Scientific Programming 20 (2012) 83-88
DOI 10.3233/SPR-2012-0355
I0OS Press

&3

A new overview of the Trilinos project

Michael A. Heroux * and James M. Willenbring
Sandia National Laboratories, Albuquerque, NM, USA

Abstract. Since An Overview of the Trilinos Project [ACM Trans. Math. Softw. 31(3) (2005), 397—423] was published in 2005,
Trilinos has grown significantly. It now supports the development of a broad collection of libraries for scalable computational
science and engineering applications, and a full-featured software infrastructure for rigorous lean/agile software engineering.
This growth has created significant opportunities and challenges. This paper focuses on some of the most notable changes to the

Trilinos project in the last few years.

At the time of the writing of this article, the current release version of Trilinos was 10.12.2.

Keywords: Software libraries, software frameworks

1. Introduction

The Trilinos project is a community of develop-
ers and a collection of reusable software components
called packages. Trilinos provides a large and grow-
ing collection of open-source software libraries for
scalable parallel computational science and engineer-
ing applications, as well as a software infrastructure
that supports a rigorous lean/agile software lifecycle
model [13].

The initial goals of the Trilinos Project were to fos-
ter research and development in the area of mathemat-
ical solver software, and to support production-quality
solvers resulting from that effort [1]. The project
showed early signs of success and received an R&D
100 award in 2004 [12]. In 2007, the scope of Trilinos
expanded beyond solvers to include a broad assortment
of algorithms and enabling technologies in the areas of
Computational Science and Engineering (CSE) [1].

Presently the project continues to grow, and new
elements have been added to retain agility and our
commitment to strategic goals. This paper provides an
overview of the project, highlighting some of the most
recent advances, and the emerging challenges we face
at this time.

1.1. Trilinos project beginnings

An inherent element of scientific library develop-
ment is a natural decomposition of efforts into small

*Corresponding author: Michael A. Heroux, Sandia National Lab-
oratories, P.O. Box 5800, Albuquerque, NM 87185-1110, USA. Tel.:
+1 320 845 7695; E-mail: maherou@sandia.gov.

teams. Scientific libraries have a natural scope such
that one or a few people work closely together on a
cohesive collection of concerns. In 1999 the Acceler-
ated Strategic Computing Initiative (ASCI) was fund-
ing many new algorithmic and software efforts. These
efforts included an explicit requirement to increase the
level of formal software engineering practices and pro-
cesses, including efforts of small development teams.
Even before this time, there were numerous disjoint
mathematical software efforts underway at Sandia Na-
tional Laboratories, each with a small team of develop-
ers who were producing software intended for research
and development, and eventual use within an applica-
tion.

The Trilinos project was established to address two
important needs: (1) bringing teams of library devel-
opers together in order to leverage commonalities and
produce compatible software components, formally
called packages and (2) to amortize the cost and ef-
forts associated with more formal software engineer-
ing requirements. With a modest level of coordination
and without unduly compromising package team au-
tonomy, Trilinos project members could leverage each
other’s efforts, consolidate commonly needed tools,
make packages compatible, and define a common set
of software engineering tools and processes.

This two level, federated model is intrinsic to the
Trilinos philosophy. It has at times led to redun-
dancy in capabilities, but even these redundancies have
strengthened the project in the long run. For exam-
ple, in the early years of the project, each package
had its own way of allowing users to define parame-
ters. Over time, the lack of compatible parameter lists

1058-9244/12/$27.50 © 2012 - IOS Press and the authors. All rights reserved

84 M_.A. Heroux and J.M. Willenbring / A new overview of the Trilinos project

across packages forced us to synthesize and consol-
idate parameter list capabilities. The outcome was a
very full-featured and robust parameter list capabil-
ity that combined the best of features from the exist-
ing package parameter list capabilities. In general, this
kind of diversity in exploration, unity in standardiza-
tion has served us very well.

1.2. The Trilinos community

The Trilinos project is not a monolithic or tightly
coordinated effort. It is organized around the princi-
ple of subsidiarity: assigning responsibilities for deci-
sions to the lowest reasonable level. As such, it is a
federated system, and most Trilinos developers view
themselves more as package developers. For example,
the Zoltan team and package, are widely recognized
in the scientific community for their contributions to
load balancing and partitioning algorithms and soft-
ware. Trilinos is a delivery vehicle for their work. The
Zoltan team brings in its own funding, plans its own
activities and actively monitors its responsibilities rel-
ative to the Trilinos framework, scrutinizing what is
proposed and available at the framework level to make
sure that the framework is helping them in their efforts,
and not imposing unnecessary overhead or restrictions
on its autonomy. This team also monitors new capabil-
ities emerging in other packages that might be useful
for their own work. These dynamics are true for most
package teams.

The community model has enabled rapid growth in
Trilinos capabilities, since package teams are largely

autonomous. However, over time we have increased
expectations on package teams. In particular, we have
specific expectations on software quality and stability,
especially for key capabilities upon which other pack-
ages depend. This increased level of formality is natu-
ral and accepted by package teams, although each in-
crease in formality is heavily vetted and scrutinized, to
make sure it is truly essential and useful.

1.3. Scope and strategic goals

Although the Trilinos project encompasses a very
broad collection of activities, we do have specific lim-
its and can list specific goals that apply to all activ-
ities. First, Trilinos is a libraries project. We do not
produce a stand-alone software product such as a fully
compiled and linked executable program. We of course
produce many executable programs as part of the com-
pilation and testing of Trilinos, but these are produced
at the service of the libraries. By focusing on libraries
we actually embrace a larger, more complicated set
of requirements. Our software must be easily embed-
ded into an application under many conditions, and we
have many interfaces to support. This open exposure
demands a great deal of testing and documentation, and
a very flexible configuration environment.

Second, we can succinctly state our strategic goals
(see Fig. 1). We use these goals as an important litmus
test for whether or not any particular activity should be
conducted as part of the project. We expect that every
Trilinos community member can strongly assent to at
least one of the goals.

Algorithmic goals:

o Scalable computations: As problem size and processor counts increase, the cost of the computation will remain nearly fixed.
e Hardened computations: Execution will never fail unless the given problem is essentially intractable, in which case we diag-

nose failure and provide a reliable measure of error.

e Fullvertical coverage: Provide leading edge enabling technologies across the entire technical application software stack: from

problem construction to solution, analysis and optimization.

Software goals:

o Universal interoperability: All Trilinos packages, and important external packages, will be interoperable, so that any com-
bination of packages and external software (e.g., PETSc, Hypre) that makes sense algorithmically will be possible within

Trilinos.

e Universal accessibility: All Trilinos capabilities will be available to users of major computing environments: C++, C, Fortran,
Python and from portable computers to the latest scalable systems.

o Self-sustaining: All Trilinos software will be clearly written, have thorough testing coverage and adequate documentation so
that future development, as well as post-development refactoring by 3rd party developers can be confidently done.

Fig. 1. Trilinos strategic goals. These goals are meant to be unachievable, providing a metric for ever-improving capabilities. All Trilinos com-

munity members should be able to identify with one or more of these goals.

M_.A. Heroux and J.M. Willenbring / A new overview of the Trilinos project 85

2. Trilinos capability areas

To help manage the growth of Trilinos, seven capa-
bility areas were initially defined and a leader was cho-
sen to be a resource for both users and developers and
to coordinate development efforts and lead strategic
planning for each area. Two additional capability ar-
eas have been added after strategic opportunities were
identified during developer planning sessions. The nine
Trilinos Capability Areas are summarized in Fig. 2
and discussed below. More details are available on the
Trilinos website [3].

2.1. Framework and tools

Most parts of Trilinos that are not associated with
package capabilities are included in this capability
area. This includes the CMake [6] build system, test-
ing infrastructure, Trilinos documentation, and utilities
provided by Trilinos packages primarily for the benefit
of other packages.

2.2. Software engineering technologies and
integration

This area includes support for software engineering
concerns, such as scalability, interoperability, and in-
tegration across all Trilinos packages. It is not neces-
sarily focused on any specific package, or the Trili-
nos framework, but is concerned with the assessment,
exploration and adoption of new software processes,
practices and tools. Efforts in this area have helped
identify many of the new tools and process that allow
us to increase framework efficiencies as the number of
Trilinos packages continues to increase.

Strategic capability areas:

Framework and tools

Software engineering technologies and integration
Discretizations

Geometry, meshing and load balancing

Scalable linear algebra

Linear and eigensolvers

Nonlinear, transient and optimization solvers
Scalable I/O

User experience

Fig. 2. Trilinos strategic capability areas. Each area has a leader
whose responsibility is to set and coordinate Trilinos project strate-
gic directions in the area. This responsibility cuts across package
teams, assuring that gaps and redundancies are being addressed for
the project as a whole.

2.3. I/O support

The Trilinos project added this capability area to
cover the various aspects of I/O, to address the needs
of new application areas for which large-scale data ob-
jects were required. The initial I/O capabilities in Trili-
nos were designed for small scale testing and were not
sufficiently scalable. Specific capabilities include sup-
port for converting certain Trilinos objects to netCDF,
hdf5 and Exodus file formats. Additional capabilities
not associated specifically with other Trilinos packages
include object serialization, and application-directed
checkpoint and restart.

2.4. Discretizations

The packages in this area focus on the numerical so-
lution of partial differential equations. Finite element,
finite volume, and finite difference discretizations are
all supported, and assembly of finite-element data into
a linear system of equations.

2.5. Meshes, geometry and load balancing

Tools for creating, accessing, and manipulating
mesh and matrix data are central to this capability area.
Meshing efforts currently include inline meshing, effi-
cient parallel reading and distribution of meshes, and
efficient storage and management of mesh data. Load
balancing capabilities include general partitioning and
repartitioning capabilities for a variety of data, with no-
table emphasis on matrix partitioning.

2.6. Scalable linear algebra

Support for scalable sparse and dense linear algebra
computations have always been part of Trilinos. Ca-
pability offerings have evolved with the state-of-the-
art from serial support, and parallel support via MPI,
to include other parallel computation models and stan-
dards, such as Pthreads [11], OpenMP [8], CUDA [7]
and TBB [5].

2.7. Linear and eigensolvers

Initially, solvers were the primary focus of Trilinos
and remain an integral subset of Trilinos capabilities.
Iterative and direct solvers are available, as well as nu-
merous types of preconditioners, including block, ILU
and multilevel.

2.8. Embedded nonlinear analysis tools

A broad array of research areas are included in
this capability area, including the solution of nonlinear

86 M_.A. Heroux and J.M. Willenbring / A new overview of the Trilinos project

equations, time integration, optimization, uncertainty
quantification, bifurcation tracking, parameter contin-
uation and automatic differentiation. This capability
area is sometimes considered to be the highest-level
capability area, in that it builds on top of most of the
other capability areas.

2.9. Usability

The newest capability area focuses on reducing the
factors that make Trilinos hard to use and are not in-
trinsic to the science on which Trilinos is built. Planned
future efforts include adding and improving documen-
tation, refactoring code and creating “EZ Trilinos”,
which will illustrate the construction and solution of
Az = b in Trilinos using very few lines of code.

3. Focus on enhancing the Trilinos community
model

After the significant expansion of scope, the focus of
most Trilinos-level initiatives has turned to enhancing
the Trilinos community model. In this section, we will
discuss two significant changes that we have started
implementing. These changes and others (see [2]) will
increase the usability of Trilinos for segments of the
Trilinos community in very different ways. We also
discuss how to contribute to the community, either di-
rectly through Trilinos, or through compatible efforts.

3.1. BSD licensing

Trilinos packages initially were licensed under the
GNU Lesser General Public License (LGPL and
LGPL-compatible licenses). This model of licensing is
too restrictive for some users, most commonly those
working in an industry setting. We have started mov-
ing to a BSD [9] or BSD-compatible license wherever
possible. New packages are applying for BSD licens-
ing, and existing packages are being converted. With
the current release, Trilinos 10.12, about sixty percent
of Trilinos packages have BSD-compatible licensing.
Eventually we anticipate that all, or very nearly all of
Trilinos will be BSD-compatible. If some parts of Trili-
nos cannot be converted, the Trilinos Team is consid-
ering a BSD-only distribution that excludes LGPL li-
censed code.

3.2. Trilinos.org

We have started to move the primary Trilinos web
presence to trilinos.org. Trilinos.org is a new genera-

tion of the Trilinos web portal, built primarily on Trac
[14] and focused on improving collaborative opportu-
nities for both users and developers. Increased access
to issue tracking and more open and dynamic web con-
tent are cornerstones of the new portal. The more open
and dynamic content creation offers a good opportu-
nity to collaborate using more modern and effective
methods than using mail lists in many cases.

3.3. Contributing to Trilinos

There are a few ways to contribute to the Trilinos
Project. Most simply, a bug fix or enhancement for an
existing package can be sent to the package develop-
ment team for consideration. The development team
also welcomes well-constructed feedback illustrating
reproducible issues with the code. At a higher level,
it is possible to contribute an entire Trilinos package,
or create a package that is interoperable with Trilinos,
but maintain the package separately. Before a package
can be added to Trilinos, the new package must be pro-
posed and approved using a formal policy.

A package that utilizes the Trilinos build sys-
tem, but is not formally part of Trilinos can be in-
cluded in the Trilinos build process using the Trili-
nos_EXTRA_REPOSITORIES option. While a pack-
age built in this way can utilize Trilinos capabilities,
it is not possible for packages inside Trilinos to use
the capabilities in such packages, due to current build
system restrictions. The ability to leverage the existing
Trilinos build system makes it much easier to develop
new capabilities. The Trilinos build system is also fa-
miliar to thousands of Trilinos users, making packages
developed in this way more easily accessible.

A large majority of Trilinos users will find that the
best way for them to obtain Trilinos is through release
distribution tarballs. However, users interesting in sub-
mitting patches, or those interested in becoming devel-
opers or close collaborators who do not have access
to the Trilinos repository, may prefer to use the read-
only Trilinos public repository. To learn where to find
and how to use the public repository, go to the Trili-
nos website [3], and click on “Public Git Repository”
in the lower right.

4. Trilinos packages
As discussed throughout this document, Trilinos is

composed of numerous packages that comprise its core
functionality. Presently there are over 50 packages

M_.A. Heroux and J.M. Willenbring / A new overview of the Trilinos project 87

Summary of Trilinos packages

Objective

Package(s)

Discretizations Meshing and discretizations

Time integration

Methods Automatic differentiation

Mortar methods

Services Linear algebra objects
Interfaces

Load balancing
“Skins”

C++ utilities, I/O, thread APT

Solvers Iterative linear solvers
Direct sparse linear solvers
Direct dense linear solvers
Iterative eigenvalue solvers
ILU-type preconditioners
Multilevel preconditioners
Block preconditioners
Nonlinear system solvers
Optimization (SAND)
Stochastic PDEs

STK, Intrepid, Pamgen, Sundance, ITAPS, Mesquite, Panzer
Rythmos

Sacado
Moertel

Epetra, Jpetra, Tpetra, Xpetra, Kokkos

Thyra, Stratimikos, RTOp, FEI, Shards

Zoltan, Isorropia, Zoltan2

PyTrilinos, WebTrilinos, ForTrilinos, CTrilinos, Optika

Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx, Trios

AztecOO, Belos, Komplex

Amesos, Amesos2

Epetra, Teuchos, Pliris

Anasazi, Rbgen

AztecOO, IFPACK, Ifpack2

ML, CLAPS, Muelu, ShyLU

Meros, Teko

NOX, LOCA, Piro

MOOCHO, Aristos, TriKota, Globipack, Optipack
Stokhos

Note: Details are available at trilinos.org.

in Trilinos, covering a broad spectrum of functional-
ity. We have a reached a point where a new applica-
tion based on Trilinos components can be primarily
focused on specification of the computational model
that is peculiar to the problem being solved. All other
setup functionality: meshing, discretization, partition-
ing, load balancing and problem formulation can be
done using scalable Trilinos capabilities (see the Al-
bany Project, mentioned in [10], for an example). Fur-
thermore, solution support includes state-of-the art lin-
ear, nonlinear, eigensystem and transient solvers with
further capabilities for embedded optimization and un-
certainty quantification. I/O support and many pro-
gramming facilities such as parameter lists, interfaces
to common third-party libraries and support for generic
manycore parallelism also aid developers in writing ef-
ficient, portable code. The summary in Table 1 shows
the current list of Trilinos packages.

5. Conclusion

Trilinos has been growing for roughly one decade,
and has evolved. The “Tri” in Trilinos signifies the
three packages that comprised the original grand plan
for the project. Now there are more than 50. Initially

a solvers project, the scope of Trilinos has expanded
to include algorithms and enabling technologies from
many CSE disciplines. Now the focus has shifted to
making Trilinos capabilities more accessible, in multi-
ple ways, to the growing Trilinos community.

We foresee that Trilinos will continue to grow and
adapt. One of the biggest challenges we face over the
next few years is the migration to scalable manycore
computer systems. These systems represent a disrup-
tive technology change and demand a new abstract ma-
chine model and execution model, as well as new al-
gorithms that can efficiently use manycore processors.
They also represent a computational capability that
opens the door to new modeling and simulation capa-
bilities. Embedded optimization and uncertainty quan-
tification will become increasingly feasible, and the
corresponding packages in Trilinos will become more
important, as will the integrated design of all Trilinos
packages, since these advanced capabilities build on
top of existing capabilities.

Acknowledgements

The authors would like to thank the ASC, LDRD
and ASCR programs that have funded this work.

88

M_.A. Heroux and J.M. Willenbring / A new overview of the Trilinos project

References

(1]
(2]

(3]
(4]

(51
(6]

(71
(8l

M.A. Heroux, The Changing Scope of the Trilinos Project,
Sandia National Laboratories, 2007.

M.A. Heroux, Expanding the Trilinos Developer Community,
Sandia National Laboratories, 2010.

M.A. Heroux, Trilinos homepage, 2011.

M.A. Heroux et al., An overview of the Trilinos project, ACM
Trans. Math. Softw. 31(3) (2005), 397-423.

Intel Thread Building Blocks homepage, 2009.

Kitware, CMake — cross platform make, available at: http://
www.cmake.org.

NVIDIA CUDA homepage, 2009.

OpenMP.org, 2010.

[9]

[10]

[11]

[12]
[13]

[14]

Open Source Initiative OSI — The BSD License: Licens-
ing/Open Source Initiative, 2010, available at: http://www.
opensource.org/licenses/bsd-license.php.

E.R.P. Phipps, A. Salinger, R. Ghanem and R. Tipireddy,
Embedded stochastic Galerkin projection and solver methods
via template-based generic programming, 2011, available at:
http://www.csm.ornl.gov/workshops/applmath11/documents/
posters/Phipps_poster.pdf.

pthread.h, 1997.

R&D Magazine homepage.

A. Roscoe, M.A.H. Bartlett and J.M. Willenbring, TriBITS
Lifecycle Model, Version 1.0, Sandia National Laboratories,
2012.

Edgewall Software, The Trac project, 2011, available at: http://
trac.edgewall.org/.

Journal of))
Industrial Engineering

Applied
Computational
Intelligence and Soft
Computing—

. A International Journal of
The Scientific Dictione. S
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Ll T Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networkhs
and Communications /1 Advances in

Artificia
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, = Neural Systems
- 2 \ i

International Journal of
Computer Games . in
Technology re Engineering

Reconfigurable
Computing

e Computational L g
Journal of Human-Computer Intelligence and Electrical and Computer
Robotics Interaction Neuroscience Engineering

