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Abstract The oxidovanadium(IV) complex of oxodiacetic
acid (H2ODA) and dppz (dipyrido[3,2-a:2′,3′-c] phenazine)
of stoichiometry [VO(ODA)(dppz)]⋅3H2O could be synthe-
s i z ed fo r t h e f i r s t t ime by r e a c t i on b e tween
[VO(ODA)(H2O)2] and dppz. It was characterized by infrared
and electronic spectroscopies. Its optimized molecular struc-
ture was obtained by DFTcalculations, as it was impossible to
grow single crystals adequate for crystallographic studies. The
antitumor action of the complex on MG-63 human osteosar-
coma cell line was also investigated. It was found that it
caused a concentration-related inhibitory effect in the concen-
tration range between 5 and 25 μM and diminished the cell
viability ca. 45 % in the range from 25 to 100 μM, without
dose/response effects in this range. These biological effects
are, in general, similar to those previously reported for the
related [VO(ODA)(ophen)]⋅1.5H2O complex.
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Introduction

As part of a research project devoted to the characterization of
vanadium compounds with potential pharmacological

applications, we have recently prepared and investigated the
general physicochemical properties and the biological activity
of some ternary oxidovanadium(IV) complexes containing the
di-anion of oxodiacetic acid (H2ODA) and H2O,
[VO(ODA)(H2O)2] [1, 2] or the organic ligands o-
phenanthroline (ophen), [VO(ODA)(ophen)]⋅1.5H2O [1, 3]
and 2,2′-bipyridine (bipy), [VO(ODA)(bipy)]⋅H2O [1, 4].

Oxodiacetate is a very interesting and versatile ligand,
having five potential O-donor atoms in different orientations,
allowing in this way the construction of networks of different
dimensionalities [5]. In the case of the three above mentioned
complexes, which present a distorted octahedral geometry,
ODA occupies three coordination positions through two car-
boxylate O-atoms and the ethereal O-atom, generating the
unprecedented tridentate OOO coordination [6–8].

Metallointercalators are small complex molecules that con-
tain a planar aromatic heterocycle functionality which can
insert and stack between the base pairs of double-helical
DNA [9, 10]. In general, upon binding to DNA, metal com-
plexes are stabilized through a series of weak interactions such
as the π-stacking interactions of aromatic heterocyclic groups
between the base pairs (intercalation), hydrogen bonding and
van der Waals interactions of functional groups bound along
the groove of the DNA helix [9].

Two of the best known and most investigated DNA
intercalators are 2,2′-bipyridine and o-phenanthroline [9,
10]; but in our previous studies with the [VO(ODA)L] com-
plexes, we have found that the presence of ophen increases the
reactivity of VO(ODA) toward DNA, whereas the addition of
bipy, shows a minor effect [1].

As an extension of these studies, we could now synthesize
a similar complex of composition [VO(ODA)(dppz)]⋅3H2O-
containing dppz (dppz=dipyrido[3,2-a:2′,3′-c]phenazine), an-
other well-known and characterized DNA-intercalator [9–16].
The heterocyclic π-system of this molecule combines the
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chelating functions of α-diimines or “polypyridines”, such as
the mentioned bipy and ophen ligands, with the electron
transfer/proton transfer capacity of the 1,4-diazines [17]. As
it was not possible to obtain single crystals of this new
complex, adequate for crystallographic studies, its structural
and geometric characteristics were derived from a theoretical
DFT study. Besides, the characterization of the complex was
complemented with the analysis of its FTIR and electronic
absorption spectra. Finally, its antitumor activity was assayed
on the MG-63 human osteosarcoma cell line in culture.

Materials and Methods

Materials

The monohydrate of o-phenanthroline and oxodiacetic acid
was purchased from Aldrich, oxidovanadium(IV) acetylace-
tonate from Fluka, whereas VOSO4⋅5H2O and all the other
reagents and solvents were from Merck. The dppz ligand was
obtained in the following way: o-phenanthroline was first
transformed into 5-nitro-o-phenanthroline by reaction with
concentrated HNO3 in the presence of oleum [18]. The nitro
compound was subsequently reduced with SnCl2 to 5-amino-
o-phenanthroline [19], which is then reacted with a H2SO4/
HNO3 mixture to generate 5,6-quinone-o-phenanthroline
[20]. Finally, ethanolic solutions of this quinone and o-
phenylendiamine are mixed and shortly boiled, generating
the dppz which after recrystallization from aqueous ethanol
generates brown-orange needles of the hemihydrate,
C18H10N4⋅0.5H2O, (m.p. 250 °C) [20]. The precursor com-
plex, [VO(ODA)(H2O)2], was prepared by reaction of
oxidovanadium(IV) acetylacetonate and oxodiacetic acid as
reported earlier [2, 6].

Tissue culture materials were purchased from Corning
(Princeton, NJ, USA), Dulbecco’s Modified Eagles Medium
(DMEM), TrypLETM from Gibco (Gaithersburg, MD, USA),
and fetal bovine serum (FBS) from Internegocios SA (Argen-
tina). All other chemicals, used in the biological assays, were
from Sigma Chemical Co. (ST. Louis, MO). MG-63 cell line
was purchased from ATCC (CRL1427™).

Synthesis of the Complex

The new complex was obtained by slow addition of 0.145 g
(0.5 mmol) of dppz⋅0.5H2O to 15 mL of a methanolic solution
containing 0.117 g (0.5 mmol) of the precursor complex, at
room temperature, and under continuous stirring. Although a
solid compound begins to precipitate practically immediately,
agitation of the mixture was continued during one more hour.
The obtained precipitate was collected by filtration, washed
with cold methanol, and dried in air (yield ca. 0.25 g). The
purity was confirmed by elemental chemical analysis (Calcd.

for C22H14N4O6V⋅3H2O: C, 49.34; H, 3.73; N, 10.46; V,
9.53 %; found: C, 49.20; H, 3.80; N, 10.42; V, 9.47 %).

The complex is highly insoluble in all of the common
solvents and, therefore, it was impossible to obtain single
crystals adequate for a crystal structural analysis.

Spectroscopic Characterization

Infrared spectra in the spectral range between 4000 and
400 cm−1 were obtained with a Bruker EQUINOX 55 Fourier
transform infrared spectroscopy (FTIR) instrument, using the
KBr pellet technique. Electronic absorption spectra were mea-
sured on DMSO solutions of the complex, with a Shimadzu
model UV-300 spectrophotometer, using 10-mm quartz cells.

Cell Culture and Incubations

MG-63 human osteosarcoma cells (CRL1427™) were grown
in DMEM containing 10 % FBS, 100 U/mL penicillin, and
100 μg/mL streptomycin at 37 °C in 5 % CO2 atmosphere.
Cells were seeded in a 75-cm2 flask, and when 70–80 % of
confluence was reached, cells were subcultured using 1 mL of
TrypLETM per 25 cm2 flask. For experiments, cells were
grown in multiwell plates. When cells reached the desired
confluence, the monolayers were washed with DMEM and
were incubated under different conditions according to the
experiments.

MTTAssay

The MTT assay was performed according to T. Mosmann
[21]. Briefly, cells were seeded in a 96-multiwell dish, allowed
to attach for 24 h, and treated with different concentrations of
complexes at 37 °C for 24 h. After that, the medium was
changed, and the cells were incubated with 0.5 mg/mL MTT
under normal culture conditions for 3 h. Cell viability was
marked by the conversion of the tetrazolium salt MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromide) to a
colored formazan by mitochondrial dehydrogenases. Color
development was measured spectrophotometrically in a Mi-
croplate Reader (7530, Cambridge Technology, Inc, USA) at
570 nm after cell lysis in DMSO (100 μL/well). Cell viability
was plotted as the percentage of the control value.

Statistical Methods

At least three independent experiments were performed for
each experimental condition. Results are expressed as percent
basal and represent the mean±SEM. Statistical differences
were analyzed using the ANOVA test.
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Computational Details

The optimized geometry of [VO(ODA)dppz] complex was
obtained using the M0L6 Truhlar’s functionals [22] from the
density functional theory as implemented in the Gaussian 09
package [23]. The basis set of triple zeta valence quality
augmented with polarization functions was used for hydrogen,
carbon, and vanadium atoms [24]. For oxygen and nitrogen
atoms, the same basis plus diffuse functions [25] were used.

Vibrational analysis was carried out at the same level of
theory to confirm that this structure is a minimum on the
potential energy surfaces. Furthermore, the bands of the infra-
red spectrum were also calculated to compare them with the
experimental data and to support the assignment of the ob-
served vibrational modes.

The electronic transitions were calculated at the optimized
ground-state geometry within the context of the TD-DFT
theory using the functional M06L and the LanL2DZ basis
set, which uses Dunning D95V basis set [26] on hydrogen,
carbon, nitrogen, and oxygen atoms, and Los Alamos ECP
plus DZ on vanadium atom [27]. UV-visible spectral calcula-
tions were carried out including solvent effects (DMSO)
through the polarizable continuum model [28] as implement-
ed in the Gaussian 09 package to produce a number of 20
singlet-to-singlet transitions.

Results and Discussion

Structural Characteristics of the Complex

The computer-optimized structure of the complex is shown in
Fig. 1. The vanadium presents a distorted octahedral coordi-
nation and the oxodiacetate anion acts as a tridentate [OOO]
chelating ligand. The equatorial plane is occupied by the
carboxylato oxygen atoms (O2 and O2′) of this ligand and
the heterocyclic N-atoms (N1 and N2), whereas the axial

positions are conformed by the ethereal O-atom of
oxodiacetate (O1) and the vanadyl V=O-oxygen (O5).

Selected bond distances and angles are shown in Table 1.
The V=O distance is similar to those determined experimen-
tal ly, by X-ray crystal lography, in the cases of
[VO(ODA)(ophen)]⋅1.5H2O [7] and [VO(ODA)(bipy)]⋅H2O
[8], the V-O distance trans to this bond, is somewhat larger in
the present case, whereas the other V-O and V-N bonds are
comparable in all these cases.

IR-spectrum of [VO(ODA)(dppz)]⋅3H2O

The FTIR spectrum of the complex in the most interesting
spectral range, between 2000 and 400 cm−1, is shown in
Fig. 2. The spectrum was not only analyzed on the basis of
the results of the theoretical calculations but also by compar-
ison with the spectra of the free oxodiacetic acid [2] and dppz
[29], as well as by information provided by well known
standard reference texts [30, 31]. The proposed assignments
are presented in Table 2 and are briefly commented as follows:

– The stretching vibrations of the water molecules (not
shown in Fig. 2) generate a very strong and broad IR
band centered at 3421 cm−1, with two weak additional
bands at its lower energy side, related to CH and CH2

motions. The position of the strong OH band points to the
participation of the water molecules in hydrogen bonds of
medium strength [32, 33]. The corresponding deforma-
tional mode, δ(H2O), is surely overlapped by the strong
1657 cm−1 band.

– The carboxylate groups of ODA show the typical spec-
troscopic behavior expected from a monodentate interac-
tion of this ligand with the metallic center, i.e., the anti-
symmetric stretching vibration presents a lower energy
than those found for the ν(C=O) vibration in the “free”
acid (1734 cm−1) [2], whereas the symmetric mode lies
somewhat higher than the corresponding ν(C-O)
mode 1309 cm−1 in the free acid) [2]. Besides, both

Fig. 1 Optimized geometry of
the [VO(ODA)(dppz)] complex
obtained by the DFT calculations
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carboxylate stretchings also show an energy difference
(about 300 cm−1), which is a characteristic for
monodentate binding [34].

– The νas(C-O-C) and νs(C-O-C) motions of the ethereal
moiety of ODA are slightly displaced to lower energies
after interaction of its O-atom with the metal center. The
corresponding deformational mode of this grouping
could not be identified with certainty because, as shown
by the theoretical calculations, it is strongly coupled with
other motions.

– The characteristic ν(V=O) breathing appears in the usu-
ally expected region [35] and practically at the same
energy as found for [VO(ODA)(ophen)]⋅1.5H2O [3] and
[VO(ODA)(bipy)]⋅H2O [4] in agreement with the almost
identical V=O bond lengths in the three compounds. We
have also tentatively assigned one of the expected V-O
metal-to-ligand vibrations at 430 cm−1.

– IR bands of the dppz rings have not been assigned in
detail, because the assignments in such a large molecule,
involving simultaneous motions of many atoms, are

relatively complex [29]. Based on the previous studies,
one can add to the data presented in Table 2 that ring
mode s ob s e r v ed a t 1580 , 1078 /1071 , a nd
1051/1040 cm−1 correspond to phenanthroline-based
modes, whereas that located at 1418 cm−1 is a
phenazine-based vibration [29].

– Certain vibrations are additionally complicated by super-
position between ring modes and motions of part of the
complex moiety. As an example, the 922-cm−1 ring mode
involves also a O-V-O stretching, coupled with other
ODA modes. Also, the last two observed vibrations
(452 and 430 cm−1) are partially affected by a complex
deformation of the whole ODA ligand.

Electronic Absorption Spectrum

It was very difficult to obtain the electronic absorption spec-
trum of the complex due to its mentioned great insolubility in

Table 1 Selected bond distances (Å) and angles (°) calculated for the
[VO(ODA)(dppz)] complex

V-O5 1.584 C2-O1-C2′ 116.8

V-O2=V-O2′ 1.944 O1-C2-C1 113.0

V-O1 2.408 O1-C2′-C1′ 113.0

V-N1=V-N2 2.146 N1-V-N2 75.8

O5-V-N1 103.7

O5-V-O1 178.4 O5-V-N2 103.7

O5-V-O2 104.8 O2-V-N1 85.9

O5-V-O2′ 104.8 O2-V-N2 149.0

O1-V-O2 74.1 O2′-V-N1 149.0

O1-V-O2′ 74.1 O2′-V-N2 85.9

O2-V-O2′ 98.1 O1-V-N1 77.5

Fig. 2 FT-infrared spectra of [VO(ODA)(dppz)]⋅3H2O in the spectral
range between 2000 and 400 cm−1

Table 2 Assignment of the FTIR spectrum of [VO(ODA)(dppz)]⋅3H2O
(band positions in cm−1)

Band position Assignment

3241 vs, br ν(OH)

3086 w, 2932 w ν(CH)+ν(CH2)

1681 sh νring+δ(CH)

1657 vs νas(COO
−)

1580 sh νring
1498 m δ(CH2)

1463 sh, 1449 sh δ(CH2)+δ(CH)+νring
1418 m δ(CH2)+νring
1359 s, 1340 w νs(COO

−)+δ(CH)

1316 m δ(CH)

1289 sh ν(CN)+τ(CH2)

1235 w, 1188 w νring
1136 s νas(C-O-C)+νring
1078 s, 1071 sh δring+δ(CH)

1051 m, 1040 sh δring+δ(CH)

999 s ν(V=O)

977 m, 922 s νring
822 m νs(C-O-C)+γring
778 m, 769 sh δ(CH)+δring
732 s, 721 sh γ(CH)+γring+ρ(CH2)

656 vw, 636 vw δring+δ(CH)

618 w γring+γ(CH)+τ(CH2)

574 w, 563 w, 516 vw γ(CH)+τ(CH2)

452 m δ(C-O-C) (?)

430 m ν(V-O)+γring

vs very strong, s strong, m medium, w weak, vw very weak, br broad, sh
shoulder
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all of the common solvents. We have only obtained
reproducible results with diluted DMSO solutions. In
this case, we found only one absorption band located
at 452 nm (ε=110 L/mol cm).

The calculated electronic spectrum is shown in Fig. 3, and
the electronic transitions are described in Table 3, including
band positions, oscillator strengths, and proposed assignments
(A and B indicate the electronic space of alpha and beta
electrons, respectively).

The HOMO (A) is mainly constituted by the dxy orbital of
the vanadium atom. H (B) and H-1 (A) are constituted of a π
bonding system localized over the dppz ring, H-2 (A) contains
p orbitals of the O-atoms of ODA and C-C and C-H σ orbitals
of the same ligand. The H-3 (A) and H-2 (B) involve nitrogen
p and σ C-N orbitals from the N-atoms lying away from the
metal center.

The LUMO (A) and HOMO (B) consist both of a π*
system localized on the dppz moiety, while L+1 (A) is mainly
the dyz orbital of vanadium plus a π system on the ring
fragment closer to the metal center. L+3 (A) is the dxz orbital
of the vanadium atom, and L-4 (A) contains a certain contri-
bution of the metal dyz orbital. L+6 (A) and L+7 (A) are both
constituted by the dx

2
−y

2 vanadium orbital, whereas L+8 (A)
is the dz

2 metal orbital.
As it can be seen from the results analyzed in Table 3, most

of the calculated absorptions are of complex origin involving
various transitions.

The measured 452-nm absorption may be eventually relat-
ed to the calculated 396.48 nm band. Besides, bands calculat-
ed at 709.29/682.73 nm and at 505.62 nm eventually corre-
spond to the 820 and 580 nm transitions measured in the case

Fig. 3 Calculated electronic
spectrum of the
[VO(ODA)(dppz)] complex

Table 3 Calculated electronic transitions for [VO(ODA)(dppz)]

Wavelength
(nm)

Oscillator
strength

Assignment

709.29 0.0002 HOMO (A)→L+3 (A) (76 %)

682.73 0.0002 HOMO (A)→L+1 (A) (20 %),
HOMO (A)→L+4 (A) (68 %)

505.62 0.0008 HOMO (A)→L+6 (A) (13 %),
HOMO (A)→L+7 (A) (71 %)

396.48 0.0032 HOMO (A)→LUMO (A) (15 %),
HOMO (A)→L+1 (A) (47 %),
HOMO (A)→L+8 (A) (14 %)

377.26 0.0032 H-3 (A)→LUMO (A) (47 %), H-2
(B)→LUMO (B) (47 %)

362.48 0.0005 HOMO (A)→LUMO (A) (82 %)

343.84 0.0322 H-1 (A)→LUMO (A) (48 %),
HOMO (B)→LUMO (B) (48 %)
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Fig. 4 Evaluation of the mitochondrial succinate dehydrogenase activity
by the MTT assay in MG-63 cells in culture. Osteosarcoma cells were
incubated with different doses (25–100 μM) of the complex for 24 h at
37 °C. After incubation, cell viability was determined by the MTT assay.
Results are expressed as % basal and represent the mean±SEM, n=18.
Asterisk shows significant differences vs. control (p <0.01)
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of [VO(ODA)(ophen)]⋅1.5H2O [7], which are characteristics
for these type of complexes, but which were not found in the
present case due to the commented scarce solubility of the
complex.

Effects of [VO(ODA)(dppz)]⋅3H2O on Human Osteosarcoma
Cell Viability

Multiple biological effects of vanadium have been involved in
its inhibitory actions on many tumor cells [36]. Considering
the high accumulation of vanadium in bone [37–39], it is of
high interest to determine the effect of the new vanadium
complex at the hard tissue level. Therefore, and as part of
our mentioned project devoted to the characterization of va-
nadium complexes with antitumor properties, we have tested
the effect of this new complex on human osteosarcoma cells in
culture. Its action on the cellular viability was determined on
MG-63 human osteosarcoma cell line, which is considered as
a good model for bone tissue cancer [40].

F igu r e 4 shows the e f f ec t s o f the complex
[VO(ODA)(dppz)].3H2O on the mitochondria metabolism of
MG-63 osteosarcoma cells. As it can be seen, the complex
caused a concentration-related inhibition from 5 to 25 μM
with statistically significant differences versus basal condition
(p <0.01). Moreover, the compound diminished the cell via-
bility ca. 45 % in the range from 25 to 100 μM (p <0.01).
Nevertheless, it did not exhibit a dose response effect in this
range of concentrations. Comparing the effects of the new
complex with those of the previously reported complex of the
oxidovanadium(IV) cation with oxodiacetate and o-
phenantroline, [VO(ODA)(ophen)]⋅1.5H2O [3], it can be seen
that the biological behavior of both vanadium(IV) complexes
on MG-63 cells is similar [1].

On the contrary, in the evaluation of the related VO2+

complex with bipyridine [VO(ODA)(bipy)]⋅H2O [4] and with
[VO(ODA)(H2O)2] [2], considered as the precursor of this
series of related compounds, the damage was observed only in
the higher concentration range (50–100 μM) [1]. These results
reinforce again the hypothesis of the importance of using
strong intercalating ligands (ophen and dppz) in the genera-
tion of new compounds with potential antitumor properties.
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