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A New Pan-Sharpening Method Using
a Compressed Sensing Technique
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Abstract—This paper addresses the remote sensing image pan-
sharpening problem from the perspective of compressed sensing
(CS) theory which ensures that with the sparsity regularization,
a compressible signal can be correctly recovered from the global
linear sampled data. First, the degradation model from a high-
to low-resolution multispectral (MS) image and high-resolution
panchromatic (PAN) image is constructed as a linear sampling
process which is formulated as a matrix. Then, the model matrix is
considered as the measurement matrix in CS, so pan-sharpening
is converted into signal restoration problem with sparsity regular-
ization. Finally, the basis pursuit (BP) algorithm is used to resolve
the restoration problem, which can recover the high-resolution MS
image effectively. The QuickBird and IKONOS satellite images are
used to test the proposed method. The experimental results show
that the proposed method can well preserve spectral and spatial
details of the source images. The pan-sharpened high-resolution
MS image by the proposed method is competitive or even superior
to those images fused by other well-known methods.

Index Terms—Compressed sensing, image fusion, multispectral
(MS) image, panchromatic (PAN) image, remote sensing, sparse
representation.

I. INTRODUCTION

O PTICAL remote sensors in satellites can provide images

about the surface of the Earth which are valuable for

environmental monitoring, land-cover classification, weather

forecasting, etc. Practically, most optical Earth observation

satellites, such as QuickBird and IKONOS, provide image

data with spectral and spatial information separately, such as

low-resolution multispectral (MS) images and high-resolution

panchromatic (PAN) image. In order to benefit from both spec-

tral and spatial information, these two kinds of images can be

fused to get one high-spectral- and high-spatial-resolution re-

mote sensing image [1]. The fusing process, classically referred

as pan-sharpening technique, has become a key preprocessing

step in many remote sensing applications [2].

Various methods have been proposed for pan-sharpening,

which usually consider physics of the remote sensing process

and make some assumptions on the original PAN and MS
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images [3]–[7]. The most classical methods are projection–

substitution-based which assume that the PAN image is equiv-

alent to the structural component of the MS images when

projected the MS images into a new space. The most famous

projection–substitution methods include the intensity hue satu-

ration (IHS) [8], [9], the principal component analysis [10], the

Gram–Schmidt (GS) transform [11] based methods, and so on.

In recent years, the methods based on the ARSIS concept

have been popular which assume that the missing spatial in-

formation in the MS images can be obtained from the high

frequencies of the PAN image [12], [13]. In [2], Thomas et al.

showed that this category method prevents from introducing

spectral distortion into fused products in some degree. Thus,

it offers a reliable framework for further developments. The

multiresolution transforms, such as discrete wavelet transform

(DWT) [6], “à trous” wavelet transform (ATWT) [14], con-

tourlets [15], and support value transform [16], are usually

used to extract the high frequencies of the PAN image. The

ATWT allows an image to be decomposed into nearly disjointed

bandpass changes in spatial frequency domain, which makes

it particularly suitable for remote image fusion. An ATWT-

based method with the additive wavelet luminance proportional

(AWLP) model was proposed in [17]. The AWLP model injects

high-pass details proportionally to low-pass MS components,

and improves the spectral quality of fused image.

Nevertheless, the high frequencies extracted from the PAN

image are not exactly equivalent to those of the MS images. So

adjusting those high frequencies, called the interband structure

model (IBSM) [13], is needed before they are injected into the

MS images. One of the famous IBSMs is the context-based

injection model [18]. The undecimated DWT or the generalized

Laplacian pyramid is used to extract the high-frequency details

of the PAN image. Garzelli and Nencini proposed the ATWT-

based method with context-based decision (CBD) injection

model in [19]. The experimental results showed that the CBD

model yields better results than those traditional methods. In ad-

dition, Garzelli and Nencini applied the genetic algorithm [20]

to optimize the injection model of the ATWT-based method by

maximizing the quality index of the fused product, and the pan-

sharpening results are obviously improved.

Also, as a popular idea, the inverse-problem-based methods

are used to restore the original high-resolution MS image from

its degraded versions, i.e., the PAN and MS images [21], [22].

Because much information is lost in the degrading process, this

is an ill-posed inverse problem and the solution is not unique.

This means that according to the degrading process, many dif-

ferent high-resolution MS images can produce the same high-

resolution PAN and low-resolution MS images. Thus, various
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regularization-based methods have been proposed to resolve

the ill-posed inverse problem [23], [24]. In [23], the pan-

sharpening process is modeled as restoring the high-resolution

MS images aided by the PAN image. The fused results can

preserve spectral characteristics of the true MS images as

well as high spatial resolution of the source PAN image. The

regularization and iterative optimal method was proposed in

[24], in which the fused result is obtained through optimizing

an image quality index. The Bayesian method is an important

tool to resolve ill-posed inverse problems [25]–[27]. Within

the Bayesian framework, the fused image is extracted from the

Bayesian posterior distribution in which the prior knowledge

and artificial constraints on the fusion results are incorporated.

Joshi and Jalobeanu modeled the pan-sharpening problem as

separate inhomogeneous Gaussian Markov random fields and

applied a maximum a posteriori estimation to obtain the fused

image for each MS band [27]. The experiments on both syn-

thetic data and the QuickBird satellite images demonstrate its

effectiveness. However, its performance would degrade if there

are not enough training images.
Recently, Donoho and Candès et al. proposed a new sam-

pling theory, compressed sensing (CS) theory, for data acquisi-
tion [28], [29]. The CS theory can recover an unknown sparse
signal from a small set of linear projections, which has been ap-
plied in many image processing applications [30]–[34]. The key
point of CS theory is the sparsity regularization which refers to
the nature of the natural signals [28]. It is very suitable to re-
solve the inverse problem of compressible signals/images. With
the perspective of compressed sensing, this paper proposes
a novel pan-sharpening method with sparsity regularization.
We formulate the remote sensing imaging formation model as
linear transform corresponding to the measurement matrix in
the CS theory and the high-resolution PAN and low-resolution
MS images are referred as measurements. Thus, based on the
sparsity regularization, the high-resolution MS images can be
recovered precisely.

The rest of this paper is organized into five sections. In
Section II, the sparsity representation and the CS theory are
briefly introduced. In Section III, we give the model of the
high-resolution PAN image and the low-resolution MS images
from the high-resolution MS images. Then, the fusion scheme
based on the CS theory is proposed. Numerical experiments and
discussions are presented in Section IV. Conclusions together
with some suggestions about the future work are given in
Section V.

II. SPARSE REPRESENTATION AND COMPRESSED SENSING

The development of image processing in the past several
decades reveals that a reliable image model is very important.
In fact, natural images tend to be sparse in some image bases’
space [30]. This brings us to the sparse and redundant represen-
tation model of image.

Consider a family of signals {xi, i = 1, 2, . . . , g}, xi ∈ R
n.

Specially, in this paper, each such signal is assumed to be a√
n×√

n image patch, obtained by lexicographically stacking

the pixel values. Sparse representation theory supposes the ex-

istence of a matrix D ∈ R
n×T , n ≪ T , each column of which

corresponds to a possible image (lexicographically stacking the

pixel values as a vector). These possible images are referred

to as atomic images, and the matrix D as a dictionary of the

atomic images. Thus, an image signal x can be represented

as x = Dα. For overcomplete D (n ≪ T ), there are many

possible α satisfying x = Dα. Our aim is to find the α

with the fewest nonzero elements. Thus, the α is called the

sparse representation of x with dictionary D. Formally, this

problem can be obtained by solving the following optimization

problem:

α̂ = argmin ‖α‖0 s.t.‖Dα− x‖22 = 0 (1)

where ‖α‖0 denotes the number of nonzero components in α.

In practice, because of various restrictions, we cannot get x

directly; instead, only a small set of measurements y of x is

observed. The observation y can be represented as

y = Lx (2)

where L ∈ R
k×n with k < n. (2) is interpreted as the encode

process of the CS theory, where L is a CS measurement matrix.

The CS theory ensures that under sparsity regularization [29],

the signal x can be correctly recovered from the observa-

tion y by

min ‖α‖0 s.t.‖y −Φα‖22 ≤ ε (3)

where Φ = LD, ε is the reconstruction error which depends on

noise level of source image, and x = Dα. The effectiveness

of sparsity as a prior for regularizing the ill-posed problem has

been validated by many literatures [30]–[34]. In this paper, we

propose one remote sensing image fusion method from the per-

spective of compressed sensing. The high-resolution PAN and

low-resolution MS images are referred as the measurements

y. The matrix L is constructed by the model from the high-

resolution MS images to the high-resolution PAN and low-

resolution MS images. Thus, the sparse representation α of the

high-resolution MS images corresponding to dictionary D can

be recovered from measurements y according to the sparsity

regularization of (3), and the high-resolution MS images are

constructed by x = Dα.

However, because ‖α‖0 is combinatorial, the above opti-

mization is an NP-hard problem [30]. In fact, when the coeffi-

cients are sufficiently sparse, this problem can be replaced with

minimizing the l1-norm problem

min ‖α‖1 s.t.‖y −Φα‖22 ≤ ε. (4)

The proof from (3) to (4) can be found in [35]. The l1-norm

problem (4) can be efficiently resolved by the basis pursuit (BP)

method [36]. In the BP method, (4) is converted to the standard

linear program formed as

min cTθ s.t.Aθ = b,θ ≥ 0 (5)

where θ = (α+;α−); c = (1;1); A = (Φ,−Φ); b = y. Then,

the sparse representation in (4) can be obtained by α̂ = α+ −
α−. The sharpened high-resolution MS image patch is obtained

by x̂ = Dα̂.
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Fig. 1. Relationship between a single low-resolution MS band and its corre-
sponding high-resolution version (↓ 2 means the decimation).

III. PROPOSED IMAGE FUSION SCHEME

A. Image Formation Model

Remote sensing physics should be carefully considered while

designing the pan-sharpening process. Let Xhigh
p and Y low

p ,

p = 1, . . . , P , represent the pth band of the high-resolution

and low-resolution MS images, respectively, where P denotes

the number of bands of the MS images. The observed low-

resolution MS images are modeled as decimated and noisy

versions of the corresponding high-resolution MS images, as

shown in Fig. 1.

In fact, intensity of the low-resolution image is due to inte-

gration of light intensity that falls on the charge-coupled device

sensor array of suitable area compared to the desired the high-

resolution images [23], so the low-resolution intensity can be

seen as neighborhood pixels’ average of the high-resolution

intensities corrupted with additive noise. The relationship be-

tween Xhigh
p and Y low

p is written as

Y low
p = MXhigh

p + vp (6)

where M is the decimation matrix and vp is the noise vector.

In fact, the PAN image usually covers a broad range of

the wavelength spectrum; whereas, one MS band covers only

a narrow spectral range. Moreover, the range of wavelength

spectrum of the PAN modality is usually overlapped or partly

overlapped with those of the MS bands. This overlapping

characteristic motivates us making the assumption that the PAN

image is approximately written as a linear combination of the

original MS images

Y PAN =
∑

p

wpX
high
p + vp (7)

where wp is the weight and vp is the additive zero-mean

Gaussian noise [29]. However, we should note that the linear

relationship between the PAN and the MS image is only ap-

proximated by the linear model because of the complexity of

physics, atmospheric dispersion, and so on.

We consider a pan-sharpening case with four spectral bands:

1) Red (R); 2) green (G); 3) blue (B); 4) and near infrared

(NIR), and the decimation factor from high to low spatial reso-

lution is four. Fig. 2 shows the remote sensing image formation

model, representing the relationship between the available low-

resolution MS images and its high-resolution versions. Let

x = (x1,1, . . . , x1,16, . . . , x4,1, . . . , x4,16)
T represent the lexi-

cographically ordered high-spatial-resolution MS image patch

and yMS = (y1, y2, y3, y4)
T is the vector consisting of the

pixels from the low-resolution MS images shown in Fig. 2.

Then, we can write

yMS = M1x+ v1 (8)

Fig. 2. Remote sensing image formation model.

where M1 is the decimation matrix of size 4 × 64 and v1 is

the 4 × 1 zero-mean Gaussian noise vector. The M1 matrix

can be written as M1 = (1/16) · I⊗ 1
T, where I ∈ R

4×4 is

an identity matrix, and 1 is a 16 × 1 vector with all entries

equaling to one.

Let yPAN = (y5, . . . , y20)
T as the corresponding lexico-

graphically ordered high-resolution PAN image patch, then we

can write

yPAN = M2x+ v2 (9)

where M2 = (w1I, w2I, w3I, w4I), and I ∈ R
16×16 is

an identity matrix. The v2 is the additive zero-mean Gaussian

noise vector. We assume that v1 and v2 have the same standard

deviation σ. Then, combining (8) and (9), we get

y = Mx+ v (10)

where y =
(

y
MS

y
PAN

)

and M =
(

M1

M2

)

.

The goal of image fusion is to recover x from y. As shown

in Section II, if signal is compressible by a sparsity transform,

the CS theory ensures that the original signal can be accurately

reconstructed from a small set of incomplete measurements.

Thus, the signal recovering problem of (10) can be formulated

as a minimization problem with sparsity constraints

α̂ = argmin ‖α‖0 s.t.‖y −Φα‖22 ≤ ε (11)

where Φ = MD, D = (d1, d2, . . . , dK) is a dictionary and

x = Dα which explains x as a linear combination of columns

from D. The vector α̂ is very sparse. Finally, the estimated x̂

can be obtained by x̂ = Dα̂. In this paper, we assume that

the source images are only contaminated by the additive zero-

mean Gaussian noise. Thus, the parameter ε can be set by

ε = n(Cσ)2, where n is the length of y, C is a constant [31].

The noise level is estimated by user according to real satellite

optical imaging system, and the constant C can be set by the

generalized Rayleigh law as described in [31]. In the following

experiments, the constant C is set to 1.15 for 8 × 8 image

patch [32]. We can see that (11) is the same as (3) mentioned in
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Fig. 3. Proposed fusion scheme.

Section II. Thus, this problem can be easily resolved by the BP

method [36].
In addition, we should note that (11) is operated on 4 × 4

× 4 image patch in the high-resolution MS images correspond-
ing to 4 × 4 image patch in the PAN image and one pixel in each
band of the MS images. However, such small patch contains
little texture and structure information. On the other hand, a
large patch captures local texture well but lacks generalization
capability, and involves high computational complexity. In this
paper, we set the size of image patch in the high-resolution MS
images as 8 × 8 × 4, corresponding to 8 × 8 image patch in
the PAN image and 2 × 2 × 4 patch in the low-resolution MS
images, which appears to be a good tradeoff. Thus, the matrix
M1 in (8) is constructed as (1/16) · I8×8 ⊗ (1T ⊗ (I2×2 ⊗
1
T)), where IN×N is a N ×N identity matrix and 1 is a 4 ×

1 vector with all entries equal to one. The matrix M2 in (9) is
constructed as (w1I w2I w3I w4I) where I ∈ R

64×64 is
an identity matrix.

The proposed pan-sharpening scheme is illustrated in Fig. 3.
As shown in Fig. 3, all the patches of the PAN and MS images
are processed in raster-scan order, from left-top to right-bottom
with step of four pixels in the PAN image and one pixel in the
MS images. First, according to Fig. 3, the PAN patch yPAN

is combined with the MS patch yMS to generate the vector
y. Then, the sparsity regularization (11) is resolved using the
BP method to get the sparse representation α̂ of the fused MS
image patch. Finally, the fused MS image patch is obtained by
x̂ = Dα̂.

B. Random Raw Patches Dictionary

The dictionary of sparse representation is a collection of
parameterized waveforms called atoms [36]. The dictionary
is overcomplete; in which case, the number of atoms of the
dictionary exceeds the length of signal. In recent years, the
sparsity-regularization-based image processing methods, such
as denoising [31], [32], face recognition [33], and super-
resolution [34], always lead to the state-of-the-art results.

In image processing applications, each column of the over-
complete dictionary D corresponds to an image or image patch
in R

n. Those images or image patches are referred as atomic
images. A collection of parameterized 2-D waveforms of wave-
lets, Gabor dictionaries, and cosine packets is the commonly
used dictionary [36]. Moreover, an application-orientated non-
parametric dictionary may produce better result. However, dic-
tionary learning is difficult and time-consuming. Simply, the
dictionary can also be generated by randomly sampling raw
patches from training images with similar statistical nature. The
effectiveness of this kind of dictionary is validated in face

recognition and image super-resolution application [33], [34].
In this paper, we generated the dictionary by randomly sam-
pling raw patches from high-resolution MS satellite images.
Because different satellite optical sensors have different char-
acteristics in reflecting spectral information of scene, the high-
resolution MS images with the same type of sensors should be
used to construct the dictionary. When the sparse regularization
is used, the proposed method selects a number of relevant
dictionary elements adaptively for each patch. Thus, the recon-
structed image can well preserve the spectral information of the
scene. Our experiments in the following section also show the
effectiveness of such dictionary.

In addition, based on the CS theory, correctly recovering
signal x in (11) requires that the measurement matrix M is
incoherent/uncorrelated to the dictionary D. Because that the
dictionary is generated by randomly sampling, it has the high
probability satisfying this condition. Thus, for a variety of
measurement matrix M, any sufficiently sparse linear represen-
tation of x in terms of the dictionary D can be recovered almost
perfectly from the high-resolution PAN and low-resolution MS
images.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

A. Quality Indices for Assessing Image Fusion

To evaluate different fusion methods, we need to check
the synthesis property that any synthetic image should be as
identical as possible to the image that the corresponding sensor
would observe with the highest spatial resolution [37], [38]. So,
Wald’s protocol [37] is adopted, i.e., the fusion is performed on
degraded data sets and the fused high-resolution MS images
are then compared with the original low-resolution MS images
which are seen as the reference images. In this paper, the
following five typical evaluation metrics are used.

1) The correlation coefficient (CC) [39] is calculated by

CC =

M
∑

i=1

N
∑

j=1

[

F (i, j)− F̄
] [

X(i, j)− X̄
]

√

M
∑

i=1

N
∑

j=1

[

F (i, j)− F̄
]2

M
∑

i=1

N
∑

j=1

[

X(i, j)− X̄
]2

(12)

where X and F denote the source MS images and
the fused image with size M ×N , respectively. The
correlation coefficient indicates the degree of correlation
between X and F . When F equals to X , the correlation
coefficient approaches to one.

2) The spectral angle mapper (SAM) [39] reflects the spec-
tral distortion by the absolute angles between the two
vectors constructed from each pixel of the source image
X and the fused image F . Let uX and uF denote the
spectral vector of a pixel of X and F , respectively. The
SAM is calculated by

SAM = arccos

( 〈uX ,uF 〉
‖uX‖2 · ‖uF ‖2

)

. (13)

The SAM is averaged over the whole image to yield a
global measurement of spectral distortion. For ideal fused
image, the SAM value should be zero.



742 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 2, FEBRUARY 2011

Fig. 4. Twenty satellite images used to construct dictionary.

3) The root mean squared error (RMSE) gives the stan-
dard measure of difference between two images. It is
defined as

RMSE =
1

MN

√

√

√

√

MN
∑

i,j=1

(X(i, j)− F (i, j))2. (14)

4) The erreur relative global adimensionnelle de synthèse

(ERGAS) gives a global quality measure of the fused
image F [38], which is defined as

ERGAS = 100
h

l

√

√

√

√

1

P

L
∑

i=1

(

RMSE2(i)

MEAN(i)

)

(15)

where h is spatial resolution of the PAN image; l is spatial
resolution of the MS images; P is the number of bands of
the fused image F ; MEAN(i) is the mean value of the
ith band of the reference MS images and RMSE(i) is the
RMSE between the ith band of the reference MS images
and the ith band of the fused image. Smaller ERGAS
indicates better fusion result (ideally zero).

5) The Q4 index is defined as [40]

Q4 = E(Q4D×D) (16)

where Q4D×D={4[E(x·y∗)−x·y∗]/(E(‖x‖2)−‖x̄‖2+
E(‖y‖2)−‖y‖2)} · {‖x‖ · ‖y‖/(‖x‖2+‖y‖2)}. The

quaternion x = X1(m,n) + iX2(m,n) + jX3(m,n) +
kX4(m,n), y = F1(m,n) + iF2(m,n) + jF3(m,n) +
kF4(m,n), Fi and Xi are the ith band of F and X ,
respectively. The y∗ is the complex conjugate of y, E(·)
denotes the quaternion obtained by averaging the pixel
quaternion within a D × D block with size of 8 × 8, and
‖x‖ is the modulus of x. The Q4 index takes values in
[0, 1] with one being the best value.

B. Fusion Results of QuickBird Data

QuickBird is a high-resolution satellite which provides PAN
image at 0.7-m resolution and MS images at 2.8-m resolution.
In order to evaluate the fusion results with objective measures,
we spatially degrade the PAN and MS images with low-pass
filter and decimation operator by four to yield one 2.8-m resolu-
tion PAN image and four 11.2- m resolution MS images. Then,
the degraded low-resolution PAN and MS images are fused to
produce one high-resolution MS image with 2.8-m resolution.
The fused results are compared with the true 2.8-m MS image
using the objective measures. The proposed method needs a
dictionary which contains the raw image patches responding
to 2.8-m resolution MS bands. In this paper, we randomly
sample 10 000 raw patches from 20 images downloaded from
the website http://glcf.umiacs.umd.edu/data/quickbird/. Empir-
ically, we find that such dictionary can always produce very
good fusion results. Fig. 4 shows 20 training images used
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Fig. 5. Source QuickBird images (dock) and the fused results using different
methods. (a) The resampled low-resolution MS image (RGB, 256 × 256,
11.2 m); (b) High-resolution PAN image (256 × 256, 2.8 m); (c) Original high-
resolution MS image (RGB, 256 × 256, 2.8 m); (d) Fused RGB bands by SVT
method; (e) Fused RGB bands by GA method; (f) Fused RGB bands by the
proposed method.

to generate the dictionary. Here, only three color composites
(bands 3–2–1) of the 2.8-m resolution MS data are reported.

One free parameter of the proposed method is ε, which

restricts the reconstruction error. When the noise level of the

source images is σ, we can directly set ε = n(Cσ)2. In our

experience, the source images are all clear (standard deviation

σ = 0), thus according to ε = n(Cσ)2, the parameter ε should

be zero. However, as the value of ε decreases, the process of

the BP becomes slower. In fact, in our experiments, the pan-

sharpening quality is stable over a large range of ε, such as

ε ∈ [0, 5]. Therefore, in order to ensure pan-sharpening quality

as well as the computation efficiency of the proposed method,

the parameter ε is set to be 1 in our experimental section. The

experiments show that this ε gives good results for all the test

cases. The weights in (9) are set from the QuickBird normalized

spectral response as: w1 = 0.1139 for the Blue band; w2 =
0.2315 for the Green band; w3 = 0.2308 for the Red band; and

w4 = 0.4239 for the NIR band [21]. In addition, we normalize

columns of the dictionary as di/‖di‖2, i = 1, 2, . . . , 10000, so

that the atoms in the dictionary have unit length.

The proposed method is compared with six commonly used

pan-sharpening methods, namely, the generalized IHS (GIHS)

[9], the GS transform [11], SVT [16], the ATWT-based method

with the CBD injection model [19], the ATWT-based method

with the AWLP model [17], and the ATWT-based method with

the genetic algorithm (GA) [20]. Two levels of decompositions

are used for the ATWT transform used for CBD, AWLP, and

GA. In the case of SVT-based method, the σ2 in the Gaussian

RBF kernel is set to 1.2, and the parameter γ of the mapped LS-

SVM is set to 1, which give the best results. The GS algorithm is

implemented in the environment for visualizing images (ENVI)

software [11], and we set that the low-resolution PAN image is

simulated by averaging the low-resolution MS images.

Figs. 5(a) and (b) and 6(a) and (b) show two QuickBrid

source images of the urban areas of Sundarbans, India, acquired

on November 21, 2002. The original true 2.8-m RGB bands

Fig. 6. Source QuickBird images (highway) and the fused results using
different methods. (a) The resampled low-resolution MS image (RGB, 256 ×

256, 11.2 m); (b) High-resolution PAN image (256 × 256, 2.8 m); (c) Original
high-resolution MS image (RGB, 256 × 256, 2.8 m); (d) Fused RGB bands by
SVT method; (e) Fused RGB bands by GA method; (f) Fused RGB bands by
the proposed method.

of the MS data are presented in Figs. 5(c) and 6(c) for visual

reference. In order to save space, only the results of SVT- and

GA-based methods and the proposed method are illustrated in

Figs. 5(d)–(f) and 6(d)–(f), respectively. By visually comparing

the fused images with the original source images, we can see

that all the experimental methods can effectively pan-sharpen

the MS data. However, compared to the original reference MS

images, the pan-sharpened images with SVT- and GA-based

methods are blurred in some degree. Careful inspections of

Figs. 5(f) and 6(f) indicate that the proposed method not only

provides high-quality spatial details but also preserves spectral

information well. Particularly, the road in Fig. 6(f) is clearer

than that in Fig. 6(d) and (e).

The objective measures for Figs. 5 and 6 are reported in

Tables I and II, respectively, in which the best results for each

quality measure are labeled in bold. The correlation coefficient

(CC) allows us to determine the correlation between the pan-

sharpened band and the original band in both spectral and

spatial information. Both the tables show that the proposed

approach provides the highest CC values for all the four bands.

The root mean squared error (RMSE) measure gives radiomet-

ric distortion of the pan-sharpened band from the original MS

data, while ERGAS offers a global depiction of the quality of

radiometric distortion of the fused product. We can see that the

proposed method only loses the NIR band for the RMSE. For

the ERGAS, the proposed method also gives the best results.

The SAM yields a global measurement of spectral distortion

of the pan-sharpened images. Both the two tables show that

the AWLP method gives the lowest SAM. We should note

that, for other quality indexes, the proposed method performs

obviously better than the AWLP method. Since the ERGAS

only considers RMSE, and the SAM only considers spectral

distortion, a more comprehensive measure of quality Q4 has

been developed to test both spectral and spatial qualities of the

fused images. For the Q4, the proposed method also provides

the best results. This is mainly due to one advantage of the



744 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 2, FEBRUARY 2011

TABLE I
COMPARISON OF THE PROPOSED ALGORITHM WITH THE EXISTING

METHODS ON QUICKBIRD IMAGES SHOWN IN FIG. 5

TABLE II
COMPARISON OF THE PROPOSED ALGORITHM WITH THE EXISTING

METHODS ON QUICKBIRD IMAGES SHOWN IN FIG. 6

proposed scheme over other comparing methods that it selects

atom patches from the dictionary adaptively for each patch.

Those patches are the most relevant ones in the dictionary to

represent the given low-resolution MS images and the PAN

image because of the sparsity regularization in (11). Thus,

the reconstructed high-resolution MS images from the selected

patches can preserve well both spatial and spectral information

of the source images.

C. Fusion Results of IKONOS Data

In this section, we describe and analyze the experimental

results on the IKONOS satellite data. The IKONOS satel-

lite captures 4-m MS images, i.e., blue, green, red, and

NIR images, and 1-m PAN image. As the QuickBrid exper-

iment, we spatially degrade the IKONOS images with dec-

imation by four to yield 4-m PAN and 16-m MS images.

Then, the degraded images are fused to produce 4-m MS

images. The fusion results are compared with the true 4-m

MS image to achieve the objective measures. The dictionary,

which contains the 10 000 raw image patches, is randomly

sampled from 20 training images obtained from the web-

site http://glcf.umiacs.umd.edu/data/ikonos/index.shtml. For

IKONOS fusion, the weights in (10) are set the same as those

for QuickBird data since the spectral response of IKONOS is

Fig. 7. Source IKONOS images (river area) and the fused results using
different methods. (a) The resampled low-resolution MS image (RGB, 256 ×

256, 16 m); (b) High-resolution PAN image (256 × 256, 4 m); (c) Original
high-resolution MS image (RGB, 256 × 256, 4 m); (d) Fused RGB bands by
SVT method; (e) Fused RGB bands by GA method; (f) Fused RGB bands by
the proposed method.

Fig. 8. Source IKONOS images (rural area) and the fused results using
different methods. (a) The resampled low-resolution MS image (RGB, 256 ×

256, 16 m); (b) High-resolution PAN image (256 × 256, 4 m); (c) Original
high-resolution MS image (RGB, 256 × 256, 4 m); (d) Fused RGB bands by
SVT method; (e) Fused RGB bands by GA method; (f) Fused RGB bands by
the proposed method.

very similar to QuickBird, and other experimental settings are

also the same as those for QuickBrid case.

Fig. 7(a) shows a resampled low-resolution IKONOS MS

image of one region in Sichuan, China, acquired on May 15,

2008. Fig. 7(b) gives the corresponding degraded IKONOS

high-resolution PAN image. The true high-resolution 4-m MS

image is presented in Fig. 7(c). Comparing Fig. 7(b) with

Fig. 7(c), it can be found that the details of the PAN image

are not as rich as those of the MS image. For example, the

river beach area in the PAN image is darker than the area of

the MS image. These features make this figure be difficult for

pan-sharpening. Fig. 7(d)–(f) illustrate the results of different

fusion methods. As shown in Fig. 7(d), the SVT provides the

fused image with well-preserved spatial and spectral details.

The fused image with the GA-based method preserves spectral
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TABLE III
COMPARISON OF THE PROPOSED ALGORITHM WITH THE EXISTING

METHODS ON IKONOS IMAGES SHOWN IN FIG. 7

TABLE IV
COMPARISON OF THE PROPOSED ALGORITHM WITH THE EXISTING

METHODS ON IKONOS IMAGES SHOWN IN FIG. 8

details well. However, the spatial details in the river area are

lost. The fused image obtained by the proposed CS-based ap-

proach preserves both spectral and spatial detailed information

well. In particular, one can see that the details in the mountain

areas and the river area are sharply increased. Fig. 8 shows

another IKONOS image of one region in Sichuan, China. The

similar conclusions can be drawn from Fig. 8.

The objective measures of the fused images in Figs. 7 and

8 are listed in Tables III and IV, respectively. From Table III,

we can see that the proposed method performs the best in

term of measures CC, RMSE, ERGAS, and Q4. The AWLP

method provides the best value of SAM followed by the pro-

posed method. However, for other quality indexes, the proposed

method performs better than the AWLP. Therefore, on the

whole, the proposed method provides the best fused results.

For the Table IV, the proposed method only loses the SAM

quality index. The proposed method performs the best for other

measures.

V. CONCLUSION

In this paper, a novel pan-sharpening method based on CS

technique is presented. Based on the PAN and MS images

generation model, we referred the pan-sharpening problem

as an ill-posed inverse problem inherently. Then, the sparsity

regularization is employed to address the ill-posed inverse prob-

lem, and the high-resolution spectral image can be effectively

recovered. The proposed method is tested on QuickBird and

IKONOS images and compared with six well-known methods:

1) GIHS; 2) GS; 3) SVT; 4) CBD; 5) AWLP; and 6) GA-based

methods. The spectral and spatial information are comprehen-

sively evaluated using several image quality measures. The

experimental results demonstrate the effectiveness of sparsity

as a prior for satellite PAN and MS image fusion. In addition,

we notice that the proposed method can easily process image

fusion and restoration when the source images are corrupted by

noise by only adjusting the parameter ε in (11).

However, the proposed scheme takes more time than tradi-

tional methods. In the future, we can implement the proposed

fusion scheme paralleled on multicore processors, because the

time-consuming BP can be done independently on each patch.

And, we should note that, in much imaging situations, the

images may be contaminated by other types of noise, such as

the Poisson noise in low-light-level images. Thus, the setting of

parameter ε or even the optimal function (11) need to be further

studied. For simplicity, only the Gaussian noise is considered

in this paper. In addition, readers should note that the linear

relationship used in this paper is only an approximate model.

It is feasible for QuickBird and IKONOS satellites, but need

to be modified when applying to other space missions or other

modalities.
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