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A New Outlier-Robust Student’s t based Gaussian

Approximate Filter for Cooperative Localization
Yulong Huang, Yonggang Zhang, Senior Member, IEEE, Bo Xu, Zhemin Wu, Jonathon Chambers, Fellow, IEEE

Abstract—In this paper, a new outlier-robust Student’s t based
Gaussian approximate filter is proposed to address the heavy-
tailed process and measurement noises induced by the outlier
measurements of velocity and range in cooperative localization
of autonomous underwater vehicles (AUVs). The state vector,
scale matrices and degrees of freedom (dof) parameters are
estimated based on the variational Bayesian approach by using
the constructed Student’s t based hierarchical Gaussian state-
space model. The performances of the proposed filter and existing
filters are tested in the cooperative localization of an AUV
through a lake trial. Experimental results illustrate that the
proposed filter has better localization accuracy and robustness
than existing state-of-the-art outlier-robust filters.

Index Terms—Autonomous underwater vehicles, cooperative
localization, outlier, heavy-tailed noise, Student’s t distribution,
variational Bayesian, nonlinear filtering

I. INTRODUCTION

LOCALIZATION of autonomous underwater vehicles

(AUVs) has always been a challenging problem due to

rapid attenuation of radio-frequency and global positioning

system (GPS) signals [1], [2]. Inspired by the cooperative

idea in [3], an acoustic range measurement based cooperative

localization scheme has been proposed to solve this problem

[4]. A few surface craft or AUVs that serve as leaders are

equipped with high-accuracy navigation systems, and they

aid the remaining AUVs with low-accuracy dead-reckoning

(DR) systems by transmitting the relative range measurements

through acoustic modems so that the localization errors are

bounded [5], [6].

In the cooperative localization of AUVs, an important

problem is estimating the positions of the AUVs. A filtering

technique based on a state-space model is an effective way

to complete this task, which can achieve statistically optimal

state estimates [7]–[9]. A large number of nonlinear filters for

cooperative localization of AUVs have been proposed, such

as the extended Kalman filter [4], unscented Kalman filter

(UKF) [10], and moving horizon estimation algorithm [6],
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[11]. In practical cooperative localization, outlier measure-

ments of velocity and range may occur, which can induce

heavy-tailed non-Gaussian process and measurement noises

respectively. The outlier measurements of velocity occur when

the Doppler velocity log (DVL) is physically misaligned with

the body framework or when water lock occurs [12]. The

outlier measurements of range are predominantly caused by

the multiple acoustic propagation paths between source and

receiver that are induced by the refraction of sound waves

due to changes in sound speed with depth and reflections

off the surface and sea bed [13]. However, these nonlinear

filters mentioned above may fail when outlier measurements

of velocity and range occur since they are specially designed

for Gaussian noises so that they are sensitive to heavy-tailed

non-Gaussian noises.

To solve the outlier problem, the Huber-based nonlinear

Kalman filter (HNKF) has been derived based on the Huber

technique and statistical linearized method [14], [15]. How-

ever, the influence function of the HNKF doesn’t redescend,

which may result in limited estimation accuracy. To cope

with large outliers, the maximum correntropy criterion based

Kalman filter (MCCKF) has been proposed by maximising the

correntropy of the predicted error and residual [16]. However,

there is a lack of theoretical basis to develop the estimation

error covariance matrix, which degrades the estimation accura-

cy. A reasonable approach to improve the estimation accuracy

is employing the Student’s t distribution to model the heavy-

tailed non-Gaussian noises. The Student’s t distribution is a

generalized Gaussian distribution but has heavier tails than

the Gaussian distribution, which makes it more suitable for

modelling the heavy-tailed non-Gaussian noise [17]. On one

hand, a robust Student’s t based nonlinear filter (RSTNF)

has been derived by approximating the posterior probability

density function (PDF) as a Student’s t distribution [18], [19].

However, in the RSTNF, the growth of the degrees of freedom

(dof) parameter must be prevented to preserve the heavy-tailed

properties and closed Student’s t-distributed form of the poste-

rior PDF, which may degrade the filtering performance. On the

other hand, a robust Student’s t based Kalman filter (RSTKF)

has been proposed by approximating the posterior PDF as a

Gaussian distribution based on the variational Bayesian (VB)

approach [20]. The performance of RSTKF depends heavily on

the chosen scale matrices and dof parameters of the Student’s

t distributions. However, in practical cooperative localization,

it is very difficult to determine the true scale matrices and dof

parameters, which may degrade the performance of RSTKF.

In this paper, to better address the heavy-tailed process and

measurement noises induced by the outlier measurements of
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velocity and range in cooperative localization of AUVs, the

one-step predicted PDF and likelihood PDF are modelled as

Student’s t distributions, and the conjugate prior distributions

of unknown scale matrices and degrees of freedom (dof)

parameters are chosen as inverse Wishart and Gamma distri-

butions respectively, based on which a new Student’s t based

hierarchical Gaussian state-space model is constructed. A new

outlier-robust Student’s t based Gaussian approximate (GA)

filter is derived by using the constructed hierarchical Gaussian

state-space model, where the state vector, scale matrices and

dof parameters are estimated based on the VB approach. The

performances of the proposed filter and existing filters are

tested in the cooperative localization of an AUV through a

lake trial. Experimental results illustrate that the proposed filter

has better localization accuracy and robustness than existing

state-of-the-art outlier-robust filters.

II. THEORETICAL FRAMEWORK

A. Problem formulation

We consider the master-slave mode based cooperative local-

ization of AUVs, where the leader is used as a communication

and navigation aid (CNA). Since the depths of the CNA

and AUV can be observed by a precise pressure sensor,

a three-dimensional (3-D) cooperative localization problem

can be simplified to a two-dimensional (2-D) cooperative

localization problem. The state-space model of the acoustic

range measurement based cooperative localization system is

formulated as [4]

{

xk = xk−1 +∆t(v̂k cos θ̂k + ω̂k sin θ̂k) + wx,k−1

yk = yk−1 +∆t(v̂k sin θ̂k − ω̂k cos θ̂k) + wy,k−1
(1)

zk =
√

(xk − xrk)
2 + (yk − yrk)

2 + δk (2)

where xk and yk are respectively the east and north positions

of the AUV at discrete time k, ∆t is the sampling time, ω̂k

and v̂k are respectively the starboard and forward velocities

in the body framework provided by the DVL, θ̂k is the

heading measured by the compass, xk = [xk, yk]
T

denotes

the position vector of the AUV, wk = [wx,k, wy,k]
T denotes

the process noise vector, zk is the relative range between the

CNA and AUV and it is is measured by the time of arrival

method using an acoustic modem, xr
k = [xrk, yrk]

T is the

position of the CNA at time k provided periodically by the

acoustic modem, and δk represents the measurement noise.

Using (1)-(2), a general discrete state-space model of the

cooperative localization is formulated as
{

xk = Fxk−1 + uk +wk−1 (Process equation)

zk = h(xk) + δk (Measurement equation)
(3)

where the state transition matrix F = I2, I2 denotes the

2-D identity matrix, control input uk = [∆t(v̂k cos θ̂k +
ω̂k sin θ̂k), ∆t(v̂k sin θ̂k − ω̂k cos θ̂k)]

T , and measurement

function h(xk) =
√

(xk − xrk)
2 + (yk − yrk)

2.

In practical cooperative localization, the outlier measure-

ments of velocity and range may induce heavy-tailed non-

Gaussian process and measurement noises respectively, which

may degrade the performance of existing cooperative local-

ization algorithms. To solve this problem, next a new outlier-

robust Student’s t based GA filter for cooperative localization

will be proposed based on the VB approach.

B. Student’s t based hierarchical Gaussian state-space model

Building upon our earlier work in [20], to address the

heavy-tailed process and measurement noises, the one-step

predicted PDF p(xk|z1:k−1) and the likelihood PDF p(zk|xk)
are modelled as Student’s t distributions as follows

p(xk|z1:k−1) = St(xk;µk,Σk, σk) =

∫ +∞

0

N(xk; x̂k|k−1,

Σk/ξk)G(ξk;
σk
2
,
σk
2
)dξk (4)

p(zk|xk) = St(zk;h(xk), Rk, νk) =

∫ +∞

0

N(zk;h(xk),

Rk/λk)G(λk;
νk
2
,
νk
2
)dλk (5)

where z1:l , {zk}
l
k=1 denotes the set of measurements from

time 1 to l, and St(·;µ,Σ, ν) denotes a Student’s t PDF with

mean vector µ, scale matrix Σ and dof parameter ν, and

N(·;µ,Σ) denotes a Gaussian PDF with mean vector µ and

covariance matrix Σ, and G(·;α, β) denotes a Gamma PDF

with shape parameter α and rate parameter β, and ξk and λk
are auxiliary random variables, and the mean vector µk of

p(xk|z1:k−1) is given by

µk = Fx̂k−1|k−1 + uk (6)

where x̂k−1|k−1 is the filtering estimation at time k − 1.

According to (4)-(5), the one-step predicted PDF

p(xk|z1:k−1) and the likelihood PDF p(zk|xk) can be

rewritten in the following hierarchical Gaussian forms














p(xk|ξk, z1:k−1) = N(xk; x̂k|k−1,Σk/ξk)
p(ξk) = G(ξk;

σk

2 ,
σk

2 )
p(zk|xk, λk) = N(zk;h(xk), Rk/λk)
p(λk) = G(λk;

νk

2 ,
νk

2 )

(7)

However, in practical cooperative localization, the scale

matrices Rk and Σk and dof parameters νk and σk can’t be

determined based on the moment matching method since the

true process and measurement noise covariance matrices are

unknown as a result of the outlier measurements of velocity

and range. To solve this problem, as a contribution in this

paper, the scale matrices and dof parameters will be adaptively

estimated based on the VB approach. A conjugate prior

distribution should be chosen for the unknown parameter in the

Bayesian inference because the conjugacy can guarantee that

the posterior distribution has the same form as the prior distri-

bution. In Bayesian statistics, the inverse Wishart distribution

and Gamma distribution are the conjugate prior distributions

for the covariance matrix of a Gaussian distribution and the

dof parameter of a Gamma distribution respectively [20], [21],

[23]. Since the scale matrix is proportional to the covariance

matrix in terms of the hierarchical Gaussian form formulated

in (7), the inverse Wishart distribution can also be used as the

conjugate prior distribution for the scale matrix. Based on the
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above discussions, the conjugate prior distributions for scale

matrices Σk and Rk and dof parameters σk and νk are selected

as follows
{

p(Σk) = IW(Σk;uk,Uk), p(Rk) = IW(Rk; tk, Tk)
p(σk) = G(σk; ak, bk), p(νk) = G(νk; ck, dk)

(8)

where IW(·;u,U) denotes an inverse Wishart PDF with dof

parameter u and inverse scale matrix U.

To capture the prior information of scale matrices, the mean

values of Σk and Rk are respectively set as the nominal

predicted error covariance matrix Pk|k−1 and nominal mea-

surement noise covariance matrix R̄k, i.e.

Uk

uk − n− 1
= Pk|k−1

Tk
tk −m− 1

= R̄k (9)

where n and m are respectively the dimensions of the state

vector and measurement, and Pk|k−1 is given by

Pk|k−1 = FPk−1|k−1F
T + Q̄k−1 (10)

where Pk−1|k−1 is the filtering estimation error covariance

matrix at time k − 1, and Q̄k−1 is the nominal process noise

covariance matrix.

Equations (6)-(10) constitute a Student’s t based hierarchical

Gaussian state-space model for cooperative localization. Next,

the state vector, auxiliary random variables, scale matrices, and

dof parameters, i.e., Θk , {xk, ξk, λk,Σk, Rk, σk, νk}, will

be inferred based on the VB approach by using the constructed

Student’s t based hierarchical Gaussian state-space model.

C. A new outlier-robust Student’s t based GA filter

Our aim is to calculate the joint posterior PDF p(Θk|z1:k).
However, there is not an analytical solution for this posterior

PDF based on the hierarchical Gaussian state-space model.

Thus, to obtain an approximate solution, the VB approach is

used to provide a free form factored approximate PDF for

p(Θk|z1:k), i.e., [24]

p(Θk|z1:k)≈q(xk)q(ξk)q(λk)q(Σk)q(Rk)q(σk)q(νk) (11)

where q(·) is the approximate posterior PDF, and its optimal

solution satisfies the following equation

log q(φ) = E
Θ

(−φ)
k

[log p(Θk, z1:k)] + cφ (12)

where E[·] represents the expectation operation, and φ is an

arbitrary element of Θ, and Θ(−φ) is the set of all elements

in Θ except for φ, and cφ denotes the constant with respect

to variable φ. Since the variational parameters are coupled,

we need to employ fixed-point iterations to solve (12), where

the approximate posterior PDF q(φ) of the arbitrary element

φ is updated as q(i+1)(φ) at the i + 1th iteration using the

approximate posterior PDF q(i)(Θ(−φ)) [24]. The iterations

converge to a local optimum of (12).

Using the conditional independence properties of the hierar-

chical Gaussian state-space model, the joint PDF p(Θk, z1:k)
can be factored as

p(Θk, z1:k) = N(zk;h(xk), Rk/λk)N(xk; x̂k|k−1,Σk/ξk)

G(ξk;
σk
2
,
σk
2
)G(λk;

νk
2
,
νk
2
)IW(Σk;uk,Uk)IW(Rk; tk, Tk)

G(σk; ak, bk)G(νk; ck, dk)p(z1:k−1) (13)

Using (13), log p(Θk, z1:k) is calculated as

log p(Θk, z1:k) = (
m+ νk

2
− 1) log λk −

νk
2
λk −

σk
2
ξk +

(
n+ σk

2
− 1) log ξk −

λk
2
(zk − h(xk))

TR−1
k (zk − h(xk))

−
1

2
tr(TkR

−1
k )−

1

2
(tk +m+ 2) log |Rk| −

1

2
tr(UkΣ

−1
k )

−
1

2
(n+ uk + 2) log |Σk| −

ξk
2
(xk − x̂k|k−1)

TΣ−1
k ×

(xk − x̂k|k−1) +
σk
2

log
σk
2

− log Γ(
σk
2
) + (ak − 1) log σk

−bkσk +
νk
2

log
νk
2

− log Γ(
νk
2
) + (ck − 1) log νk − dkνk

+cΘ (14)

1) Computations of approximate posterior PDFs: Let φ =
xk and using (14) in (12) yields

log q(i+1)(xk) = −0.5E(i)[λk](zk − h(xk))
TE(i)[R−1

k ]×

(zk − h(xk))− 0.5E(i)[ξk](xk − x̂k|k−1)
TE(i)[Σ−1

k ]×

(xk − x̂k|k−1) + cx. (15)

where q(i+1)(·) is the approximation of PDF q(·) at the i+1th

iteration, and E(i)[ρ] is the expectation of variable ρ at the ith
iteration, and tr(·) denotes the trace operation.

The modified predicted error covariance matrix P̃
(i)
k|k−1

and modified measurement noise covariance matrix R̃
(i)
k are

defined as follows

P̃
(i)
k|k−1 =

{

E(i)[Σ−1
k ]

}−1

E(i)[ξk]
R̃

(i)
k =

{

E(i)[R−1
k ]

}−1

E(i)[λk]
(16)

then q(i+1)(xk) is calculated as

q(i+1)(xk) =
N(zk;h(xk), R̃

(i)
k )N(xk; x̂k|k−1, P̃

(i)

k|k−1)
∫

N(zk;h(xk), R̃
(i)
k )N(xk; x̂k|k−1, P̃

(i)

k|k−1)dxk

(17)

It is seen from (17) that q(i+1)(xk) is not Gaussian due

to the nonlinear measurement function h(xk). In this paper,

q(i+1)(xk) is approximated as a Gaussian PDF based on the

existing GA filter [22], i.e.,

q(i+1)(xk) ≈ N(xk; x̂
(i+1)
k|k ,P

(i+1)
k|k ) (18)

where the mean vector x̂
(i+1)
k|k and covariance matrix P

(i+1)
k|k

are given by














K
(i+1)
k = P

(i+1)
xz,k|k−1(P

(i+1)
zz,k|k−1)

−1

x̂
(i+1)
k|k = x̂k|k−1 +K

(i+1)
k (zk − ẑ

(i+1)
k|k−1)

P
(i+1)
k|k = P̃

(i)
k|k−1 −K

(i+1)
k P

(i+1)
zz,k|k−1(K

(i+1)
k )T

(19)

where K
(i+1)
k denotes the modified Kalman gain, and param-

eters ẑ
(i+1)
k|k−1, P

(i+1)
zz,k|k−1, and P

(i+1)
xz,k|k−1 are given by































ẑ
(i+1)

k|k−1 =
∫

h(xk)N(xk; x̂k|k−1, P̃
(i)

k|k−1)dxk

P
(i+1)

zz,k|k−1 =
∫

h(xk)h
T (xk)N(xk; x̂k|k−1, P̃

(i)

k|k−1)dxk−

ẑ
(i+1)

k|k−1(ẑ
(i+1)

k|k−1)
T + R̃

(i)
k

P
(i+1)

xz,k|k−1 =
∫

xkh
T (xk)N(xk; x̂k|k−1, P̃

(i)

k|k−1)dxk−

x̂k|k−1(ẑ
(i+1)

k|k−1)
T

(20)
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Let φ = ξk and using (14) in (12) yields

log q(i+1)(ξk) = (
n+ E(i)[σk]

2
− 1) log ξk −

0.5
{

E(i)[σk] + tr(A
(i+1)
k E(i)[Σ−1

k ])
}

ξk + cξ (21)

where A
(i+1)
k is given by

A
(i+1)
k = E(i+1)[(xk − x̂k|k−1)(xk − x̂k|k−1)

T ] (22)

Using (21), q(i+1)(ξk) is updated as a Gamma PDF with

shape parameter αi+1
k and rate parameter βi+1

k ,











q(i+1)(ξk) = G(ξk;α
i+1
k , βi+1

k )

αi+1
k = 0.5(n+ E(i)[σk])

βi+1
k = 0.5

{

E(i)[σk] + tr(A
(i+1)
k E(i)[Σ−1

k ])
}

(23)

Let φ = λk and using (14) in (12) gives

log q(i+1)(λk) = (
m+ E(i)[νk]

2
− 1) log λk −

0.5
{

E(i)[νk] + tr(B
(i+1)
k E(i)[R−1

k ])
}

λk + cλ (24)

where B
(i+1)
k is given by

B
(i+1)
k = E(i+1)[(zk − h(xk))(zk − h(xk))

T ] (25)

Using (24), q(i+1)(λk) is updated as a Gamma PDF with

shape parameter γi+1
k and rate parameter ηi+1

k ,











q(i+1)(λk) = G(λk; γ
i+1
k , ηi+1

k )

γi+1
k = 0.5(m+ E(i)[νk])

ηi+1
k = 0.5

{

E(i)[νk] + tr(B
(i+1)
k E(i)[R−1

k ])
}

(26)

Let φ = Σk and using (14) in (12) yields

log q(i+1)(Σk) = −
1

2
(n+ uk + 2) log |Σk| −

1

2
tr
[

(Uk + E(i+1)[ξk]A
(i+1)
k )Σ−1

k

]

+ cΣ (27)

Exploiting (27), q(i+1)(Σk) is updated as an inverse Wishart

PDF with dof parameter û
(i+1)
k and inverse scale matrix

Û
(i+1)
k ,

{

q(i+1)(Σk) = IW(Σk; û
(i+1)
k , Û

(i+1)
k )

û
(i+1)
k = uk + 1 Û

(i+1)
k = Uk + E(i+1)[ξk]A

(i+1)
k

(28)

Let φ = Rk and using (14) in (12) obtains

log q(i+1)(Rk) = −
1

2
(m+ tk + 2) log |Rk| −

1

2
tr
[

(Tk + E(i+1)[λk]B
(i+1)
k )R−1

k

]

+ cR (29)

Using (29), q(i+1)(Rk) is updated as an inverse Wishart

PDF with dof parameter t̂
(i+1)
k and inverse scale matrix T̂

(i+1)
k ,

{

q(i+1)(Rk) = IW(Rk; t̂
(i+1)
k , T̂

(i+1)
k )

t̂
(i+1)
k = tk + 1 T̂

(i+1)
k = Tk + E(i+1)[λk]B

(i+1)
k

(30)

Let φ = σk and using (14) in (12) gives

log q(i+1)(σk) = 0.5E(i+1)[log ξk]σk − 0.5E(i+1)[ξk]σk +

0.5σk log(0.5σk)− log Γ(0.5σk) + (ak − 1) log σk − bkσk

(31)

Using Stirling’s approximation: log Γ(0.5σk) ≈ (0.5σk −
0.5) log(0.5σk)− 0.5σk in (31), thus we obtain

log q(i+1)(σk) = (ak + 0.5− 1) log σk − {bk +

0.5E(i+1)[ξk] + 0.5− 0.5E(i+1)[log ξk]}σk (32)

Employing (32), q(i+1)(σk) is updated as a Gamma PDF

with shape parameter â
(i+1)
k and rate parameter b̂

(i+1)
k ,











q(i+1)(σk) = G(σk; â
i+1
k , b̂i+1

k )

â
(i+1)
k = ak + 0.5

b̂
(i+1)
k = bk + 0.5E(i+1)[ξk] + 0.5− 0.5E(i+1)[log ξk]

(33)

Let φ = νk and using (14) in equation (12) yields

log q(i+1)(νk) = 0.5E(i+1)[log λk]νk − 0.5E(i+1)[λk]νk +

0.5νk log(0.5νk)− log Γ(0.5νk) + (ck − 1) log νk − dkνk

(34)

Again, utilising Stirling’s approximation: log Γ(0.5νk) ≈
(0.5νk − 0.5) log(0.5νk)− 0.5νk in (34) gives

log q(i+1)(νk) = (ck + 0.5− 1) log νk − {dk +

0.5E(i+1)[λk] + 0.5− 0.5E(i+1)[log λk]}νk (35)

Using (35), q(i+1)(νk) is updated as a Gamma PDF with

shape parameter ĉ
(i+1)
k and rate parameter d̂

(i+1)
k , i.e.,











q(i+1)(νk) = G(νk; ĉ
i+1
k , d̂i+1

k )

ĉ
(i+1)
k = ck + 0.5

d̂
(i+1)
k = dk + 0.5E(i+1)[λk] + 0.5− 0.5E(i+1)[log λk]

(36)

After fixed point iteration N , the required posterior PDF of

the state vector is approximated as

q(xk) ≈ N(xk; x̂
(N)
k|k ,P

(N)
k|k ) = N(xk; x̂k|k,Pk|k) (37)

where x̂k|k and Pk|k are respectively the state estimation and

corresponding estimation error covariance matrix.
2) Computation of expectations: Using equations (23),

(26), (28), (30), (33) and (36), the required expecta-
tions E(i+1)[ξk], E(i+1)[log ξk], E(i+1)[λk], E(i+1)[log λk],
E(i+1)[Σ−1

k ], E(i+1)[R−1
k ], E(i+1)[σk], and E(i+1)[νk] are

calculated as






















E(i+1)[ξk] = αi+1
k /βi+1

k E(i+1)[log ξk] = ψ(αi+1
k )− log βi+1

k

E(i+1)[λk] = γi+1
k /ηi+1

k E(i+1)[log λk] = ψ(γi+1
k )− log ηi+1

k

E(i+1)[Σ−1
k ] = (û

(i+1)
k − n− 1)(Û

(i+1)
k )−1

E(i+1)[R−1
k ] = (t̂

(i+1)
k −m− 1)(T̂

(i+1)
k )−1

E(i+1)[σk] = â
(i+1)
k /b̂

(i+1)
k E(i+1)[νk] = ĉ

(i+1)
k /d̂

(i+1)
k

(38)

where ψ(·) denotes the digamma function [23].

Exploiting (18), the required expectation A
(i+1)
k and B

(i+1)
k

are calculated as
{

A
(i+1)
k = P

(i+1)

k|k + (x̂
(i+1)

k|k − x̂k|k−1)(x̂
(i+1)

k|k − x̂k|k−1)
T

B
(i+1)
k =

∫

(zk − h(xk))(zk − h(xk))
TN(xk; x̂

(i+1)

k|k ,P
(i+1)

k|k )dxk

(39)
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Algorithm 1: One time step of the proposed outlier-robust GA filter.

Inputs: x̂k−1|k−1, Pk−1|k−1, F, h(·), zk , Q̄k−1, R̄k , m, n, N ,

ak , bk , ck , dk , uk , tk

Time update:

1. Calculate µk and Pk|k−1 using (6) and (10).

Measurement update:

2. Calculate Uk and Tk using (9), and initial expectations using

(38), and initial P̃
(0)
k|k−1

and R̃
(0)
k

using (16).

for i = 0 : N − 1

3. Update q(i+1)(xk) using (17)-(20).

4. Calculate A
(i+1)
k

and B
(i+1)
k

using (39).

5. Update q(i+1)(ξk) and q(i+1)(λk) using (23) and (26).

6. Calculate E(i+1)[ξk], E
(i+1)[log ξk], E

(i+1)[λk] and

E(i+1)[log λk] using (38).

7. Update q(i+1)(Σk), q
(i+1)(Rk), q

(i+1)(σk), and q(i+1)(νk)

using (28), (30), (33) and (36).

8. Calculate E(i+1)[Σ−1
k

], E(i+1)[R−1
k

], E(i+1)[σk], and E(i+1)[νk]

using (38).

9. Calculate P̃
(i+1)
k|k−1

and R̃
(i+1)
k

using (16).

end for

10. x̂k|k = x̂
(N)
k|k

, Pk|k = P
(N)
k|k

Outputs: x̂k|k and Pk|k

The Gaussian weighted integral in (39) can’t be analytically

calculated due to nonlinear measurement function h(xk).
Fortunately, existing Gaussian weighted integral rules can be

utilised to approximate this integral, such as the unscented

transform (UT) rule [10]. The proposed outlier-robust GA filter

consists of (6)-(10), (16), (17)-(20), (23), (26), (28), (30), (33)

and (36). The implementation pseudo-code for one time step

of the proposed filter is summarized in Algorithm 1.

III. LAKE-WATER FIELD TRIALS

A. Experimental setup and description

A lake trial was carried out to verify the effectiveness and

superiority of the proposed algorithm. Three survey vessels

were employed, where two vessels served as surface leaders

known as CNAs and the other one acted as an AUV. The

two leaders and AUV were all equipped with an acoustic

modem ATM-885, and broadcasted information through the

underwater acoustic modem. Fig. 1 illustrates the acoustic

communication procedures between the two leaders and AUV

in the test, in which “AC” and “CL” denote acoustic commu-

nication and cooperative localization respectively. It is seen

from Fig. 1 that the AUV only communicated with one of the

two leaders at every time. Thus, only a single leader served as

the CNA at every time. The diagram of underwater acoustic

communication between the AUV and CNA is shown in Fig. 2,

and the communication procedures are as follows: (i) a request

signal was first sent from the AUV to the CNA; (ii) after

receiving the request signal, an acoustic data packet including

the arrival time of the request signal and the reference position

of the CNA were sent from the CNA to the AUV; (iii) upon

Fig. 1: The acoustic communication procedures between two

leaders and AUV.

Fig. 2: The diagram of underwater acoustic communication

between the AUV and CNA.

Fig. 3: The sensors and computer employed in the experiment.

reception of the acoustic data packet, the AUV can use the

time of flight of the acoustic signal to determine the range

from the CNA. The CNA was equipped with a GPS to provide

a reference position for the AUV, and a GPS enabling the

collection of true positions was also present on the AUV to

provide a benchmark for cooperative localization. Moreover, a

DVL providing velocity information and a compass obtaining

a heading were installed in the AUV. The sensors and computer

employed in the experiment are shown in Fig. 3, and the

performance parameters of the sensors are listed in Table I.
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TABLE I: The parameters of the utilised sensors.

Sensors Index Parameters

ATM-885
Working range Up to 8000m

Error rate Less than 10−7

GPS
Position accuracy 1.8m (CEP)

Data update rate 10Hz

Compass Heading accuracy 0.3◦

DVL
Working range −150m/s− 200m/s

Measurement accuracy 0.1%− 0.3%

200 400 600 800 1000 1200 1400 1600
−1

−0.5

0

0.5

Time (s)

S
ta

rb
o
a
rd

 v
e
lo

c
it
y
 (

m
/s

)

200 400 600 800 1000 1200 1400 1600

0

2

4

Time (s)F
o
rw

a
rd

 v
e
lo

c
it
y
 (

m
/s

)

200 400 600 800 1000 1200 1400 1600

200

400

600

Time (s)R
a
n
g
e
 m

e
a
s
u
re

m
e
n
t 
(m

)

Fig. 4: The observed velocities and range measurement.

In the test, the observed velocity and range measurements

are shown in Fig. 4. It is seen from Fig. 4 that there are

some outlier measurements of velocity and range. The reasons

why the outliers occur have been listed in the introduction. To

illustrate the effect of outlier measurements on process and

measurement noises, the noise values are calculated as follows






ŵx,k−1 = x̂k − x̂k−1 −∆t(v̂k cos θ̂k + ω̂k sin θ̂k)

ŵy,k−1 = ŷk − ŷk−1 −∆t(v̂k sin θ̂k − ω̂k cos θ̂k)

δ̂k = zk −
√

(x̂k − xrk)
2 + (ŷk − yrk)

2

(40)

where ŵx,k−1 and ŵy,k−1 are respectively the approximate

east and north position noise values, and δ̂k is the approximate

measurement noise value, and (x̂k, ŷk) is the position of the

AUV at time k provided by the GPS, and the sampling time

∆t = 1s in the test. Using (40), a set of approximate process

and measurement noise values can be obtained. Fig. 5 shows

the probability density curves of process and measurement

noises. It is seen from Fig. 5 that Gaussian distributions can’t

fit to the process and measurement noise values since the pro-

cess and measurement noises have heavy-tailed distributions.

Based on the above discussion, the lake trials can simulate

the scenario of cooperative localization of an AUV, and can be

used to verify the effectiveness and superiority of the proposed

algorithm.

B. Comparison of outlier-robust filtering algorithms

Existing UKF [10], robust Student’s t based unscented

filter (RSTUF) [18], nonlinear regression Huber Kalman filter
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Fig. 5: Probability density curves of process position and

measurement noises.

(NRHKF) [14], MCCKF [16], RSTKF [20], and the proposed

filter are tested in the cooperative localization of the AUV. The

initial state estimate x̂0|0 is provided by GPS, and the initial

state estimation error covariance matrix is set as P0|0 = I2.

The nominal process and measurement noise covariance ma-

trices are respectively set as Q̄k = diag[(0.5m)2 (0.5m)2] and

R̄k = 10m2. In the proposed filter, the prior parameters are

set as ak = ck = 5, bk = dk = 1, uk = 8 and tk = 7, and the

Gaussian weighted integral in (39) is calculated using the UT.

In the RSTUF and RSTKF, the scale matrices of process and

measurement noises are respectively set as Q̄k and R̄k, and

the dof parameters are set as ν = 5. Moreover, the tuning

parameters of the NRHKF and RSTKF are set as γ = 5
and τ = 5, and the kernel size of the MCCKF is chosen as

σ = 15, and the numbers of iteration of the NRHKF, RSTKF

and the proposed filter are set as N = 10. The proposed filter

and existing filters are coded with MATLAB and run on a

computer with Intel Core i7-3770 CPU at 3.40 GHz.

The localization error (LE) and averaged LE (ALE) are

chosen as performance metrics, which are defined as follows







LE(k) =
√

(x̂k − x̂k|k)2 + (ŷk − ŷk|k)2

ALE = 1
T

T
∑

k=1

√

(x̂k − x̂k|k)2 + (ŷk − ŷk|k)2
(41)

where (x̂k, ŷk) is the reference position of the AUV at time

k provided by GPS, (x̂k|k, ŷk|k) is the estimated position at

time k, and T = 1760s denotes the experimental time.

The LEs, ALEs and implementation times of the proposed

filter and existing filters for a single step run when N = 10
are respectively shown in Fig. 6 and Tables II and III. The

improvement of ALE (IALE) from the proposed filter as

compared with existing filters when N = 10 is given in

Table IV. The ALEs with different numbers of iterations

N = 1, 2, . . . , 20 are shown in Fig. 7. It is seen from Fig.

6 and Tables II and III that the proposed filter has smaller LE

and ALE but needs greater implementation times than existing

filters when N = 10. Also, we can see from Table IV that the

ALE from the proposed filter is reduced by 37.9% at least as
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TABLE II: ALEs of the proposed filter and existing filters when N = 10.

Filters UKF RSTUF NRHKF MCCKF RSTKF The proposed filter

ALE (m) 21.4 17.7 17.3 17.3 49.2 10.7

TABLE III: The implementation times of the proposed filter and existing filters for a single step run when N = 10.

Filters UKF RSTUF NRHKF MCCKF RSTKF The proposed filter

Time (ms) 0.167 0.120 0.556 0.074 1.688 1.740
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Fig. 6: LEs when N = 10.
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Fig. 7: ALEs when N = 1, 2, . . . , 20.

TABLE IV: The improvement of ALE from the proposed filter

as compared with existing filters when N = 10.

Filters UKF RSTUF NRHKF MCCKF RSTKF

IALE 49.8% 39.3% 37.9% 37.9% 78.1%

compared with existing filters. It can be seen from Fig. 7 that

the proposed filter has smaller ALE than existing filters when

N ≥ 2. Moreover, we can see from Fig. 7 that the ALE from

the proposed filter converges when N ≥ 8. Thus, the proposed

filter has better localization accuracy but higher computational

complexity than existing state-of-the-art filters.

Large values of LE appear frequently with the UKF since

it is specially designed for Gaussian noise as a result it is

sensitive to heavy-tailed non-Gaussian noises. The RSTUF has

worse performance than the proposed filter since it needs to

prevent the growth of the dof parameter artificially. The pro-

posed filter has better performance than the existing NRHKF

and MCCKF methods since the utilized Student’s t approach

in the proposed method can address heavy-tailed noises better

than the Huber technique and maximum corr-entropy method.

Large values of LE often appear with the RSTKF and the ALE

of the RSTKF doesn’t converge with respect to the number

of iterations since it uses inaccurate scale matrices and dof

parameters. Thus, the proposed filter has better robustness than

existing state-of-the-art filters.

IV. CONCLUSION

In this paper, a new outlier-robust Student’s t based GA filter

for cooperative localization of AUVs was proposed. The state

vector, scale matrices and dof parameters were estimated by

using the constructed Student’s t based hierarchical Gaussian

state-space model and the VB approach. Experimental results

showed that the proposed filter has better localization accura-

cy and robustness than existing state-of-the-art outlier-robust

filters.
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