the problem, the range of variations,
and the optimal value of the function, respectively. Also,
Xmax
j and Xmin

j are the maximum and minimum threshold
values of the dimension j, respectively. In the type column of
this table, U, M, S, and N refer to unimodal, multimodal,
separable, and nonseparable functions, respectively. 13
benchmark functions are unimodal, while 14 functions are
multimodal. Moreover, there are 11 separable functions and
16 nonseparable functions. Since in some of these classical
functions the locations of global minima are symmetrical,
some algorithms may be affected by this feature and show a
different and unrealistic performance. 'erefore, the loca-
tions of symmetrical global minima are shifted using
function T defined in the last row of Table 2. 'is function
generates nonsymmetrical numbers.

In test 1, the maximum number of function evaluations
(NFE) was set to 4×103×D for all algorithms, in which D is
the number of dimensions of the benchmark function that is
specified in Table 2. All algorithms were independently
executed 51 times. 'e algorithms were stopped when the
number of evaluations for the objective function exceeded

the NFE (4×103×D) or when the least error (distance
between the objective function of the best found solution
and the objective function of the global optimum solution)
was less than 10− 8.

4.2. Test 2. 'e algorithms and benchmark functions con-
sidered for this test are similar to those in the first test. 'e
difference between the first and second tests is related to
NFEs. For all of these benchmark functions (except for f13),
this value is equal to 2×104×D which is 5 times greater than
the value considered in the first test. For f13, the NFE is set to
3×104×D. 'e purpose of the second test is to examine the
ability of the algorithms to find global minima. 'erefore, a
high value of the NFE is considered.

As in the first test, all the algorithms were independently
run 51 times, and the algorithms were stopped when the
error values (distance between the objective function value
of the best found solution and the objective function value of
the global optimum solution) for the global solution were
less than 10− 8 or the number of function evaluations reached
its maximum. 'e population and parameters of the algo-
rithms were set the same as those in test 1.

4.3. Test 3. In this test, 28 benchmark functions of CEC 2013
Competition on Single-Objective Real-Parameter Numerical
Optimization are used to compare SAR with the state-of-the-
art optimization algorithms. All of these functions are min-
imization problems. 'e details of CEC 2013 benchmark
functions can be found in [51]. 'ese functions cover various
types of optimization problems. 'ese functions are divided
into three classes: unimodal (C1–C5), basic multimodal
(C6–C20), and composition (C21–C28) benchmark func-
tions.'e composition functions are created by combinations
of different basic functions. Consequently, they are multi-
modal, nonseparable, and asymmetrical. 'e algorithm was
independently run 51 times, and it stops when the number of
function evaluations reached 100,000 or when the error values
from the global optima were less than 10− 8. 'e control
parameters of SAR were the same as those in the previous two
tests. 'e problem dimension was 10, and the variables
ranged within [− 100, 100]. To verify the performance of SAR
on these problems, it was compared with nine optimization
algorithms. 'ese algorithms which were verified on CEC
2013 benchmark functions are listed as follows:

(i) Artificial bee colony (ABC)

(ii) A CMA-ES super-fit scheme for the resampled
inheritance search (CMA-RIS) [52]

Table 1: Control parameters of the compared algorithms in tests 1
and 2.

Algorithm Control parameters Population size

ABC Limit� 50D 50
GSA G0� 50, α� 20, and T� 50 50
DE F� 0.5 and CR� 0.9 20
TLBO — 20
SAR SE� 0.05 and MU� 70D 20
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(iii) Adaptive monogamous pairs genetic algorithm
(AMopGA) [53]

(iv) Grey wolf optimizer (GWO)

(v) Yin-Yang-pair optimization (YYPO) [17]

(vi) Reflected adaptive differential evolution with two
external archives (RJADE) [54]

(vii) Self-adaptive differential evolution (SaDE) [55]

(viii) Self-adaptive heterogeneous PSO (fk-PSO) [56]

(ix) Standard Particle Swarm Optimisation 2011
(SPSO) [57]

'ese algorithms include a CMA variant (CMA-RIS), a
GA variant (AMopGA), two DE variants (SaDE and
RJADE), two PSO variants (fk-PSO and SPSO), two recent
metaheuristic algorithms (GWO and YYPO), and ABC.
Different studies show that the performances of these var-
iants are better than that of the basic version of them. 'e
results of ABC, GWO, and YYPO are reported in [17]. For

Table 2: Benchmark functions used in tests 1 and 2.

Test function Type D Range fmin

f1(x) � 25 + 􏽐ni�1⌊xi⌋ US 5 [− 5.12, 5.12] − 5
f2(x) � 􏽐ni�1y2i , yi � xi − Ti US 25 [− 100, 100] 0

f3(x) � 􏽐ni�1(yi + 0.5)2, yi � xi − Ti US 30 [− 100, 100] 0

f4(x) � 􏽐ni�1iy2i , yi � xi − Ti US 30 [− 10, 10] 0

f5(x) � 􏽐ni�1|yi|i+1, yi � xi − Ti US 30 [− 1, 1] 0

f6(x) � (1.5 − x1 + x1x2)2 + (2.25 − x1 + x1x22)
2 +

(2.625 − x1 + x1x32)
2 UN 2 [− 4.5, 4.5] 0

f7(x) � 0.26(y21 + y22)
2 − 0.48y1y2, yi � xi − Ti UN 2 [− 10, 10] 0

f8(x) � 100(y21 − y2)
2 + (y1 − 1)2 + (y3 − 1)2 + 90(y23 − y4)

2 +
10.1((y2 − 1)2 + (y4 − 1)2 ) + 19.8(y2 − 1)(y4 − 1), yi � xi − Ti

UN 4 [− 10, 10] 0

f9(x) � 􏽐ni�1y2i + (􏽐ni�10.5iy2i )2 + (􏽐ni�10.5iy2i )4, yi � xi − 0.5Ti UN 10 [− 5, 10] 0

f10(x) � 􏽐n/4i�1(y4i− 3 + 10y4i− 2)2 + 5(y4i− 1 − y4i)2 +
(y4i− 2 − y4i− 1)4 + 10(y4i− 3 − y4i)4, yi � xi − 0.8Ti

UN 24 [− 4, 5] 0

f11(x) � 􏽐ni�1|yi| +􏽑n
i�1|yi|, yi � xi − Ti UN 30 [− 10, 10] 0

f12(x) � 􏽐ni�1(􏽐ij�1yj)2, yi � xi − Ti UN 10 [− 100, 100] 0

f13(x) � 􏽐n− 1i�1 [100(yi+1 − y2i )
2 + (yi − 1)2], yi � xi − 0.5Ti UN 25 [− 30, 30] 0

f14(x) � (x2 − (5.1/4π)x21 + (5/π)x1 − 6)2 + 10(1 −
(1/8π))cosx1 + 10

MS 2 − 5≤ x1≤ 10, 0≤ x2≤15 0.3978873577

f15(x) � y21 + 2y2
2 − 0.3 cos(3πy1) − 0.4 cos(4πy2) + 0.7, yi �

xi − Ti
MS 2 [− 100, 100] 0

f16(x) � − 􏽐ni�1sin(xi)(sin(ix2i /π))2m, m � 10 MS 2 [0, π] − 1.8013034101
f17(x) � − 􏽐ni�1sin(xi)(sin(ix2i /π))2m, m � 10 MS 5 [0, π] − 4.6876581791
f18(x) � 􏽐ni�1[y2i − 10 cos(2πyi) + 10], yi � xi − 0.5Ti MS 25 [− 5.12, 5.12] 0

f19(x) � 􏽐ni�1 − yi sin( ���
|yi|
􏽰

), yi � xi − 0.05Ti MS 25 [− 500, 500] − 418.98288727 ∗ D
f20(x) � y21 + 2y2

2 − 0.3 cos(3πy1)cos(4πy2) + 0.3, yi � xi − Ti MN 2 [− 100, 100] 0

f21(x) � [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2 + 6x1x2 +
3x22)] × [30 + (2x1 − 3x2)2(18 − 32x1 + 12x21 + 48x2 − 36x1x2 +
27x22)]

MN 2 [− 2, 2] 3

f22(x) � (􏽐5
i�1i cos((i + 1)x1 + i))(􏽐5

i�1i cos((i + 1)x2 + i)) MN 2 [− 10, 10] − 186.73090883
f23(x) � 4x21 − 2.1x41 + (1/3)x61 + x1x2 − 4x22 + 4x42 MN 2 [− 5, 5] − 1.0316284535
f24(x) � − 20 exp(− 0.2

����������
(1/n)􏽐ni�1y2i􏽱

) −
exp((1/n)􏽐ni�1cos(2πyi)) + 20 + e, yi � xi − Ti

MN 25 [− 32, 32] 0

f25(x) � (1/4000)􏽐ni�1y2i − 􏽑n
i�1cos(yi/

�
i

√
) + 1, yi � xi − Ti MN 25 [− 600, 600] 0

f26(x) � (π/n) 10 sin2(πz1) +􏽐n−i�1􏼈 1(zi − 1)2[1 + sin2(πzi+1)] +
(zn − 1)2} + 􏽐ni�1u(yi, 10, 100, 4) , (zi � 1 + 0.25(yi + 1),

yi � xi − Ti)u(yi, a, k,m) �
k(yi − a)m, yi > a
0, − a≤yi ≤ a
k(− yi − a)m, yi < − a

⎧⎪⎨⎪⎩
MN 30 [− 50, 50] 0

f27(x) � 0.1 sin2(3πy1) + 􏽐n− 1i�1 (yi − 1)2[1 + sin2(3πyi+1)]+􏽮
(yn − 1)2[1 + sin2(2πyn)]} +􏽐ni�1u(yi, 5, 100, 4), yi � xi − Ti MN 30 [− 50, 50] 0

Ti � 0.25(Xmax
i − Xmin

i )((− 1)(cos(j(π/4))+2))(sin (j(3π/D) + 2)3 +
cos (j(4π/D) − 1)3) — — — —
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the other above algorithms, the results from the original
studies were used.

4.4. Test 4. In order to evaluate the performance of SAR for
solving real-world engineering optimization problems, three
engineering design problems were utilized. 'e penalty
function approach was employed to handle the con-
straints of these problems. For all the engineering opti-
mization problems, the control parameters of SAR were
set the same as those in the previous tests and the pop-
ulation size of SAR was equal to 10. SAR was in-
dependently run 50 times.'ese engineering problems are
introduced as follows.

4.4.1. I-Beam Design. 'e I-beam design problem was firstly
proposed by Gold and Krishnamurty [58].'e objective is to

find the minimum vertical deflection of an I-beam. 'e
vertical deflection of an I-beam defined by equation (12) is
dependent on design load (P), length of the beam (L), and
modulus of elasticity (E):

f(x) � PL3

48EI
. (12)

P, L, and E are 600 kN, 200 cm, and 20000 kN/cm2. 'is
problem has four variables and two constraints including the
cross-sectional area (constraint g1) and the bending stress of
the beam (constraint g2).'emaximum cross-sectional area
is 300 cm2, and the allowable bending stress of the beam is
56 kN/cm2. 'e mathematical model of the problem is
expressed as follows:

minimize f h, b, tw, tf􏼐 􏼑 � 5000

tw h − 2tf􏼐 􏼑3/12􏼒 􏼓 + bt3f/6􏼒 􏼓 + 2btf h − tf/2􏼐 􏼑2􏼒 􏼓,

subject to g1(x) � 2btf + tw h − 2tf􏼐 􏼑≤ 300,
g2(x) �

1.8 × 105h

tw h − 2tf􏼐 􏼑3 + 2btw 4t2f + 3h h − 2tf􏼐 􏼑􏼒 􏼓 +
1.5 × 104b

t3w h − 2tf􏼐 􏼑 + 2twb
3
≤ 56,

(13)

with bounds 10≤ h≤ 80, 10≤ b≤ 50, 0.9≤ tf ≤ 5, and
0.9≤ tw ≤ 5.

4.4.2. Cantilever Beam Design. 'e cantilever beam design
problem was firstly presented by Fleury and Braibant [59].
It consists of five hollow square cross sections. 'e
thickness of these sections is fixed, and the height of them
is a design variable. A vertical force is applied at the free
end of the beam, and another end of the beam is a rigid
support.

'e cantilever beam design problem has five variables
and one constraint. 'e goal is to minimize the weight of the
beam. 'is problem can be stated as follows:

minimizef(x) � 0.0624 x1 + x2 + x3 + x4 + x5( 􏼁,
subject tog(x) � 61

x31
+ 37

x32
+ 19

x33
+ 7

x34
+ 1

x35
≤ 1,

(14)

with bounds 0.01≤xi ≤ 100, i � 1, 2, . . . , 5.

4.4.3. Spatial 25-Bar Truss Structure Design. 'e spatial 25-
bar truss design was widely used in structural design opti-
mization. Many optimization methods were applied to solve
this well-known optimization problem. 'e elastic modulus
and thematerial density of all members are 104 ksi and 0.1 lb/
in3, respectively.

'e minimum and maximum cross-sectional areas of
them are 0.01 in2 and 3.4 in2, respectively. 'is truss is
subjected to the two loading conditions presented in
Table 3.

Because of the symmetry of the structure, the 25
members of the truss are divided into 8 groups, as follows:
(1) A1, (2) A2–A5, (3) A6–A9, (4) A10-A11, (5) A12-A13,
(6) A14–A17, (7) A18–A21, and (8) A22–A25. 'e dis-
placements of the nodes in both directions are limited
to ± 0.35 in, and the allowable stress for each group is
shown in Table 4.

5. Results and Discussion

5.1. Performance of SAR on Classic Benchmark Functions.
'e means and variances of errors (distance between the
minimum value of found objective functions and the op-
timal value of the function) obtained by the algorithms for
the first test are shown in Table 5. Errors less than 10− 8 are
considered 0.

'e Wilcoxon signed-rank test was used to compare the
pair algorithms, and the results of 51 runs for SAR were
compared with those of the other algorithms [60]. In the
Wilcoxon signed-rank test, the superiority of the two al-
gorithms is seen using the hypothesis test. Two hypotheses
are defined as null hypothesis (H0) and alternative hy-
pothesis (H1). 'e null hypothesis indicates that there is no
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difference between two algorithms, and the alternative hy-
pothesis indicates that there is a difference between two
algorithms. To determine whether these algorithms have any
superiority to each other, the p value is used.'e smaller the
p value is, the more likely these two algorithms are different
(alternative hypothesis). To determine the level of hypothesis

through the level of significance, α has been used. 'e
Wilcoxon signed-rank test results for the first test are shown
in Table 6. In this paper, α is equal to 0.05. If the p value is
less than 0.05, then these two algorithms are statistically
different with the 95% confidence level. When h is 0, it
means that there is no difference between the two

Table 3: Nodal loading (ksi) for the spatial 25-bar truss.

Node
Case 1 Case 2

Px Py Pz Px Py Pz

1 0 20 − 5 1 10 − 5
2 0 − 20 − 5 0 10 − 5
3 0 0 0 0.5 0 0
6 0 0 0 0.5 0 0

Table 4: Member stress limitations (ksi) for the spatial 25-bar truss.

Design variables Members Compression

A1 35.092 40
A2–A5 11.59 40
A6–A9 17.305 40
A10-A11 35.092 40
A12-A13 35.092 40
A14–A17 6.759 40
A18–A21 6.959 40
A22–A25 11.082 40

Table 5: Basic statistical results of 51 runs obtained by ABC, DE, GSA, TLBO, and SAR in test 1.

Function
ABC DE GSA TLBO SAR

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

f1 0 0 0 0 4.00E+ 00 3.46E − 01 0 0 0 0
f2 0 0 0 0 0 0 0 0 0 0
f3 0 0 3.33E − 01 8.41E − 01 0 0 2.73E+ 03 2.40E+ 03 0 0
f4 0 0 0 0 0 0 0 0 0 0
f5 0 0 1.20E − 08 1.80E − 08 0 0 0 0 0 0
f6 1.22E − 03 1.50E − 03 0 0 2.41E − 03 1.02E − 03 0 0 0 0
f7 6.31E − 04 7.91E − 04 0 0 4.02E − 05 2.61E − 04 0 0 0 0
f8 3.00E − 01 2.33E − 01 3.50E − 02 1.44E − 01 1.97E+ 00 1.98E+ 00 9.55E − 03 6.40E − 02 1.45E − 06 8.87E − 06
f9 7.30E+ 00 3.98E+ 00 0 0 3.31E − 01 6.48E − 01 0 0 0 0
f10 2.19E − 02 6.46E − 03 2.60E − 05 2.24E − 05 5.82E − 04 2.60E − 04 5.43E − 04 6.39E − 04 6.30E − 08 1.28E − 07
f11 1.58E − 08 0 0 0 1.80E − 08 0 1.55E − 06 7.55E − 06 0 0
f12 1.56E+ 02 1.03E+ 02 0 0 9.40E+ 01 7.27E+ 01 0 0 0 0
f13 4.08E − 01 5.24E − 01 2.12E+ 01 1.39E+ 01 2.25E+ 01 1.60E+ 01 1.03E+ 02 4.83E+ 02 2.73E+ 00 2.55E+ 00
f14 3.83E − 07 1.96E − 06 0 0 0 0 0 0 0 0
f15 0 0 0 0 0 0 0 0 0 0
f16 0 0 0 0 0 0 0 0 0 0
f17 1.55E − 08 4.72E − 08 9.01E − 03 1.73E − 02 1.13E − 01 9.05E − 02 1.16E − 01 8.01E − 02 0 0
f18 2.24E − 08 8.22E − 08 3.44E+ 01 2.66E+ 01 2.31E+ 01 4.46E+ 00 8.14E+ 01 1.91E+ 01 9.75E − 02 2.99E − 01
f19 1.32E+ 02 6.01E+ 01 1.41E+ 03 3.46E+ 02 8.08E+ 03 3.51E+ 02 3.18E+ 03 5.73E+ 02 2.63E+ 00 1.67E+ 01
f20 0 0 0 0 0 0 0 0 0 0
f21 1.77E − 05 1.00E − 04 0 0 0 0 0 0 0 0
f22 1.41E − 04 3.67E − 04 2.35E − 04 6.21E − 04 1.04E+ 01 1.23E+ 01 1.78E − 04 8.72E − 04 3.36E − 07 1.04E − 06
f23 0 0 0 0 0 0 0 0 0 0
f24 1.42E − 06 1.01E − 06 0 0 0 0 1.20E+ 01 2.47E+ 00 0 0
f25 3.79E − 04 1.58E − 03 1.50E − 03 3.72E − 03 1.74E+ 02 2.26E+ 01 1.11E+ 00 4.49E+ 00 0 0
f26 0 0 6.10E − 03 2.46E − 02 5.31E − 01 7.39E − 01 7.33E+ 00 7.29E+ 00 0 0
f27 0 0 5.98E+ 02 4.27E+ 03 0 0 4.93E+ 00 6.90E+ 00 0 0
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algorithms. 1+ for h indicates significant superiority of the
first algorithm over the second one. Finally, 1− for h implies a
significant superiority of the second algorithm over the first
one.

According to the data in Table 5, SAR and ABC found
the solution for all five US benchmarks—both unimodal and
separable—in all runs. But the TLBO, DE, and GSA failed to
find the global minimum in 2, 2, and one functions, re-
spectively. 'e DE and SAR maintained almost the same
performance on 8 UN functions, and they found the global
minimum point on all runs except for three functions (f8,
f10, and f13) that the performance of SAR was better than
that of DE. TLBO had a performance near to that of these
two algorithms. But it failed to find the minimum value in
f11 in addition to these three functions. Both ABC and GSA
failed to find the minimum value for any UN functions and
had less convergence rate for these functions compared to
the other algorithms. SAR had the best performance on MS
functions and was able to find the value of global minima in
four of six functions. Like the other algorithms, it failed to
find the global minima in f18 and f19. Among the other four
algorithms, ABC had less mean of errors. On 8 MN func-
tions, SAR performed better than the other algorithms, and
it only failed to find the global minimum in f22, but it had
less errors than the others.

In Table 6, SAR was compared with the other algorithms
by the two-sided Wilcoxon signed-rank test. In the last row
of this table, the superiority of the first algorithm (SAR) over

the second one has been shown by the sign (+). Equal su-
periority is shown with the sign (�). Finally, the superiority
of the second algorithm over the first one is shown with the
sign (− ). According to the data in Table 6, SAR outperformed
ABC in 13 functions, while they had similar performance in
13 functions. ABC outperformed SAR only in f13. TLBO and
GSA were not better than SAR in any functions. DE out-
performed SAR in f8, while SAR outperformed it in 9
functions, and they had similar performance in 17 functions.
Accordingly, SAR outperformed ABC, DE, GSA, and TLBO
in the classic benchmark functions.

5.2.Global SearchAbility. In the second test, the ability of the
algorithms to find the global minimum has been investigated,
and for this purpose, the maximum number of function
evaluations (NFE) was increased. In Table 7, the success
percentages of the algorithms in finding the global minimum
for 27 benchmark functions along with the average per-
centages are shown for 4 benchmark function types (uni-
modal, multimodal, separable, and nonseparable functions).

'e least NFE among 5 algorithms is highlighted in bold
for each function. ABC was not able to find the minimum
value of UN functions for any runs except for f11. 'is fact
indicates the slower convergence rate of this algorithm to
solve these types of optimization problems. Moreover, as it is
clear in Table 7, ABC had the lowest success rate for such
problems among all the algorithms, while it performed

Table 6: Comparisons between SAR and the other algorithms by the Wilcoxon signed-rank test (α� 0.05).

Function
ABC DE GSA TLBO

p value h p value h p value h p value h

f1 1.00E+ 00 0 1.00E+ 00 0 5.12E+ 12 1+ 1.00E+ 00 0
f2 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0
f3 1.00E+ 00 0 4.88E+ 04 1+ 1.00E+ 00 0 2.65E+ 10 1+

f4 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0
f5 1.00E+ 00 0 6.25E+ 02 0 1.00E+ 00 0 1.00E+ 00 0
f6 2.65E − 10 1+ 1.00E+ 00 0 2.65E+ 10 1+ 1.00E+ 00 0
f7 2.65E+ 10 1+ 1.00E+ 00 0 1.56E+ 02 1+ 1.00E+ 00 0
f8 2.65E+ 10 1+ 2.70E+ 03 1+ 2.65E+ 10 1+ 2.03E+ 09 1+

f9 2.65E+ 10 1+ 1.00E+ 00 0 1.91E+ 07 1+ 1.00E+ 00 0
f10 2.65E+ 10 1+ 2.65E+ 10 1+ 2.65E+ 10 1+ 2.65E+ 10 1+

f11 3.94E+ 09 1+ 1.00E+ 00 0 2.65E+ 10 1+ 9.77E+ 04 1+

f12 2.65E+ 10 1+ 1.00E+ 00 0 2.65E+ 10 1+ 1.00E+ 00 0
f13 2.51E+ 05 1+ 2.81E+ 10 1+ 2.65E+ 10 1+ 1.21E+ 09 1+

f14 4.17E+ 07 1+ 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0
f15 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0
f16 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0
f17 3.13E+ 02 1+ 4.88E+ 04 1+ 3.05E+ 09 1+ 6.48E+ 10 1+

f18 1.07E+ 01 0 2.65E+ 10 1+ 2.63E+ 10 1+ 2.65E+ 10 1+

f19 2.65E+ 10 1+ 2.65E+ 10 1+ 2.65E+ 10 1+ 2.65E+ 10 1+

f20 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0
f21 5.80E+ 09 1+ 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0
f22 2.65E+ 10 1+ 1.48E+ 07 1+ 2.22E+ 09 1+ 4.53E+ 02 1+

f23 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0 1.00E+ 00 0
f24 2.65E+ 10 1+ 1.00E+ 00 0 1.00E+ 00 0 2.65E+ 10 1+

f25 6.25E+ 02 0 3.90E+ 03 1+ 2.65E+ 10 1+ 2.65E+ 10 1+

f26 1.00E+ 00 0 1.25E+ 01 0 4.16E+ 07 1+ 2.65E+ 10 1+

f27 1.00E+ 00 0 3.13E+ 02 1+ 1.00E+ 00 0 5.73E+ 10 1+

+/�/− 13/13/1 9/17/1 15/12/0 13/14/0
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better after SAR for multimodal functions. It also had a great
performance for separable problems. DE had the best per-
formance for nonseparable functions after SAR. Regarding
the average success percentage of the algorithms in finding
the global minimum, SAR had better performance than
ABC, DE, GSA, and TLBO. 'is algorithm was able to find
the global minimum for multimodal functions with an
average of 100% indicating high ability of it for global
searching and avoiding local minima.

5.3. Convergence Rate Analysis. In Table 7, in addition to the
success percentages, the average numbers of function eval-
uations to reach stopping conditions are presented for the
compared algorithms. Based on this table, SAR had the fastest
convergence rate for 13 functions among all studied algo-
rithms. In Figure 3, the convergence curves of SAR for some
of the benchmark functions are shown. 'ese functions in-
clude unimodal and separable (f2, f3, and f4), unimodal and
nonseparable (f6, f7, and f10), multimodal and separable (f15,
f17, and f19), and multimodal and nonseparable (f20, f22, and
f25) functions. 'ese curves were obtained by averaging 51
independent runs for all the algorithms.

Also, the Wilcoxon signed-rank test has been used to
more accurately check the convergence rate of the algo-
rithms. In this test, the maximum numbers of function
evaluations of SAR are compared with those of the other
algorithms in 51 runs by the two-sided Wilcoxon signed-
rank test (α� 0.05), and the results are presented in Table 8.
'e comparison procedure is similar to that in Table 6. 1+ for
h indicates the first algorithm has a faster convergence rate
than the second algorithm.

According to the data in Table 8, SAR had a faster
convergence rate than ABC in 26 functions, while ABC had a
faster convergence rate than SAR only in f1.'erefore, it can
be concluded that SAR has a faster convergence rate than
ABC. Also, the convergence rate of SAR was faster than that
of GSA in all 27 functions. 'e convergence rate of SAR was
faster than that of DE in 10 functions, while it had lower
convergence rate than DE in 13 functions, and they had
equal convergence rate in 4 functions. In the unimodal
functions, the convergence rate of DE was faster than that of
SAR. But SAR had a faster convergence rate in the multi-
modal functions. In comparison with TLBO, the conver-
gence rate of SARwas faster, equal, and lower in 15, 4, and 11
functions, respectively.

Table 7: Success percentage and mean number of function evaluations for ABC, DE, GSA, TLBO, and SAR.

Function
ABC DE GSA TLBO SAR

Success % Mean eval. Success % Mean eval. Success % Mean eval. Success % Mean eval. Success % Mean eval.

f1 100 1265 100 744 0 1e4 100 453 100 1762
f2 100 62338 100 28474 100 270315 100 51351 100 30252
f3 100 20459 84 105482 100 50556 0 6e5 100 16334
f4 100 65100 100 28689 100 327167 100 63975 100 30777
f5 100 24281 94 43030 100 118365 100 21029 100 7706
f6 0 4e4 100 1649 100 22650 100 2302 100 3279
f7 0 4e4 100 1408 100 14054 100 1119 100 1948
f8 0 8e4 94 13116 0 8e4 100 30940 100 16711
f9 0 2e5 100 15023 100 109991 100 12527 100 20680
f10 0 4.8e5 24 464170 0 4.8e5 0 4.8e5 100 107834
f11 100 121765 100 52864 4 599957 100 103706 100 51684
f12 0 2e5 100 18450 100 108097 100 23064 100 25306
f13 0 7.5e5 2 7.38e5 0 7.5e5 0 7.5e5 100 156253
f14 100 8998 100 2488 100 16660 100 1759 100 3458
f15 100 4170 100 2213 100 18721 100 1367 100 2156
f16 100 2747 100 1637 100 18902 100 1020 100 1498
f17 100 15600 73 33279 14 94383 20 83000 100 8634
f18 100 92589 0 5e5 0 5e5 0 5e5 100 86189
f19 100 173076 0 5e5 0 5e5 0 5e5 100 98887
f20 100 5922 100 2221 100 18651 100 1526 100 2449
f21 98 11425 100 1817 100 21524 100 1325 100 2566
f22 100 13495 100 9219 0 4e4 100 8136 100 7428
f23 100 4373 100 2217 100 17268 100 1336 100 2134
f24 100 123414 98 53792 100 472456 0 5e5 100 48492
f25 98 91770 78 131265 80 284346 0 5e5 100 38684
f26 100 69014 96 64814 98 261425 8 561692 100 35346
f27 100 76217 96 70921 100 293661 4 582169 100 38992

U fun. avg. 46.2 84.6 61.8 76.9 100
M fun. avg. 99.7 81.5 70.9 52.2 100
S fun. avg. 100 77.4 64.9 65.4 100
N fun. avg. 56.0 86.9 67.6 63.2 100

Total average 73.9 83.0 66.5 64.1 100
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Figure 3: Continued.
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According to the data in Table 8 and Figure 3, the
convergence rate of SAR was significantly higher than that of
GSA and ABC. Also, SAR had a faster convergence rate
compared to TLBO in more than half of the functions. 'e
convergence rate of DE was almost equal to that of SAR. But
SAR had a faster convergence rate than DE for multimodal
functions.

5.4. Performance of SAR on CEC 2013 Benchmark Function
Set. 'e mean of errors obtained by ABC, CMA-RIS,

AMopGA, GWO, YYPO, RJADE, SaDE, fk-PSO, SPSO, and
SAR algorithms for the third test is reported in Tables 9–11.
'e solutions less than 10− 8 are considered 0. Moreover, by
comparing these 10 algorithms, the rank of each algorithm is
determined for each function and is provided in these tables.
'e lowest rank (1) is related to an algorithm with the lowest
mean of errors compared to the other algorithms. 'e best
mean of errors is highlighted in bold in these tables.

In Table 9, the results obtained by the algorithms for
unimodal functions are shown. 'ese functions are very
suitable for comparing the ability of the algorithms in
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Figure 3: Convergence curves of SAR and the compared algorithms. (a) F2. (b) F3. (c) F4. (d) F6. (e) F7. (f ) F10. (g) F15. (h) F17. (i) F19.
(j) F20. (k) F22. (l). F25.

Table 8: Comparisons of NFEs between SAR and the other algorithms by the Wilcoxon signed-rank test (α� 0.05).

Function
ABC DE GSA TLBO

p value h p value h p value h p value h

f1 4.38E − 05 1− 3.57E − 10 1− 2.65E − 10 1+ 2.65E − 10 1−

f2 2.65E − 10 1+ 8.10E − 10 1− 2.65E − 10 1+ 2.65E − 10 1+

f3 3.79E − 10 1+ 4.16E − 03 1− 2.65E − 10 1+ 2.65E − 10 1+

f4 2.65E − 10 1+ 6.54E − 09 1− 2.65E − 10 1+ 2.65E − 10 1+

f5 2.65E − 10 1+ 1.42E − 01 0 2.65E − 10 1+ 2.65E − 10 1+

f6 2.65E − 10 1+ 2.65E − 10 1− 2.65E − 10 1+ 8.25E − 08 1−

f7 2.65E − 10 1+ 6.42E − 10 1− 2.65E − 10 1+ 2.65E − 10 1−

f8 2.65E − 10 1+ 5.52E − 05 1− 2.65E − 10 1+ 2.81E − 10 1+

f9 2.65E − 10 1+ 2.65E − 10 1− 2.65E − 10 1+ 2.65E − 10 1−

f10 2.65E − 10 1+ 2.65E − 10 1+ 2.65E − 10 1+ 2.65E − 10 1+

f11 2.65E − 10 1+ 3.20E − 05 1+ 2.65E − 10 1+ 2.65E − 10 1+

f12 2.65E − 10 1+ 2.65E − 10 1− 2.65E − 10 1+ 5.05E − 06 1−

f13 2.65E − 10 1+ 2.65E − 10 1+ 2.65E − 10 1+ 2.65E − 10 1+

f14 2.65E − 10 1+ 1.23E − 07 1− 2.65E − 10 1+ 5.60E − 10 1−

f15 2.65E − 10 1+ 3.01E − 02 1+ 2.65E − 10 1+ 2.65E − 10 1−

f16 2.65E − 10 1+ 8.86E − 04 1+ 2.65E − 10 1+ 4.52E − 10 1−

f17 2.65E − 10 1+ 6.87E − 02 0 2.65E − 10 1+ 7.22E − 10 1+

f18 4.05E − 03 1+ 2.65E − 10 1+ 2.65E − 10 1+ 2.65E − 10 1+

f19 2.13E − 07 1+ 2.65E − 10 1+ 2.65E − 10 1+ 2.65E − 10 1+

f20 2.65E − 10 1+ 1.26E − 05 1− 2.65E − 10 1+ 2.65E − 10 1−

f21 2.65E − 10 1+ 2.99E − 10 1− 2.65E − 10 1+ 2.65E − 10 1−

f22 2.81E − 10 1+ 1.70E − 06 1+ 2.65E − 10 1+ 4.20E − 01 0
f23 2.65E − 10 1+ 7.78E − 01 0 2.65E − 10 1+ 3.78E − 10 1−

f24 2.65E − 10 1+ 5.55E − 09 1− 2.65E − 10 1+ 2.65E − 10 1+

f25 2.65E − 10 1+ 7.12E − 02 0 2.65E − 10 1+ 2.65E − 10 1+

f26 2.65E − 10 1+ 6.40E − 06 1+ 2.65E − 10 1+ 2.65E − 10 1+

f27 4.97E − 09 1+ 1.06E − 05 1+ 2.65E − 10 1+ 2.65E − 10 1+

+/�/− 26/0/1 10/4/13 27/0/0 15/1/11
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exploitation. As it is clear from Table 9, SAR and CMA-RIS
were able to find 100% of theminimum point for all runs in 4
cases of these 5 functions and are better than the other
algorithms. 'e mean error of CMA-RIS is lower than that
of SAR on the C3 function. 'erefore, CMA-RIS is the best
algorithm for unimodal functions. 'e mean ranks and the
overall ranks of them are shown in Table 12. Regarding the
data in this table, after CMA-RIS, SAR is the second best
algorithm among 10 compared algorithms for CEC 2013
unimodal functions. 'e DE variants are the third best al-
gorithms, and there is a high difference between mean ranks
of them (mean rank: 2.8) and those of SAR and CMA-RIS

(mean rank: 1.2 and 1.4, respectively). Hence, SAR is efficient
for unimodal functions, and it has high exploitation
capability.

Table 10 illustrates the results of the algorithms for basic
multimodal functions. 'ese functions are very suitable for
comparing the ability of the algorithms in exploration and
finding the global optimum. SaDE and AMopGA found the
best results for 4 of 15 basic multimodal functions.
According to the data in Table 12, SaDE was the first best
algorithm with mean rank 3.4 and SAR was ranked the
second with mean rank 3.53. 'e performance of SaDE is
slightly better than that of SAR. After them, fk-PSO with

Table 9: Results of CEC 2013 unimodal benchmark functions for the compared algorithms.

Function ABC CMA-RIS AMopGA GWO YYPO RJADE SaDE fk-PSO SPSO SAR

C1
Mean 0.00E + 00 0.00E+ 00 3.14E − 06 3.48E+ 00 0.00E + 00 0.00E + 00 0.00E+ 00 0.00E + 00 0.00E + 00 0.00E+ 00
Rank 1 1 9 10 1 1 1 1 1 1

C2
Mean 2.47E+ 06 0.00E+ 00 0.00E + 00 1.12E+ 06 6.44E+ 04 0.00E + 00 1.66E − 03 1.44E+ 05 3.63E+ 04 0.00E+ 00
Rank 10 1 1 9 7 1 5 8 6 1

C3
Mean 9.94E+ 06 7.04E − 01 0.00E + 00 9.49E+ 07 7.43E+ 05 1.21E+ 02 1.24E+ 01 6.75E+ 05 2.68E+ 05 2.30E+ 00
Rank 9 2 1 10 8 5 4 7 6 3

C4
Mean 9.24E+ 03 0.00E+ 00 6.80E − 04 7.02E+ 03 1.01E+ 02 1.16E+ 02 1.83E − 04 4.16E+ 02 8.87E+ 03 0.00E+ 00
Rank 10 1 4 8 5 6 3 7 9 1

C5
Mean 0.00E + 00 0.00E+ 00 1.08E − 04 2.39E+ 01 1.08E − 05 0.00E + 00 0.00E+ 00 0.00E + 00 0.00E + 00 0.00E+ 00
Rank 1 1 9 10 8 1 1 1 1 1

Table 10: Results of CEC 2013 basic multimodal benchmark functions for the compared algorithms.

Function ABC CMA-RIS AMopGA GWO YYPO RJADE SaDE fk-PSO SPSO SAR

C6
Mean 3.02E − 01 1.10E+ 00 6.70E+ 00 2.21E+ 01 6.26E+ 00 7.89E+ 00 5.77E+ 00 2.64E+ 00 9.80E+ 00 1.76E − 01
Rank 2 3 7 10 6 8 5 4 9 1

C7
Mean 3.29E+ 01 5.33E+ 01 0.00E + 00 8.38E+ 00 4.19E+ 00 1.59E − 01 1.30E − 01 1.92E+ 00 2.11E+ 01 7.27E+ 00
Rank 9 10 1 7 5 3 2 4 8 6

C8
Mean 2.04E+ 01 2.03E+ 01 1.45E + 01 2.04E+ 01 2.03E+ 01 2.04E+ 01 2.04E+ 01 2.03E+ 01 2.03E+ 01 2.04E+ 01
Rank 6 2 1 6 2 6 6 2 2 6

C9
Mean 5.02E+ 00 3.59E+ 00 8.36E − 02 3.57E+ 00 3.07E+ 00 4.46E+ 00 1.40E+ 00 2.75E+ 00 4.80E+ 00 3.44E+ 00
Rank 10 7 1 6 4 8 2 3 9 5

C10
Mean 1.43E+ 00 1.24E − 02 5.59E − 01 9.55E+ 00 2.36E − 01 3.53E − 02 2.28E − 02 5.13E − 01 3.00E − 01 3.41E − 02
Rank 9 1 8 10 5 4 2 7 6 3

C11
Mean 0.00E+ 00 3.57E+ 00 0.00E + 00 9.98E+ 00 2.97E − 03 0.00E + 00 0.00E + 00 1.76E − 01 1.09E+ 01 0.00E+ 00
Rank 1 8 1 9 6 1 1 7 10 1

C12
Mean 2.23E+ 01 1.29E+ 01 2.31E+ 01 1.64E+ 01 1.98E+ 01 7.72E+ 00 4.48E + 00 7.04E+ 00 1.39E+ 01 1.08E+ 01
Rank 9 5 10 7 8 3 1 2 6 4

C13
Mean 3.05E+ 01 2.56E+ 01 6.60E+ 00 1.99E+ 01 2.47E+ 01 6.76E+ 00 5.47E + 00 1.15E+ 01 2.08E+ 01 1.67E+ 01
Rank 10 9 2 6 8 3 1 4 7 5

C14
Mean 1.24E − 01 1.02E+ 02 6.95E+ 01 4.59E+ 02 1.38E+ 00 1.20E − 02 1.59E − 02 3.78E+ 01 8.34E+ 02 1.15E − 01
Rank 4 8 7 9 5 1 2 6 10 3

C15
Mean 6.84E+ 02 6.17E+ 02 1.17E+ 03 6.24E+ 02 6.47E+ 02 6.67E+ 02 6.86E+ 02 4.54E+ 02 7.74E+ 02 6.02E+ 02
Rank 7 3 10 4 5 6 8 1 9 2

C16
Mean 7.79E − 01 1.64E − 01 8.48E − 01 1.15E+ 00 8.17E − 01 1.13E+ 00 1.12E+ 00 4.07E − 01 5.00E − 01 5.24E − 01
Rank 5 1 7 10 6 9 8 2 3 4

C17
Mean 8.57E+ 00 1.04E+ 01 1.33E+ 01 2.59E+ 01 9.55E+ 00 1.01E+ 01 1.01E+ 01 1.10E+ 01 1.89E+ 01 7.18E+ 00
Rank 2 6 8 10 3 4 4 7 9 1

C18
Mean 3.97E+ 01 2.98E+ 01 8.43E+ 01 3.67E+ 01 2.50E+ 01 2.27E+ 01 2.28E+ 01 1.56E+ 01 1.78E+ 01 2.18E+ 01
Rank 9 7 10 8 6 4 5 1 2 3

C19
Mean 4.27E− 02 8.14E − 01 8.14E+ 00 1.56E+ 00 4.49E − 01 4.42E − 01 3.76E − 01 5.01E − 01 9.00E − 01 1.99E − 01
Rank 1 7 10 9 5 4 3 6 8 2

C20
Mean 3.24E+ 00 4.16E+ 00 2.50E+ 00 2.59E+ 00 2.53E+ 00 2.53E+ 00 2.23E + 00 2.52E+ 00 3.40E+ 00 2.77E+ 00
Rank 8 10 2 6 4 4 1 3 9 7
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mean rank 3.93 was the third best algorithm among the 10
algorithms that have been compared for basic multimodal
functions. 'ese results confirmed a higher exploration
ability of SAR in comparison with the other algorithms.

'e results obtained by the 10 algorithms compared on 8
composition functions are shown in Table 11. Among all the
compared algorithms, SAR obtained the best results for C22
andC26 functions and ABC forC21,C25, andC28 functions.
From Table 12, it can be seen that SAR with mean rank 3.25
had the best performance compared to the other algorithms
on the composition functions. After SAR, ABC was the
second best algorithm with mean rank 3.88 and CMA-RIS
was located at the next rank with mean rank 4 among the 10
algorithms. 'e results show that SAR outperformed the
compared algorithms for these kinds of optimization
problems.

In Table 12, means and overall ranks of the compared
algorithms on unimodal, multimodal, and composition
benchmark functions of CEC 2013 are reported. Further-
more, means and overall ranks of these algorithms on all the
benchmark functions are presented in this table. It can be
seen that the mean rank of SAR is the lowest, and it is the
best algorithm among all the studied algorithms on the CEC
2013 benchmark function set. After SAR, the performance of
SaDE is better than that of the others. It slightly out-
performed CMA-RIS. RJADE was the fourth best algorithm
in this test. 'e performance of GWO is the worst for all
kinds of benchmark functions, and it was ranked 10th
among the 10 studied algorithms.

In Tables 9–12, the algorithms were compared and
ranked in the group. In Table 13, the mean of errors obtained
by each of these 9 algorithms was compared with that of
SAR.

According to the data in Table 13, SAR was significantly
better than ABC, GWO, YYPO, AMopGA, RJADE, and
SPSO. After SAR, SaDE, CMA-RIS, and RJADE have
achieved the best performance, respectively. SaDE and
CMA-RIS had less mean of errors than SAR in 9 functions,
while SAR had less errors than them in 15 functions, and the
mean of errors of SAR and them was equal in 4 functions.

5.5. Application of SAR on Engineering Optimization
Problems. SAR was applied on three engineering design
problems, and the obtained results were compared with
those of other algorithms documented in the literature.
'ese problems have been defined in the previous section.
SAR and all the compared algorithms satisfied the con-
straints of these problems. In the following tables, “Std.,”
“NFE,” and “NA” mean standard deviation, number of
function evaluations, and not available, respectively, and the
best results are highlighted in bold.

5.5.1. I-Beam Design. 'is problem was solved using several
other methods including cuckoo search (CS) [61], adaptive
response surface method (ARSM) [62], improved ARSM
(IARSM) [62], and symbiotic organisms search (SOS) [63].
'e results obtained by SAR and the mentioned algorithms
are presented in Table 14.

'e optimal designs found by SAR and SOS are the same
and better than those by the others. 'e average and
standard deviation of SAR are slightly better than those of
SOS. 'e convergence curve of SAR for the I-beam design
problem is shown in Figure 4.

5.5.2. Cantilever Beam Design. Table 15 compares the op-
timal designs found by SAR and the other algorithms in-
cluding the method of moving asymptotes (MMA) [64],
generalized convex approximation I and II (GCA(I) and
GCA(II)) [64], symbiotic organisms search (SOS) [63],
cuckoo search (CS) [61], flower pollination algorithm (FPA)
[65], andmodified firefly algorithm (MFA) [66]. According to
the data in this table, the lowest cantilever beam weight was
found by SAR. Moreover, SAR only required 10000 function
evaluations to find the optimum design, and it is less than that
of the others. Hence, SAR had the fastest convergence rate
among all the compared algorithms. Also, the average and
standard deviation of SAR are better than those of SOS.

'e convergence curve of SAR for the cantilever beam
design problem is shown in Figure 5. 'ese comparative
results show SAR outperforms all the studied algorithms for
this design problem.

Table 11: Results of CEC 2013 composition benchmark functions for the compared algorithms.

Function ABC CMA-RIS AMopGA GWO YYPO RJADE SaDE fk-PSO SPSO SAR

C21
Mean 1.33E+ 02 1.61E+ 02 3.06E+ 02 3.93E+ 02 3.73E+ 02 3.96E+ 02 3.96E+ 02 3.75E+ 02 4.00E+ 02 1.98E+ 02
Rank 1 2 4 7 5 8 8 6 10 3

C22
Mean 1.23E+ 01 2.44E+ 02 2.15E+ 02 5.27E+ 02 8.68E+ 01 2.70E+ 01 1.13E+ 01 1.22E+ 02 9.06E+ 02 1.12E + 01
Rank 3 8 7 9 5 4 2 6 10 1

C23
Mean 1.01E+ 03 8.35E+ 02 2.21E+ 02 7.26E+ 02 9.14E+ 02 7.00E+ 02 6.55E+ 02 5.15E+ 02 9.10E+ 02 8.41E+ 02
Rank 10 6 1 5 9 4 3 2 8 7

C24
Mean 1.33E+ 02 1.19E+ 02 1.37E+ 02 2.10E+ 02 1.86E+ 02 2.02E+ 02 1.94E+ 02 2.03E+ 02 2.14E+ 02 1.25E+ 02
Rank 3 1 4 9 5 7 6 8 10 2

C25
Mean 1.56E+ 02 1.93E+ 02 1.90E+ 02 2.10E+ 02 2.00E+ 02 2.03E+ 02 1.98E+ 02 2.05E+ 02 2.09E+ 02 1.92E+ 02
Rank 1 4 2 10 6 7 5 8 9 3

C26
Mean 1.30E+ 02 1.61E+ 02 2.39E+ 02 2.06E+ 02 1.31E+ 02 1.27E+ 02 1.27E+ 02 1.89E+ 02 2.00E+ 02 1.12E+ 02
Rank 4 6 10 9 5 2 2 7 8 1

C27
Mean 3.87E+ 02 3.13E+ 02 4.94E+ 02 4.20E+ 02 3.36E+ 02 3.04E+ 02 3.00E+ 02 3.70E+ 02 3.36E+ 02 3.52E+ 02
Rank 8 3 10 9 4 2 1 7 4 6

C28
Mean 1.30E+ 02 2.06E+ 02 3.50E+ 02 3.50E+ 02 2.86E+ 02 2.88E+ 02 2.96E+ 02 3.26E+ 02 3.00E+ 02 2.22E+ 02
Rank 1 2 9 9 4 5 6 8 7 3
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5.5.3. Spatial 25-Bar Truss Structure Design. SAR was
compared with different methods including the artificial bee
colony algorithm with an adaptive penalty function ap-
proach (ABC-AP) [67], self-adaptive harmony search

algorithm (SAHS) [68], teaching-learning-based optimiza-
tion algorithm (TLBO) [69], multistage particle swarm
optimization (MSPSO) [70], hybrid particle swallow swarm
optimization (HPSSO) [71], water evaporation optimization
(WEO) [72], and culture algorithm (CA) [73]. Table 16
presents the optimization results of these methods.

Regarding the data in this table, SAR found the best
design (545.0365 lb) and required less structural analyses
than the other algorithms. 'e average and standard de-
viation of SAR are 545.0391 lb and 0.0064 lb, respectively,
and they are significantly better than those of the other
algorithms. 'ese results clearly indicate that SAR out-
performs the other algorithms. Figure 6 shows the con-
vergence curve of SAR for the spatial 25-bar truss design
problem.

5.6. Analysis of SAR Parameters. In this section, the effect of
SAR parameters on solving the benchmark problems was
investigated. Two classic (f13 and f18) and four modern (C3,
C10, C22, and C28) benchmark functions were utilized for
this test. f13 and C3 are unimodal functions, and f18, C10,
C22, and C28 are multimodal functions. For classic and
modern functions, NFEs were set to 2×104×D and 105,
respectively. 'e population of SAR was equal to 20, and it

Table 12: Ranks of the compared algorithms on CEC 2013 benchmark functions.

Algorithm
Unimodal Basic multimodal Composition All the functions

Mean rank Overall rank Mean rank Overall rank Mean rank Overall rank Mean rank Overall rank

ABC 6.20 9 6.13 8 3.88 2 5.40 6
CMA-RIS 1.20 1 5.80 7 4.00 3 3.67 3
AMopGA 4.80 6 5.67 6 5.88 7 5.45 7
GWO 9.40 10 7.80 10 8.38 10 8.53 10
YYPO 5.80 8 5.20 5 5.38 6 5.46 8
RJADE 2.80 3 4.53 4 4.88 5 4.07 4
SaDE 2.80 3 3.40 1 4.13 4 3.44 2
fk-PSO 4.80 6 3.93 3 6.50 8 5.08 5
SPSO 4.60 5 7.13 9 8.25 9 6.66 9
SAR 1.40 2 3.53 2 3.25 1 2.73 1

Table 13: Results of comparison between SAR and the other algorithms for all CEC 2013 benchmark functions.

ABC CMA-RIS AMopGA GWO YYPO RJADE SaDE fk-PSO SPSO

SAR
+ 21 15 18 26 22 16 15 16 22
� 3 4 2 0 1 5 4 2 2
− 4 9 8 2 5 7 9 10 4

Table 14: Comparison results for the I-beam design.

Variables ARSM IARSM CS SOS SAR

H 80 79.99 80 80 80
B 37.05 48.42 50 50 50
tw 1.71 0.9 0.9 0.9 0.9
tf 2.31 2.4 2.321672 2.32179 2.32179
fmin 0.0157 0.0131 0.013075 0.013074 0.013074
Average NA NA 0.013536 0.013088 0.013084
Std. NA NA 1.30E − 04 4.00E − 05 2.40E− 05
NFE NA NA 5000 5000 5000
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Figure 4: Convergence curve of SAR for the I-beam design
problem.
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was independently executed 20 times for each configuration,
and errors less than 10− 8were considered zero.'emeans of
errors obtained by SAR for different values of the SE are
reported in Table 17. To evaluate the effect of the SE on the
performance of SAR, the MU was set to a big value because
the unimproved clues will not be left for this value of MU.
Hence, the effect of the MU was removed. According to the
data in Table 17, the optimum value of the SE depends on the
nature of the problem. 'e high values of the SE (more than
0.8) lead to unsatisfactory performance of SAR. Further-
more, SE values between 0.6 and 0.8 are suitable for

unimodal functions and SE values lower than 0.1 are suitable
for multimodal functions. Solving multimodal functions
generally is more difficult than unimodal functions.
'erefore, the SE was set to 0.05 for all the studied problems
in this paper.

Table 18 shows themeans of errors obtained by SARwith
fixed SE� 0.05 for different values of the MU. From this
table, it can be seen that the lower value of this parameter
decreases the convergence rate of the algorithm and in-
creases the chance of avoiding local minima. According to
the results, the best value of theMU for the studied problems

Table 15: Comparison results for the cantilever beam design.

Variables MMA GCA(I) GCA(II) SOS CS FPA MFA SAR

x1 6.01 6.01 6.01 6.01878 6.0089 6.0202 6.01422 6.016081
x2 5.3 5.3 5.3 5.30344 5.3049 5.3082 5.3122 5.309224
x3 4.49 4.49 4.49 4.49587 4.5023 4.5042 4.48929 4.494135
x4 3.49 3.49 3.49 3.49896 3.5077 3.4856 3.50375 3.501578
x5 2.15 2.15 2.15 2.15564 2.1504 2.1557 2.15422 2.152641
fmin 1.34 1.34 1.34 1.33996 1.33999 1.33997 1.339957 1.3399563
Average NA NA NA 1.33997 NA NA NA 1.3399564
Std. NA NA NA 1.10E − 05 NA NA NA 2.73E − 08
NFE NA NA NA 15000 250000 15000 15000 10000

2000 4000 6000 8000 100000
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Figure 5: Convergence curve of SAR for the cantilever beam design problem.

Table 16: Comparison results for the spatial 25-bar truss structure.

Element groups ABC-AP SAHS TLBO MSPSO HPSSO WEO CA SAR

1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
2 1.979 2.074 2.0712 1.9848 1.9907 1.9814 2.02064 2.042677
3 3.003 2.961 2.957 2.9956 2.9881 3.0023 3.01733 3.002584
4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
6 0.69 0.691 0.6891 0.6852 0.6824 0.6827 0.69383 0.683408
7 1.679 1.617 1.6209 1.6778 1.6764 1.6778 1.63422 1.623117
8 2.652 2.674 2.6768 2.6599 2.6656 2.6612 2.65277 2.671827
fmin 545.193 545.12 545.09 545.16 545.164 545.166 545.05 545.0365
Average NA 545.94 545.41 546.03 545.556 545.226 545.93 545.0391
Std. NA 0.91 0.42 0.8 0.432 0.083 1.55 0.0064
NFE 300000 9051 15318 10800 13326 19750 9380 9000
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is 70×D. However, SAR is not very sensitive to this pa-
rameter. 'e results indicate the effect of the SE on the
performance of SAR is more than the effect of the MU.'us,
the SE is the key parameter of the proposed algorithm.

6. Conclusion

A new metaheuristic optimization algorithm called the
search and rescue optimization algorithm (SAR) was in-
troduced here for solving single-objective optimization

problems. SAR was inspired by the explorations carried out
by humans during search and rescue operations. 'e pro-
posed algorithm consists of two phases including the social
phase and the individual phase, and the implementation of it
is relatively simple. 'e results of the tests done in this paper
have shown that combining these two phases along with the
use of memory leads to a balance between exploration and
exploitation processes in SAR.

'e performance of SAR was compared with that of
twelve different optimization algorithms through fifty-five
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Figure 6: Convergence curve of SAR for the spatial 25-bar truss structure problem.

Table 17: Effects of the SE on the performance of SAR with fixed MU� 1000×D.

SE f13 f18 C3 C10 C22 C28

0 7.97E − 01 0.00E+ 00 4.28E+ 00 2.67E − 02 1.03E+ 01 2.30E+ 02
0.05 3.99E − 01 9.95E − 02 1.42E+ 00 2.47E − 02 1.12E+ 01 2.40E+ 02
0.1 5.98E − 01 5.47E − 01 1.56E+ 00 2.79E − 02 1.27E+ 01 2.20E+ 02
0.2 7.97E − 01 2.49E+ 00 1.71E+ 00 2.45E − 02 1.55E+ 01 2.50E+ 02
0.3 1.40E+ 00 5.02E+ 00 2.37E+ 00 2.50E − 02 2.39E+ 01 2.60E+ 02
0.4 1.20E+ 00 9.95E+ 00 1.24E+ 00 2.66E − 02 4.03E+ 01 2.60E+ 02
0.5 1.79E+ 00 1.62E+ 01 3.30E − 01 2.68E − 02 5.57E+ 01 2.80E+ 02
0.6 5.98E − 01 2.14E+ 01 1.58E+ 00 4.15E − 02 8.59E+ 01 2.93E+ 02
0.7 9.97E − 01 3.28E+ 01 9.57E − 01 6.73E − 02 1.15E+ 02 3.13E+ 02
0.8 1.20E+ 00 4.41E+ 01 2.69E − 03 7.34E − 02 1.99E+ 02 3.19E+ 02
0.9 1.81E+ 00 6.90E+ 01 9.33E − 01 2.14E − 01 3.50E+ 02 3.91E+ 02
1 3.87E+ 06 1.76E+ 02 7.43E+ 08 5.75E+ 01 1.15E+ 03 7.47E+ 02

Table 18: Effects of the MU on the performance of SAR with fixed SE� 0.05.

MU f13 f18 C3 C10 C22 C28

5×D 0.00E+ 00 0.00E+ 00 1.33E+ 05 3.24E − 01 1.12E+ 02 1.80E+ 02
10×D 0.00E+ 00 0.00E+ 00 7.61E+ 02 7.78E − 02 2.25E+ 01 1.60E+ 02
30×D 0.00E+ 00 0.00E+ 00 3.1E+ 00 3.56E − 02 1.09E+ 01 2.00E+ 02
50×D 0.00E+ 00 0.00E+ 00 2.66E+ 00 3.43E − 02 1.09E+ 01 2.00E+ 02
70×D 0.00E+ 00 0.00E+ 00 1.59E+ 00 3.09E − 02 9.62E+ 00 2.10E+ 02
90×D 1.99E − 01 0.00E+ 00 1.72E+ 00 3.23E − 02 1.15E+ 01 2.20E+ 02
150×D 1.99E − 01 0.00E+ 00 1.32E+ 00 2.83E − 02 1.16E+ 01 2.50E+ 02
250×D 1.99E − 01 0.00E+ 00 1.75E+ 00 2.34E − 02 1.07E+ 01 2.40E+ 02
1000×D 3.99E − 01 9.95E − 02 1.42E+ 00 2.47E − 02 1.12E+ 01 2.40E+ 02
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continuous benchmark problems including a set of 27
classic benchmark problems and a set of 28 modern CEC
2013 benchmark functions. 'e compared algorithms in-
cluded recent variants of DE (SaDE and RJADE), GA
(AMopGA), PSO (SPSO and fk-PSO), and CMA-ES (CMA-
RIS) algorithms and some recent metaheuristic algorithms
(ABC, GSA, TLBO, GWO, and YYPO). 'e Wilcoxon
signed-rank test was used for some of the comparisons, and
the convergence behavior of SAR was investigated. 'e
statistical results indicated SAR is suitable for global op-
timization and highly competitive with the other algo-
rithms. 'e proposed algorithm performed better than
most of the compared algorithms in terms of finding the
global optimum and convergence rate in many cases.
Besides, to verify the application of the proposed algorithm
on real-world optimization problems, SAR was tested on
three engineering design problems including the I-beam
design, the cantilever beam, and the spatial 25-bar truss
structure design. 'e obtained results revealed that the
proposed algorithm can find more accurate solutions with
fewer function evaluations in comparison with the other
existing algorithms. In future works, the performance of
SAR on other types of optimization problems such as
combinatorial and large-scale optimization problems will
be investigated.
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CEC 2013 benchmark data used to support the findings of
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compare the proposed algorithm are available from the
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fileexchange/52863-teaching-learningbased-optimization-tlbo.
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