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In the past decade, the use of wearable medical devices has been a great breakthrough

in clinical practice, trials, and research. In the Parkinson’s disease field, clinical evaluation

is time limited, and healthcare professionals need to rely on retrospective data collected

through patients’ self-filled diaries and administered questionnaires. As this often leads

to inaccurate evaluations, a more objective system for symptom monitoring in a patient’s

daily life is claimed. In this regard, the use of wearable medical devices is crucial. This

study aims at presenting a review on STAT-ONTM, a wearable medical device Class

IIa, which provides objective information on the distribution and severity of PD motor

symptoms in home environments. The sensor analyzes inertial signals, with a set of

validated machine learning algorithms running in real time. The device was developed for

12 years, and this review aims at gathering all the results achieved within this time frame.

First, a compendium of the complete journey of STAT-ONTM since 2009 is presented,

encompassing different studies and developments in funded European and Spanish

national projects. Subsequently, the methodology of database construction and machine

learning algorithms design and development is described. Finally, clinical validation and

external studies of STAT-ONTM are presented.

Keywords: wearables, accelerometer, machine learning (ML), Parkinson’s disease, medical device

INTRODUCTION

Parkinson’s disease (PD) is a complex neurodegenerative disorder, presenting a wide range of
motor and non-motor symptoms. It is estimated that at least 10M people have been diagnosed
around the world (1), and some studies indicate that this number will keep rising drastically (2).
The disease is characterized by different cardinal symptoms (tremor at rest, rigidity, bradykinesia
(BKS), and postural instability), as well as non-motor symptoms (3). The detailed and accurate
evaluation of the disease is of interest in the management of daily medical practice. Dopamine
treatments have been shown to improve motor symptoms and quality of life (4). However, after
a certain time undergoing this therapy, some motor complications may appear, such as motor
fluctuations (MF), including end-of-dose deterioration (wearing-off) and dyskinesia (DKS) (5),
or freezing of gait (FoG). Apart from the motor symptoms, non-motor fluctuations are also
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present, which make disease management complex (6). It is well-
known that MF can appear early in the course of PD. Thus,
its early identification is crucial to keeping an optimal quality
of life (7, 8). The diagnosis of early fluctuations and dyskinesia
is delayed in many cases due to multiple circumstances, such
as the short neurology visits and the lack of optimal tools,
which can allow for precise symptom identification. This
circumstance is also present in advanced stages, where there is
also an infradiagnosis of advanced symptoms (9, 10). So far,
the identification and quantification of MF can be measured
through patient diaries (e.g., Hauser diaries) and/or by a set
of validated scales, such as the Unified Parkinson’s Disease
Rating Scale (UPDRS) (11, 12). Nevertheless, the subjectivity
and cognitive state of the patients play an important role in
the results. Furthermore, the interrater and intrarrater variability
of the UPDRS is significant, leading to confusing evaluation
results and highlighting this method’s subjectivity (13, 14). On
the other hand, Hauser diaries require a great effort and major
time consumption from the patients’ side. Furthermore, reduced
compliance, recall bias, and patient fatigue are also variables
to take into account when the Hauser diary is set as a clinical
endpoint (15).

Symptoms’ evaluation during consultancy results is
complicated. The average clinical visits occur around every 6–9
months with about 20min of time duration (16). Considering
this scenario, clinicians are faced with major difficulties in
detecting patients who need special care or concrete therapies.
In addition to this, medication intake usually happens before
going to the doctor’s visit, and therefore, real symptoms are not
shown in front of clinicians. Thus, the anamnesis performed
by the clinician tends to be quite subjective as the symptoms’
distribution information is mainly obtained from the patient’s
point of view. Furthermore, the white coat effect and the
Hawthorne effect (behavioral change due to awareness of
the patient by being evaluated) affect the symptoms’ severity
presented at the clinical visit, consequently affecting the whole
assessment of healthcare professionals, too (17). Thus, this
scenario results in incorrect therapy prescriptions, so decreasing
patients’ quality of life (QoL). Hence, objective home and daily
symptoms monitoring is the key to better understanding the
patient’s symptoms severity in real life and therefore, prescribing
the correct therapy.

Recently, the introduction of targeted tools such as wearable
sensors in clinical practice has provided a new approach to
collecting motor symptoms in real environments during long-
term monitoring in a more precise and objective manner.
This new paradigm enables the neurologist to observe clinical
symptoms without depending on subjective methods, which
come with self-perception bias, or third parties’ evaluation,
resulting in a non-adequate knowledge or training (18).
Furthermore, due to the new social scenario of COVID-19,
patients have difficulties and barriers to accessing healthcare
facilities and maintaining the usual relationship with their
medical service. These technologies allow the patients to
overcome these obstacles by being remotely monitored and
continuing their relationship with the clinician. Thus, wearable
medical devices can become of great support for neurologists

to manage movement disorders, especially motor symptoms
associated with PD, and consequently improve the QoL and drug
treatment of patients (19, 20).

In literature, there have been many approaches to evaluate PD
motor symptoms with wearable systems. First, it is important to
define the ON and OFF states as the levodopa-related response
(5). The ON state is associated with a good levodopa response,
while the OFF state is when symptoms re-emerge. One of
the most important symptoms that represent an OFF state in
PD is bradykinesia. According to Jankovic et al., this is the
most characteristic clinical feature of PD (3). Bradykinesia is
characterized by slowness in movements, and, in consequence,
affects general movement, such as gait. Gait is possibly the best
characteristic where a bradykinetic patient can be differentiated
from a medicated-ON patient. In a patient affected with
bradykinesia, gait is altered by reducing the cadence and the
step length, a part of having problems of instability. Bradykinetic
gait is affected by levodopa (21, 22), and some studies have
focused on bradykinetic gait as a crucial symptom to analyze
the behavior of motor fluctuations along the day (23, 24).
Due to the motor complications of the disease, the patient
takes the medication before the doctor’s visit for reaching the
healthcare center without mobility problems. However, when
the patients take their medication, it hides the main symptoms
of bradykinesia, making it difficult to determine the actual
condition of the patient.

Another major symptom to be assessed in PD is FoG. This
symptom is considered the fifth cardinal symptom of Parkinson’s
disease (25) and is defined as a “brief, episodic absence or
marked reduction of forwarding progression of the feet despite
the intention to walk” (26–28). There is an evident correlation
between falls and FoG, which leads to a need to accurately
treat the symptom (26). FoG is a key symptom for determining
a correct therapy prescription, and as some patients do not
respond well to levodopa, they need to have a comprehensive
evaluation. Given the difficulty to elicit a FoG episode in clinical
environments, Nonnekes et al. propose an algorithm for the
treatment of FoG and finally, suggest as a solution the use of
wearable systems (29).

FoG is very difficult to understand, although several
conclusions have been drawn by the scientific community. There
are specific conditions where FoG is elicited. This symptom is
usually shown in patients with an OFF state, although, in some
cases, it can also appear in the ON state (30). The fact that FoG is
context-dependent is the reason why it is very difficult to assess
it in clinical practice. Thus, in order to measure and quantify
this symptom, the freezing of gait questionnaire (FoGQ) (31)
and the new freezing of gait questionnaire (NFOG-Q) (32) were
designed. Nevertheless, there are some discrepancies in rating
FoG with different scales (33), and the NFOG-Q seems to be
unsuitable as an outcome in clinical trials according to some
experts (34). In this last work, the authors also claim that the
use of objective tools such as wearable is essential thanks to
their usefulness.

In another study, the issue with FoG assessment in current
clinical practice is pointed out. Mancini et al. provide three
main arguments in this regard (35). Firstly, FoG disappears
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while patients walk focusing on goals provided by the clinician.
Gait improves when patients consciously focus on walking
rather than performing automatic gait. FoG occurs in home
environments and real living conditions, not in clinical practice,
where the patient is assessed while being observed by a healthcare
professional. Secondly, clinical environments are often free of
obstacles, not being a space where it is easy to provoke a FoG
episode. Thirdly, patients tend to go to the clinical evaluation
subsequent to medication intake or in the ON state. The latter
affects the physician’s evaluation as patients with PD tend to
suffer FoG in the OFF state, or, at least, more severe episodes.
Mancini et al. claim that wearable systems will be crucial for
accurate FoG monitoring.

Regarding PD tremors, it needs to be considered that they
differ in types and that not all of them have a dopaminergic
response (36). This means that, in many patients, tremor is not
correlated with motor fluctuations and can often appear in the
ON state. Although there is evidence that some types of tremors
are responsive to dopaminergic therapies (37), the same work
also remarks that it is not effective for other types of tremors.
Thus, tremor monitoring motor state detection (ON or OFF) is
often unclear or confusing. Nonetheless, as tremor is manifested
in the upper limbs, certainly, wrist-worn devices are a good
solution for this symptom evaluation.

On the other hand, levodopa-induced dyskinesias are motor
complications caused by the continuous intake of levodopa.
These motor complications affect the mobility of the patient,
causing involuntary movements in the upper limbs, lower limbs,
neck, and trunk. Dyskinesias are related to a decreased QoL
(38), as it is a motor complication that should be diminished
by adjusting the medication correctly. However, some dyskinesia
motor complications are episodic due to the so-called peak-dose
dyskinesia, provoked by the L-dopa intake, being difficult to be
accurately observed in the doctor’s office. In order to evaluate
dyskinesia, some questionnaires are administered. However,
some articles show that the Unified Dyskinesia Rating Scale is
more reliable than other questionnaires (39, 40). Nonetheless,
questionnaire administration takes time during consultancy, and,
although interrater and intrarrater correlations are moderate
according to (40), the questionnaire is administered every so
often/occasionally. Among these, the most used questionnaire,
the UPDRS, is very dependent on the patient’s opinion
and does not provide real accurate information about daily
symptoms’ severity and distribution. This information is key for
therapeutic tailoring.

This study aims at presenting a technology solution, which
meets the clinical needs of filling the aforementioned lack
of objectivity in patients’ data in order to quantify the PD
motor symptoms during regular ambulatory activity and non-
controlled conditions.We present STAT-ONTM: a medical device
Class IIa based on a single wearable system and able to monitor,
measure, hold in internal memory, and finally, generate a report
on the temporal evolution of motor symptoms in daily living
conditions. First, the state of the art on wearable systems for
monitoring PD motor symptoms is presented. Subsequently,
related scientific background and assessment of STAT-ONTM

in clinical trials, pilots, and algorithm validation processes

are explained. Then, the STAT-ONTM system is described,
encompassing hardware and software descriptions. Finally, a set
of performed clinical validations performed so far is presented.

STATE OF THE ART

There are multiple initiatives and research works on
the identification of motor symptoms (13, 14, 41–46),
where accelerometers are the most widely used sensors,
although gyroscopes (47), skin conductivity systems (48),
electromyography (49), pressure insoles (50), and pressure
platforms are also used, such as GaitRite (51, 52). Unfortunately,
many of these investigations or solutions do not reach the
market, mainly due to three barriers: firstly, the poor usability
due to a lack of portability of some of these systems, thus making
it difficult to incorporate into the daily life of the patient as
they are not wearable; secondly, the necessary industrialization
process; and, thirdly, the required certification process as a
medical device. These last two factors are long, complex, and
expensive processes. As mentioned, the most extended solutions
are based on inertial systems (47, 53–56), but at present, there is
no complete and definitive solution yet. It is necessary to advance
in the investigation and development of methods focused on the
following points:

• The medical device must provide reliable information
from algorithms that have been designed with
rigorous methodologies;

• Key and clear information for the healthcare professionals
must be presented;

• The design must be focused on the usability of the system in
order to maximize the patient’s adherence.

The reliability of a monitoring system mainly depends on the
following aspects: the number of sensors used, their position
on the body, and the robustness in the design of the employed
processing algorithm. Brognara et al. (57) state that a trade-
off between the number of sensors and the usability of a
system should be required. Li et al. (58) also report that a
high number of sensors complicate the setting up of a study.
Several sensors cause difficulties in synchronizing data, following
a timestamp. Furthermore, the number of input features in a
machine learning algorithm is increased, consequently increasing
the computational burden. However, sensors placed on different
parts of the body capture a clearer signal from specific
movements and contribute to a better characterization of a
symptom (59).

Many of the existing systems formonitoring PD-relatedmotor
symptoms rely on a supervised machine learning approach.
Algorithms are developed through a learning process based on
a specific and representative database. In this way, the dataset
employed to build an algorithm is of crucial importance. The
dataset must be representative of the problem looking to be
solved, and, for this reason, it must be labeled by clinical experts
and well synchronized with raw data of the sensors (60). The
number and variety of patients with PD that participate in the
dataset construction are also the key for the learning of the
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machine learning method. A good generalization means having a
representative dataset, without exceeding the number of patients
included, which will introduce noise or repetitive information,
but including as many different patients as possible for the
generalization of the algorithm against a new input (61).

Apart from increasing the sensitivity or capacity to correctly
detect a symptom, having a large heterogeneous database also
minimizes the number of false positives and, thus, improves the
specificity of a classifier. This is the main reason why a dataset
also needs data that do not contain the symptom to be detected.
The algorithm will learn what is not the symptom with the
aim of maximizing its specificity. Therefore, the experimental
protocol must be formed by activities that elicit a symptom
so that the raw data (the signal) contain parts with the target
symptoms to be analyzed and, also, parts where other activities
are included. To do so, the appropriate method is to construct
the dataset in home environments, where unforeseen conditions
are continuously present (62). Once the dataset is constructed,
specific and key features will be extracted and selected from the
data and a random part of the data will be used for training the
classifier; the other part of the dataset will be used for validating
the model. Then, a supervised machine learning technique will
be applied (neural networks, support vector machines, etc.),
and an automatic classifier model will be obtained that will be
cross-validated against the evaluation dataset.

On the other hand, providing key information for the
professionals is essential for acquiring an accurate state of motor
complications. A medical device should provide information
that healthcare professionals do not have in consultancy, that is,
the severity and time distribution of motor symptoms in home
environments. The report obtained has to be easy and quick
to read, embedding self-explanatory graphics. One of the main
targets is to increase the usability of the system for healthcare
professionals to facilitate a dynamic patient’s visit with quality
information on key symptoms. In (46), some graphical examples
of different commercialized devices are shown. On the other
hand, usability for patients is also essential. Usability will define
the patient’s adherence to the use of the technology. Wrist-
worn devices have been shown to be devices prone to very
high usability (63). They are comfortable, and the patient does
not feel stigmatized. However, in order to analyze bradykinetic
gait, freezing of gait, or dyskinesia (which is manifested in
upper and lower limbs, trunk, or neck), an inertial wrist-worn
device is not able to capture accurately these symptoms, and
other devices would be better, such as the waist or chest-worn
devices from where body movements are better characterized
due to being close to the center of mass of the human body.
The main issue with wrist-worn devices is the high degrees of
freedom of movements made by the arm, in addition to their
high randomness of execution, provoking an elevated rate of
false positives, causing a decrease in the specificity (64). Several
studies point to serious errors in this type of system for the
characterization of steps or momentum (65, 66).

Taking a look into the global market, there are, at least,
four commercialized tools with a Medical Certification (CE
Certificate with the Directive 93/42/EEC or with Regulation
2017/745, FDA, or other regional certificates, such as CFDA, TFA,

etc.) able to monitor Parkinson’s disease symptoms: Personalized
KinetigraphTM (67), Kinesia 360TM (68), PD MonitorTM (69),
and STAT-ONTM (70). There are other solutions, such as
MM4PD (55) or NEPTUNE (71); both are wrist-worn devices in
different stages of technology readiness but, still, without medical
certification. Furthermore, so far, no clear evidence or article has
been published on the algorithm methods used in these last two
devices. In the review performed in (72), different algorithms
are also proposed as techniques to be embedded in hardware
solutions in order to detect motor fluctuations. Other solutions
focus more on gait, which can be also interesting (73–78), but
they do not provide continuous monitoring at home with a
complete mapping of the different symptoms of PD.

Table 1 presents a comparison between the aforementioned
identified solutions, including the list of the different symptoms
monitored by each solution.

An important point is the analysis of the algorithms
developed by each manufacturer and the validation
performed. While PD MONITORTM and STAT-ONTM

are based on advanced machine learning techniques,
Kinesia360TM bases its algorithms on multiple regression
methods and PKGTM on a statistical analysis of
two variables.

PKGTM’s algorithm was published in 2012 by Griffiths et al.
(79). The authors presented a method based on the analysis
of the accelerometer signals obtained from the wrist during
2-min windows. From this window, they analyzed frequency
features between 0.2Hz and 4Hz, the maximum acceleration
achieved, and the time without movement, from which the
two indexes are generated. One is associated with bradykinesia
(BKS), and the other with dyskinesia (DKS), which are then
represented in a chart with interquartile ranges to then determine
the severity of a symptom or the other. There is no evidence
of a training-evaluation data method, thus not being considered
a machine learning algorithm. The validation was performed
through the median of all the BKS samples in 9 h along
10 days and was correlated with the UPDRS, obtaining a
significant r = 0.64, p < 0.0005. A third score called FDS
was designed to measure motor fluctuations (80). This score,
which is expressed as an algebraic combination of BKS and
DKS, determines whether a patient is fluctuating. However, the
method cannot determine the “ON” state without dyskinesia
(81). Although there are no data that confirm the performance
of an algorithm with blind data, the device has been widely
tested under clinical conditions and compared to UPDRS (82)
or diaries (80, 81). For instance, the work from Santiago et
al. (83), determines that PKGTM provides more information
to classical routine visits after analyzing 3 user cases. In a
work performed by Nahab et al., the authors also denote
utility in clinical practice (84). Finally, the system has shown
good results in usability (85). According to Monje et al. (13),
the PKGTM has been extensively validated but needs more
independent validation.

Kinesia 360TM is another device to monitor Parkinson’s
disease. The algorithm is more complex than the PKGTM

one and uses a gyroscope to add information value.
The system is composed of two sensors, a wrist-worn
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device, and an ankle-worn system, which, on the one
hand, obtains information about gait. The latter is
crucial to understanding the state of a patient with
PD; nonetheless, the dual system reduces usability for
the patient.

Kinesia 360TM offers outcomes from tremor, dyskinesia,
slowness, mobility, posture, and steps (68). The quantification
of bradykinesia, which was performed in an ankle-mounted
device (86, 87), relies on the analysis of some specific features
coming both from the accelerometer and gyroscope and
is computed through linear regression models, which are
correlated with the UPDRS scores. The dyskinesia algorithm
is also based on a linear regression model, and the sensors
are worn on the most affected side of the body. The
correlation obtained is significant (R = 0.77) and is performed
with the modified Abnormal Involuntary Movement Scale
(mAIMS). The models are evaluated through a Leave-One-
Subject-Out method. The system has been widely evaluated
with different therapies, such as levodopa (53), rotigotine
patch (88), deep brain stimulation (89), or subthalamic
stimulation (90).

Finally, PDMonitorTM is a five-device system in which the
main aim is to characterize all the motor symptoms of a
patient with PD coming from any part of the body. In this
way, it is not necessary to select the most affected side of
the body, and it is possible to get movements from the upper
limbs, lower limbs, and trunk. The system was designed in the
PERFORM project (46), and its algorithms are based on the
training of an expert database and using advanced machine
learning algorithms. The complete system is presented in (47),
and the algorithms are briefly described, such as tremor (91),
dyskinesia (92), bradykinesia (93), and FoG (94). All the
algorithms employ different classification methods. For instance,
tremor is based on hidden Markov models, obtaining an 87%
of accuracy; dyskinesia algorithm is based on a decision tree,
reaching 85.4% on classification accuracy. The bradykinesia
algorithm uses support vector machines, with a 74.5% on
classification accuracy, and the FoG algorithm relies on a
random forest classifier, getting a significant accuracy of 79%.
Although the PERFORM project is well documented, and
the algorithms are transparent, as far as the authors know,
there is no evidence that the system has been validated in
clinical practice.

In summary, it can be understood that it is not possible to
directly compare the four devices, given the different locations
in the body, the number of sensors, or the algorithmic used
methodology (learning-based or statistical-based). The only work
found so far with a direct comparison between devices is a work
fromGrahn, which compares the agreement between PKGTM and
STAT-ONTM with 2 physicians (95). The agreement between the
clinical opinion and STAT-ONTM was found to be significantly
higher than PKG’sTM; on the other hand, both devices
show to be usable by patients. Although STAT-ONTM shows
superiority in this work, further studies are needed with more
consistent data.

The following section presents a compilation of the
methodology used in the case of the STAT-ONTM solution.
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BACKGROUND ON
STAT-ONTM-EMBEDDED ALGORITHMS

The STAT-ONTM device is the result of a long research
process and development based on different and complementary
achievements gathered in several research projects managed and
participated by the authors. The base of the algorithms to detect
and monitor the relevant PD motor fluctuations relies on gait
parameters analysis, complemented with another set of specific
algorithms dedicated to the identification of concrete symptoms
and characteristics: bradykinesia, dyskinesia, FoG, detection of
falls, or the signal magnitude area (SMA), for the assessment of
the quantity of movement.

A starting point for this activity was the publication in 2009
of the hypothesis about the possibility of adjusting the necessary
dose of apomorphine pumps by detecting motor fluctuations
with wearable sensors (96). Continuing with the study of motor
symptoms in PD, new lines of research, focused on ambulatory
monitoring of specific motor symptoms, were mainly performed
in the projects Monitoring the Mobility of Parkinson’s Patients
for Therapeutic Purposes (MoMoPa Project) (97), Home-Based
Empowered Living for Parkinson’s Disease (HELP project) (98,
99), Personal Health Device for the Remote and Autonomous
Management of Parkinson’s Disease (REMPARK project) (24,
100, 101), the MoMoPa-2 project (102), and the MASPARK
project (103). Within these projects, the resultant algorithmic
set was validated by introducing new patients. Finally, once
a consistent clinical validation was achieved, Unobtrusive,
Continuous, and Quantitative Assessment of Parkinson’s disease:
Hard Evidence for Optimal DiseaseManagement with Information
Technologies (PARK-IT2) project (104) was performed in order to
redesign the existing prototype, embed the developed algorithms,
industrialize and certify it as Medical Device Class IIa. The final
device was considered clinically usable by a group of neurologists
(54), and it is being validated in different pilots and clinical trials
(105, 106).

At the starting point of the described research, a preliminary
decision was considered on the number of sensors to be used
and their location in the body for optimal detection of the PD
motor symptoms, along with an optimal usability characteristic.
After analyzing different parts of the body, the waist was selected,
given that it is very close to the mass center of the body and
many movements are reflected there in some way. This situation
provided very clear inertial signals from the gait, upper and lower
limbs movements, and trunk or neck dyskinesia. Concerning the
number of used sensors, the decision was very clear, and the
objective was to use a unique sensor located in the waist, as has
been mentioned.

Following this decision, a coherent and strict methodology
was developed, including a very complete analysis of the gait.
Initial gait parameter algorithms were achieved by selecting
specific features using accelerometer signals from the waist
by combining them with different kernel methods (107).
This algorithm was improved in posterior research projects,
such as MoMoPa-2 (102), or MASPARK (103) by improving
the methodology for gait characterization, focusing on the
bradykinetic gait (108, 109). The estimation of bradykinesia

severity relies on a specific methodology mainly based on
the detection and characterization of gait. Several filters were
implemented, and the first one is formed by a Support Vector
Machine classifier (SVM), which detects if the patient is walking
or not by analyzing specific features, which have been selected
by means of the Relief algorithm. The detection of walking is
followed by the detection of strides in terms of walking bouts.
This stride is then characterized with different features in order to
linearly separate “bradykinesia” from “no bradykinesia” through a
threshold β , whose value is set by means of an ǫ-Support Vector
Regression (ǫ- SVR) model with RBF kernel (110, 111). The ǫ-
SVR model depends on a set of parameters extracted from stride
fluidity (m): the mean, standard deviation, minimum, maximum,
and median. Other inputs of the ǫ- SVR model are the Hoehn
and Yahr stage and the age of the patient, which are factors that
show the advance of the disease and limit the movement fluidity
of the patient. All these seven variables will be inputs of the ǫ-
SVR model whose output is the threshold β . The ǫ- SVR model
is then trained and evaluated following a Leave-One-Subject-
Out methodology. Results obtained show an average sensitivity
of 0.925 and 0.891 of specificity, with an accuracy of 0.918 on
bradykinetic gait detection (109).

As it is described in (112), a self-adapting bradykinesia
detection algorithm is incorporated. The threshold β enables
the recognition of bradykinesia in terms of ON and OFF. For
instance, a young patient without motor complications provides
a high β threshold; however, a patient with advanced-staged
PD with motor complications would provide low β values.
Therefore, ON and OFF states are patient-dependent, and first,
the algorithm needs to understand and learn the stage of the
patient. To do so, and considering the input variables for the
ǫ- SVR algorithm, a concrete patient self-adapted algorithmic
part was developed, requiring minimum information from the
person’s movement in order to establish the correct parameters.
It has been stated that 3 days of monitoring are enough to get
enough stride fluidity values and to learn how the patient walks,
fluctuates, and behaves within his or her motor fluctuations.
From the 3rd day on, the healthcare professional could obtain the
data and see the ON and OFF state in the downloaded data. If the
data are downloaded on the 5th day, it means that the β value
has been computed with these 5-day data. The main obtained
advantage of the inclusion of this part is the minimization of
the external parameters to be manually introduced and a new
evaluation of the necessary threshold β for every new use of
the device. This allows the reuse of the sensor among different
patients and allows easier disease evolution monitoring.

The main goal of the algorithmic set, as established in the
REMPARK project, is the identification and registration of the
ON and OFF states of affected people. The final decision to
determine an ON or OFF state is conditioned to the sustainability
of this β threshold along time. Another crucial factor for
the decision of the ON and OFF algorithm is the detection
of levodopa-induced dyskinesia symptoms, which considerably
increases the probability of establishing an ON state.

Dyskinesia algorithm was first designed in (113), where
frequency power was extracted in the considered frequency band
of dyskinesia (1–4Hz), defined by Manson et al. (114), and, also,
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analyzing the frequency band up to 20Hz in order to remove
false positives if the patient was walking. The algorithm was
simple, but thresholds were optimized by maximizing positive
predictive value and negative predictive value. The algorithm
was improved significantly by using machine learning in the
optimization of thresholds and other features, such as the
inclusion of the postural transitions’ frequency band (115). The
final model was not patient dependent, being general and valid
for any patient with PD. The database used to train and validate
the algorithms was composed of 102 patients. The presented
algorithm showed a performance of 0.39 on sensitivity and 0.95
on specificity on mild dyskinesia, but a 0.93 on sensitivity in any
strong dyskinesia and trunk mild dyskinesia, keeping the 0.95 on
specificity. This specific work was performed in the frame of the
REMPARK project (24). In the same framework, the algorithm
was validated clinically against the Unified Dyskinesia Rating
Scale (UDysRS) (40), considering the severity of the dyskinesia.
The algorithm correlated 0.7 with all the UDysRS questionnaires,
but the correlation increased up to 0.91 when only sub-items
from theUDysRSwere considered for dyskinesia in the trunk and
legs (116).

The developed ON/OFF algorithm is a hierarchical structure
of classifiers that get together the outcomes of specific algorithms,
such as the bradykinesia and dyskinesia, and observe the behavior
at regular slots of time (1, 10, and 30min). The output data rate
of the ON/OFF algorithm provided by STAT-ONTM is precisely
30min. The complete explanation of this algorithm is given in
(112). However, a third state was introduced and was called
“Intermediate.” This state stands for that motor state where the
patient is not walking in his or her better condition, but the stride
fluidity is better than his or her OFF state.

In REMPARK’s project, this proposed ON/OFF algorithm
achieved a 0.92 both on specificity and sensitivity (112). This
study contains the presentation of the methodology to detect the
motor fluctuations, and the results were compared to a specific
Hauser diary. The patient had to fill in the Hauser diary, but a
researcher performed a supervision call to the patient every 2 h
to confirm the motor state in order to maximize the confidence
of a correct diary annotation. This algorithm was then validated
against the opinion of direct observers, UPDRS (117), andHauser
diaries (118). In a work by Rodriguez-Molinero et al. (119), 20
patients participated in a database from which the algorithm
model was trained, following the methodology explained in the
aforementioned work by Pérez-López et al. (112). The algorithm
model was then validated by employing 15 new patients, and the
results of the algorithm were compared against the opinion of
trained observers who stayed with the patients the whole time
during the validation test. The results obtained were 0.96 on
sensitivity and 0.94 on specificity, showing significant robustness.

In another published work from Rodriguez-Molinero et al.
(20), the ON/OFF algorithm was validated against UPDRS
subscales (UPDRS-III), with the participation of new 75 patients
with PD. The correlation with all UPDRS-III was moderate,
achieving a rho = −0.56 (p < 0.0001); however, the correlation
with the gait item increased to 0.73 p < 0.001, and a correlation
with Factor I item on UPDRS (axial function, balance, and gait)
was−0.67 (p < 0.01), considered as a significant correlation. The

algorithm was also validated against Hauser diaries to compare
the method with other gold standards.

In a work performed by Bayes et al. (19), a total of 41
patients with PD participated in a 3-day test, where the patients
were asked to fill in the Hauser diary. In this experiment,
and with the aim of having rigorous control, the researchers
called the patients in order to verify their motor state. Only
when the result of the diary and the call were equal, then
it was considered “comparable” to the sensor. This condition
elevated the rigorousness of the Hauser diary, given the reduced
compliance and recall bias that this method uses to present (15).
A total of 0.97 on sensitivity and .88 on specificity were achieved
following this method.

Finally, the ON/OFF algorithm was also validated against the
Hauser diary in (120), where a total of 23 patients participated.
One of the most important conclusions was to realize that a total
of 37% records more were achieved by the sensor in the pilot,
showing the reduced compliance obtained with the diaries. Also,
it must be noted that, in these experiments, clinicians tried to
minimize the rejection rate by filling the diaries by administering
MoCA or MMSE questionnaires. This fact is the key because the
patient does not need any interaction with the sensor. In this
study, the accuracy (0.92) was provided along with positive (0.92)
and negative (0.94) predictive values.

Complementing the ON/OFF, bradykinesia, and dyskinesia
algorithms, the FoG algorithm was also embedded within STAT-
ONTM. The algorithm is based on a machine learning approach
based on SVM (62). The database was performed in home
environments with 21 patients performing semi-guided activities
in ON and OFF states. The fact that data were collected at each
patient’s home provoked different situations and FoG episodes
in their real daily living activities, not in clinical settings. All the
FoG episodes (except the akinetic ones) were video-recorded and
labeled by experts. The inertial signal associated with this label
and the generated database was used for training the algorithm
with supervised machine learning methods, including SVM. The
generated algorithm was evaluated through a strict method,
which balanced the true negative episodes, which could be given
in long-term activities where FoG episodes were not possible
to appear, such as sleeping, sitting, or standing still. This detail
is the key and showed a more reliable specificity compared to
other evaluation methods. Specificity depends on true negatives
and false positives. If a true negative was considered as the
evaluation of the algorithm every second, then in 30min, we
would have 1,800 true negatives, falsely increasing the specificity
of the algorithm, although there were 10 false positives in those
30min. Thus, we only counted a single true negative episode
every 30 s, giving a more realistic specificity in this concrete
time frame. The classifier designed analyses, filters, and processes
3.2 s-windowed signals overlapped at 50% with the aim of not
losing information that occurred between windows (Figure 1).
Then, specific features are extracted from each window, and a
set of characteristics is organized by assigning a label yw for each
w window.

The ywlabel was set to “1” if that window contained a FoG
episode regardless of its length. For instance, if the FoG episode
was 1-s long, then that window was considered to have a FoG
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FIGURE 1 | Windowing of a signal at 50% overlapping and feature extraction.

episode and was labeled as “1.” If the window did not contain any
FoG episode, then it was labeled with a “-1” value (62).

Each window contains a total of 55 features, which were
employed as an input of an SVM classifier in which the used
kernel was a Gaussian radial basis function (RBF) due to
its good performance and generalization capacity. Following
this method, it was achieved a general classifier model with
0.75 on sensitivity and 0.79 on specificity for the detection
of FoG episodes. However, the method was then improved
by applying a feature selection and deleting noise (121). In
this work, several classifiers, such as logistic regression, neural
networks, or SVM with different hyperparameters, were tested,
and it was shown that SVM with RBF kernel worked better
with optimal resources. Finally, the new and optimized method
achieved a 0.92 on sensitivity and 0.87 on specificity and was
compared in the same conditions with other published methods,
showing a significant improvement. The embedded algorithm
was evaluated by clinicians with 12 patients in (122), where a 0.82
on sensitivity and a 0.97 on specificity were achieved. The model
was not self-adaptive, being general for all the patients.

Additional gait parameters, such as stride fluidity, step
length, cadence, and stride speed, are obtained based on

the algorithm presented by Sayeed et al. (108), where 28
patients with PD participated, and an accuracy of 0.96 was
obtained in the detection of gait. One of the most important
patient characteristics is energy expenditure or the quantity of
movement. The STAT-ONTM provides the quantity of movement
through the Signal Magnitude Area (SMA parameter), which was
first tested in the sensor in (123), employing the accelerometer
signals in the 3 axes to analyze the variability of the signal in a
concrete period.

On the other hand, the STAT-ONTM also incorporates an
algorithm to detect falls; the algorithm, which was tested in the
FATE project for a whole year with 200 patients, was embedded
within the device (124, 125). The fall algorithm achieved 0.95 on
sensitivity and 0.99 on specificity. Finally, a postural classifier and
posture transition algorithm is incorporated in order to achieve
specific information about the patient’s activity (123, 126).

The conditions and results obtained in each algorithm
embedded within STAT-ONTM are presented below in Table 2.
In Year/Project column, the project is presented from which
the data were trained and validated. M1 stands for MoMoPa-1
(97), M2 stands for MoMoPa-2(102), M3 stands for MoMoPa-
3 (127), RE stands for the REMPARK project (101), MA
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TABLE 2 | A summary of the main results obtained in the included algorithms.

References Year/project Evaluation reference Number of patients Evaluation result Result

ON/OFF algorithm Pérez-López et al. (112) 2016/M2 Hauser diaries with patient calls every 2 h 15 Sensitivity/specificity 0.92/0.92

Rodriguez-Molinero et al.

(119)

2015/M1 Hauser diaries with patient calls every 2 h 35 Sensitivity/specificity 0.94/0.96

Bayes et al. (19) 2018/RE Hauser diaries with patient calls every 2 h 41 Sensitivity/specificity 0.97/0.88

Bradykinesia estimation Samà et al. (109) 2017/M1,M2 Video recording 12 Sensitivity/specificity 0.925/0.891

UPDRS subscales Pearson correlation UPDRS (item 22) : −0.912;

p < 0.001

Pearson correlation UPDRS (item 24): −0.808

p < 0.001

Pearson correlation UPDRS (Factor I): −0.834;

p < 0.001

Rodriguez-Molinero et al.

(20)

2017/RE,M2 UPDRS subscales 75 Spearman correlation UPDRS (part III): −0.56;

p < 0.001

UPDRS (Item 22): −0.73;

p < 0.001

UPDRS (Factor I): −0.67;

p < 0.01

Levodopa induced dyskinesia Pérez-López et al. (115) 2016/RE Video recordings 102 Sensitivity/specificity No-trunk, mild dyskinesia:

0.39 / 0.95

Trunk, mild dyskinesia: 0.78

/ 0.95

No-trunk, strong dyskinesia:

0.90/0.95

Trunk, strong dyskinesia: 1 /

0.95

Rodriguez-Molinero et al.

(116)

2019/RE,M3 UDysRS 13 Spearman correlation UDysRS score: 0.70;

p = 0.01

UDysRS sub-item (trunk

and leg): 0.91; p≤0.001

Freezing of Gait Rodríguez-Martin et al. (62) 2017/RE,MA Video recordings 21 Sensitivity/specificity 0.75/0.79

Samà et al. (121) 2017/MA Video recordings 15 Sensitivity/specificity 0.92/0.87

Rodríguez-Martin et al. (122) 2017/MA Video recordings 12 Sensitivity/specificity 0.82/0.97

Gait Sayeed et al. (108) 2015/RE Video recordings 28 Accuracy 0.96

Falls Cabestany et al. (124, 125) 2013/SP Patients’ case report forms 205 Sensitivity/specificity 0.95/0.99

Postural transitions Rodríguez-Martin et al. (123) 2013/M1,SP Video recordings 39 Sensitivity/specificity 0.86/0.98

Rodríguez-Martin et al. (126) 2015/RE,SP Video recordings 87 Sensitivity/specificity 0.90/0.91
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stands for MASPARK (103), and SP stands for specific
expert databases.

STAT-ONTM, THE HOLTER FOR
PARKINSON’S DISEASE MOTOR
SYMPTOMS

The STAT-ONTM Hardware
STAT-ONTM is an inertial wearable medical device Class IIa.
Concretely, the STAT-ONTM system consists of a monitoring
device as shown in Figure 2, a base charger, a belt, and
a mobile application. The system provides numerical and
graphical information of the motor symptoms’ presence and
distribution associated with Parkinson’s disease based on a real-
time processing embedded version of the algorithms referred to
in Section Background on STAT-ONTM-Embedded Algorithms.
Furthermore, data related to the general motor activity of
the patient are also computed according to the concepts
introduced in the precedent Section Background on STAT-
ONTM-Embedded Algorithms.

The sensor measures 90 mm3 x 62.5 mm3 x 21.2 mm3 and
weighs 86 grams. Internally, the system is composed of two ultra-
low triaxial nano-accelerometers, two microcontrollers, and a
Bluetooth Low Energy system, among other parts. The sensor
has a battery life of 7 days for a continuous operation in normal
conditions (8 h per day). The system is waterproof with IP65
protection. The enclosure is formed by two pieces that fit each
other by a specifically designed sealing strip, which is included for
waterproofing purposes. Thematerial selected for the enclosure is
POLYLAC R© FR-ABS, an acrylonitrile butadiene styrene (ABS)
material. Some of the main features are flame rated, RoHS
compliant, and heat and weather resistant.

As shown in Figure 3, the sensor is formed of two
microcontrollers: the main one is an nRF51822 that manages all
the internal processes of the system and that has incorporated
internally a Bluetooth (BLE) system (128). The second
microcontroller is the STM32F415 microcontroller, which
has a CortexTM M4 core (with a floating-point unit) running at
168 MHz for operating complex mathematical models, such as
the SVM classifiers, or the signal filtering and featuring required
by the described algorithms (129).

The main microcontroller manages the user interface (LEDs,
event button, buzzer, and vibrator), and stores the outcomes of
the algorithms in the internal flashmemory. Thismicrocontroller
also manages the states of the medical device, such as the sleeping
state in case of a lack of movement, or active state in case the
patient is performing some movement. The necessary flags for
the definition of these conditions are provided by the secondary
accelerometer, which detects the absence of movement or wakes
up the system in case of movement detection (128).

The communication part of the system is based on Bluetooth
Low Energy (BLE) and is used only when the clinicians configure
the system or when the healthcare professional requires the
downloading of the datamonitored and internally stored after the
processing phase. Themicrocontroller STM32F415 is responsible
for computing all the inertial signals provided by the main

accelerometer, an LIS3DH that provides a 50-Hz signal to the
microcontroller. In parallel, the system provides the possibility
to store the raw complete data from the accelerometer inside a
microSD card.

The system includes a vibrator and a buzzer to send alarms to
the patient or caregiver, such as medication reminders, which can
be configured with the STAT-ONTM app. The user can also find
the event button, whose target is to indicate a concrete event. This
event will be registered internally and will be shown in the graphs
generated by the STAT-ONTM app. There are two LEDs: the first
one indicates the state of the battery (charging or not), and the
second provides different color codes to inform the user of the
state of the system, such as “connected,” “capturing data,” “low
battery alarm,” “error alarm,” “synchronizing,” and “configuring.”

The management of power consumption is very important.
For this reason, the power system is divided into three
separated electrical zones: analogic, digital, and power system
zones. Different regulators manage each zone, being isolated
by specifically designed grounds and ferrite beads, as shown in
Figure 4.

The power system includes a fuel gauge (BQ27441) for
controlling the voltage level and managing the battery. Also, it
includes the BQ51050B, a Qi-compliant wireless power receiver
with an integrated Li-Ion/Li-Po battery charge controller. The
power system is connected to a specific coil that sets the
communication with any commercial wireless Qi-compliant
chargers in order to charge the device wirelessly.

The system has been certified as Medical Device Class IIa
and has successfully passed the electromedical equipment tests
under IEC60601-1, including the EN ISO 60601-1-11 for home
environments use. The device is manufactured under ISO 13485
for medical devices. The software explained in the next section
has been certified under EN 62304 for medical software.

STAT-ONTM Software
In the frame of the project PARK-IT2 (104), where the redesign
and industrialization phases of STAT-ONTM were done, the
algorithmic set described in Section Background on STAT-
ONTM-Embedded Algorithms was completely embedded in the
aforementioned hardware, and a new software layer for the
management, interfacing, and correct usability of the sensor
was created. A specific app is required to be installed on a
smartphone/tablet, which is the current operative interface with
the user (a healthcare professional).

The regular use of the STAT-ONTM consists of wearing the
device in home environments with the aim of capturing activities
of daily living of the patient and the fluctuations of the disease,
as well as the severity and frequency of PD’s motor symptoms.
Firstly, the healthcare professional, with a specific smartphone
app, will configure the device with just three parameters crucial
for the algorithms of walking and bradykinesia estimation: age,
H&Y stage, and leg length. Then, the device is provided for
the patient, who should wear it during wakening hours and in
normal conditions (the sensor must not be used while taking
a shower, traveling, or doing sports except hiking) for 5–7
days approximately. After the monitoring period, the healthcare
professional will download, using the same smartphone/tablet
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FIGURE 2 | STAT-ONTM and its location and orientation.

FIGURE 3 | STAT-ONTM′
s internal structure.

app, all the outcomes computed and stored by the sensor.
These outcomes are organized as a complete report of the
activity and the symptoms’ presence and their evolution. The
healthcare professional can also decide to download a more
complete report generated by the device, where details are more
explicit, together with comprehensive gait information during
the monitored period.

Data are presented with different graphs with a fixed temporal
resolution of 30min and 24 h for weekly data graphs. The
structure of the report consists of the first page, reporting the
summary of the monitoring period, and then the distribution
graph is presented (Figure 5).

The software offers the possibility to download a basic report
with the previous graphs and also with quick information about
the percentage of OFF hours per day and the total amount of
OFF hours per day. Finally, a graph reporting the number of
FoG episodes per day is presented. An example of both graphs
is shown in Figure 6.

For an extended analysis, there is the possibility to obtain an
extended report with the rest of the information. Then, weekly
graphs are shown followed by detailed daily graphs of each
variable. The values presented in the temporary format of 24 h
are: cadence, number of steps, step length, SMA (quantity of
movement), stride fluidity, dyskinesia, ON state, OFF state, INT

Frontiers in Neurology | www.frontiersin.org 11 June 2022 | Volume 13 | Article 912343



Rodríguez-Martín et al. PD Evaluation With STAT-ON Device

FIGURE 4 | Power system and regulator managing.

state, number of FoG episodes, duration of FoG episodes, falls,
and events generated through the sensor button.

Figure 7 shows the stride fluidity graph, which is one of the
most important graphs and offers the severity of the bradykinetic
gait. Scores obtained in this graph are based on the algorithm of
bradykinesia estimation (109). In this case, it is shown a patient
with fluctuations passing from ON to OFF and inversely. Two
clear OFF zones are detected in the morning and the evening. At
midday, the patient has low scores, but the OFF seems not to be
very significant. The objective information creates a quick picture
of the state of the patient. In this Figure, the two thresholds
are determined after having learned how the patient walks for 3
days based on the self-adaptive algorithm described in Section
Background on STAT-ONTM-Embedded Algorithms.

Figure 8 shows possible graphs provided by STAT-ONTM,
such as energy expenditure, step length, cadence, or the number
of steps. It must be noted that more information is provided,
such as stride speed, weekly summaries, and detailed daily motor
states (70). Given that these graphs are filtered every 30min, for
more detailed information and for research purposes, it is better
to use the CSV file, with the detailed information per minute. The
graphs are mainly used in clinical practice.

CLINICAL VALIDATION OF STAT-ONTM

STAT-ONTM started its commercialization in June 2019, when
the CE mark was obtained. It was then that the validation (from
the regular clinical praxis point of view) of the commercialized
device started. So far, the device has been validated in
several studies.

A series of questionnaires were performed within the
PARK-IT2 project in order to understand the acceptability
of the device (130). A total of 107 questionnaires were
performed, involving 17 neurologists, 19 health professionals,
30 caregivers, and 41 patients. A significant 88% of neurologists
thought that STAT-ONTM was able to detect advanced PD
symptoms, and the average score of the sensor was 7.9/10.
Healthcare professionals gave a score of 8.6/10 to the sensor.
On the other hand, 80% of caregivers found STAT-ONTM

a good or very good solution and no one disliked the
sensor. Moreover, 76% thought that it was easy to use, and
no caregiver reported the belt was difficult to wear and
adjust. The patients also rated the sensor an 8.5/10, and
77.5% thought that it was very easy to use. The belt was
rated 8.1/10.
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FIGURE 5 | An example of the distribution of symptoms (hourly distribution of symptoms along different days following the established color code), one of the

graphics generated by STAT-ONTM. This patient has a concurrent OFF zone every day around 18:00. It is clear when the patient rests at 15:00 or 16:00 every day. The

OFF and dyskinesia are significant, but the FoG only appears 4 times, being practically insignificant and should be contrasted with the patient. The black line is when

the button was pushed, in this case when the patient took the medication.

FIGURE 6 | An example of the percentage of OFF hours and total OFF hours and the number of FoG episodes per day.
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FIGURE 7 | A stride fluidity example.

FIGURE 8 | Some graph examples of the extended report.
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In 2020, Santos et al. published the opinion of 27 clinical
experts in movement disorders about STAT-ONTM after having
tested the device in clinical practice (54). The general opinion
of the neurologists was promising and with some important
conclusions. A total of 119 evaluations were performed with
different patients with PD using a STAT-ONTM sensor. In
conclusion, STAT-ONTM was considered better than diaries by
70.3% of neurologists, and it was also considered a useful tool
to detect advanced Parkinson’s disease by 81.5% of the involved
neurologists. The device was considered “quite” to “very useful”
by 74% of the participants, and a moderate correlation between
the use of the sensor and the opinion of the physician was
obtained (r = 0.403; p = 0.046). A total of 89% of neurologists
would use STAT-ONTM in their clinical practice.

A clinical trial has been proposed to test the device against
other considered gold standards, such as the Hauser diary and the
UPDRS (106). This clinical trial is a single-blinded randomized
controlled trial. The neurologists who participated in this study
were randomly assigned to one of the three branches of the study
in which a therapeutic adjustment would be performed based on
different sources of information: the STAT-ONTM reports, the
patient diary of motor fluctuations, or the clinical information
collected at the consultancy.

A total of 162 patients were participating in this study for 6
months, and the main outcome is to compare the efficiency of
STAT-ONTM against classical clinical practice methods in terms
of OFF-time reduction. Other symptoms will be also evaluated,
such as dyskinesia and FoG, and the non-inferiority of the sensor
against the diary of motor fluctuations will be also evaluated
(https://clinicaltrials.gov/ct2/show/NCT04176302) (106).

On the other hand, a pilot is being led by the Movement
Disorders Unit, “UParkinson” from Centro Médico Teknon,
Grupo Hospitalario Quirón in Barcelona, Spain (105). The
pilot consists of analyzing the agreement in detecting motor
fluctuations, dyskinesia, and FoG using the STAT-ONTM, based
on a patient’s opinion, and a neurologist’s opinion in the home
environment. The first preliminary results showed that the sensor
can increase the awareness of motor fluctuations in patients with
PD and help healthcare professionals detect them earlier. The
level of satisfaction (QUEST questionnaire) achieved significant
results (all items over 4 out of 5). The System Usability Scale
(SUS) questionnaire results were considered high.

In another study, which was presented at the Annual Meeting
of the Spanish Neurology Society, Caballol Pons et al. (131)
discussed a multi-centric work, considering a high number of
STAT-ONTM reports (in concrete, 237) in different use cases. The
most frequent reason given by the neurologists for using STAT-
ONTM was the ON/OFF time quantification, followed by the
detection of FoG/falls and dyskinesias. The device is being used
in patients with both initial and advanced PD for the diagnosis of
motor complications and/or treatment optimization.

Due to the COVID-19 pandemic, telehealth systems are also
important tools to be considered, and STAT-ONTM meets the
requirements to be classified as a helpful system for the remote
monitoring of patients with PD. Currently, the device is used
in a clinical trial where patients with PD are being monitored
remotely with video calls and STAT-ONTM (https://clinicaltrials.
gov/ct2/show/NCT04694443).

In an Argentinian study, a team of neurologists tested the
device with 11 patients and reached some interesting conclusions.
The comparison against diaries showed that the Holter registers
were bigger than diary registers, showing one of the main issues
of the diary: low patient compliance. Also, the study highlights
the enhanced patient’s awareness of FoG episodes, as the sensor
detected them while the patient did not report them. The sensor
information was useful as neurologists could see objectively the
real behavior of FoG episodes. It is also important to note that
the authors emphasize the importance of the sensor in guiding
therapeutic decisions in clinical practice. This was reported
in patients who need second-line therapies, and the decision
is based on questionnaires and the doctor’s office evaluation.
Finally, the authors conclude that these tools were useful to
obtain an objective measure of the patients’ motor state who
were in advanced stages of the disease, with difficulty controlling
motor symptoms, inconsistencies in their daily reports, and
suspicion of inappropriate medication intake (due to lack or
excess medication) (132).

The device has been also validated with advanced-stage
PD patients with levodopa-carbidopa intestinal gel. Bougea
et al. demonstrated the better detection of ON/OFF motor
fluctuations, dyskinesia, and falls against patients’ diaries with
51 patients with PD. All the sensitivities and specificities were
higher with the sensor rather than with the diary, concluding
that STAT-ONTM can be a promising tool for monitoring patients
with advanced disease (133).

STAT-ONTM was also used in patients that were administered
PERCEPTTM, a deep brain stimulator that also registers the
signal perceived from the subthalamic nucleus field, remarkably
aligning their signals in the appearance of OFF states, ON states,
dyskinesia, and FoG episodes. This case study suggests that STAT-
ONTM can be a useful tool for the optimization of this kind of
therapy (134).

Finally, in a Swedish study, STAT-ONTM was tested and
compared against PKGTM through resident physician criteria. A
significant agreement was obtained between STAT-ONTM and
the physician (kappa = 0.783, p = 0.014), and none was found
between PKG and the physician (95).

CONCLUSIONS

Currently, technology offers multiple possibilities for interaction
and monitoring of patients with chronic diseases. In the field of
PD, the main drawbacks are the lack of objective information
obtained by the physician and the fact that the consultancy or
hospital is not the most convenient environment for a correct
patient evaluation. They should be evaluated, when possible, in
normal living conditions in their home environments.

There are wearable tools that provide objective information
about the severity and distribution of PD motor symptoms
that could improve the evaluation of clinical experts. However,
all devices in the market have their pros and cons. The
strongest point of STAT-ON is, undoubtedly, the accuracy of the
algorithms, which have been designed with precise data obtained
in home environments and with a sensor located in a very specific
part of the body, very close to the center of the human body.
The waist has been shown to be akin to human movement,
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and also many movements can be characterized from there.
However, this strong point could be also a weak point, given
that the usability that a wrist-worn device will always be higher
due to the lower invasiveness of the device. Nevertheless, the
devices that are worn on the wrist are conditioned to the random
movements in the arm that should be considered for maximizing
specificity. This point is of key importance to get high accuracies,
and this problem has not been already solved. On the contrary,
these devices are socially accepted and might be very useful for
obtaining approximate measurements of basic movements.

Concerning other sensors, there has to be a trade-off between
the number of sensors, usability of the wearable system, and the
accuracy of a system. In this paper, we presented a complete
review of STAT-ONTM, a wearable medical device that provides
objective information on motor symptoms, such as bradykinesia,
dyskinesia, ON-OFF fluctuations, FoG, and gait parameters, falls,
the quantity of movement, and postural activity. The purpose
of use of this device is focused on home environments in
order to get the missing data, which a healthcare professional
cannot obtain in his or her consultancy. A complete review
of the algorithms is performed, opening up the possibility to
improve the outcomes by combining different machine learning
approaches, enlarging the database or using deep learning or
other more advanced methods.

The clinical evaluation in real clinical practice with STAT-
ONTM has already started, although the first results have
been achieved by having a great acceptance rate by different
stakeholders: patients with PD, caregivers, neurologists, and
healthcare professionals. The utility and acceptability in clinical
practice are promising (54), and, although further research and
validation should be carried out, results show the potential
of an easy-to-use tool. The STAT-ONTM has achieved great
results in user satisfaction and usability (105) and has been used
in many cases (131), such as detection of motor fluctuations,
dyskinesia, freezing of gait, therapy optimization, or second-
line treatments’ patients’ selection. Nonetheless, further studies
are needed for early symptoms detection and to demonstrate
the effectiveness of the device with different therapies. However,
it seems that there is a consensus on using the device for
the detection of candidates for second-line therapies (54, 132).
The Antonini et al. consensus for the selection of patients for
advanced therapies seems to align with the outcomes of STAT-
ONTM, but additional findings are required to confirm this (135).
The fact that the main database in REMPARK was composed of
patients with fluctuations and Hoehn & Yahr >2 in ON state
(24), the algorithms have been focused on mid and advanced
stages of PD. This is particularly beneficial as a tool for an
appropriate selection of the patient for second-line therapies
and for adjusting these therapies (continuous subcutaneous
apomorphine infusion, levodopa-carbidopa intestinal gel, or
deep brain stimulation). However, a challenge is to see if STAT-
ONTM works fine for earlier stages. In the work performed by
Caballol et al. (105), they detected morning fluctuations, which
are the first OFF episodes in early fluctuating patients, but more
studies are needed. One of the limitations of STAT-ONTM is that
the ON-OFF algorithm does not work in patients who are unable
to walk, and 3 days of data are necessary for learning the way the

patient walks. The accuracy of the ON-OFF algorithm has been
shown but takes toomuch time to achieve results. Also, according
to the user manual, it is recommended to use the device between
5 and 7 days (70). Although the patient can wear the device for
more time, it is enough between 5 and 7 days to see patterns,
severity of symptoms, and their distribution.

Another point and limitation is the understanding of the
FoG algorithm. In (54), the FoG algorithm was considered one
of the weaker algorithms. However, it has to be taken into
account that this algorithm output is given every 1.6 s, while the
ON-OFF is given every 30min and the possibility to provide
a false positive increases. The specificity presented in (121) is
0.87, which is considered optimal. However, some false positives
could appear in festinating gaits, by tripping, traveling by car or
public transport, and doing sports. Nevertheless, the device could
identify properly the FoG in ON and OFF states, and help the
healthcare professionals to understand this symptom in patients
with PD as was shown by Perrote et al. (132).

The utility of wearable devices is increasing widely in the field
of PD. In a Spanish study discussing the future of Parkinson’s
evaluation, 94% of 75 experts in movement disorders think
that the use of wearables will increase (136). The conjunction
of complement devices is a topic of discussion for achieving
the best evaluation of patients with PD. For example, non-
motor symptoms detection, such as depression, anxiety, fatigue,
orthostatic hypotension, and sleep disturbance, have not been
investigated deeply (137, 138). Nevertheless, there are some
approaches for sleep disorders, such as electroencephalograms
and eye tremor analysis (139). Also, heartbeat and blood pressure
(140), or even skin conductance (141), have been used for non-
motor symptoms. All these systems need further evaluation and
more studies. In the same line, telemedicine is also a future
challenge, and pilots and further tests are needed to validate the
system for this purpose, which is crucial in post-pandemic times.

Another point is the use of the achieved data to continue
improving the algorithms: several machine learning techniques
will be published in the future, and even additional data could be
obtained through STAT-ONTM in future projects for refining the
algorithms based on the opinion of physicians.

According to the first hypothesis performed by some
of the authors in 2009 (96), STAT-ONTM and other
monitoring devices could be used in a closed-loop system
to automatically adjust the therapy; this idea is closer
to the appearance of new medical devices but needs
accurate devices, with well-validated algorithms both in
computer science and medical journals and in controlled
clinical trials.

STAT-ONTM, which is a marketed medical device, is the
result of 12 years of research, including algorithmic development
based on machine learning and offering a complete solution in
clinical practice, trials, and research. The device can be used
for adjusting and personalizing therapies, selecting patients for
specific therapies, following up on specific symptoms, and seeing
objectively the severity and distribution of PD motor symptoms.
Although more validation is needed in the future, the system has
been shown to be useful for healthcare professionals and suggests
a new paradigm in the clinical evaluation of patients with PD.
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