
* n
i i -

r,

A NEW PARALLEL ALGORITHM
FOR CONTACT DETECTION IN FINITE ELEMENT

Bruce Hendrickson' St.eve Plimpton Steve Attaway Courtenay -Vaughan . -

David Gardner

Abstract

In finite-element, transient dynamics simulations,
physical objects are typically modded as Lagrangian
meshes because the meshes c a n move and deform with
the objects as they undergo stress. In many simula-
tions, such as computations of impacts or explosions,
portions of the deforming mesh come in contact with
each other as the simulation proegress. These con-

tacts must be detected and the forces they impart to
the mesh must be computed at ezch timestep to ac-
curately capture the physics of inzerest. While the
finite-element portion of these corrpurations is read-
ily paralle!ized, the contact detec:icrr problem is diffi-
culr, to implement efticienxly on p z d l d ccmputers and
has been a bottleneck to zchieving hish performance
on large parallel machines. In th2 paper we describe
a new parallel algorithm for detecting contacts. Our
approach differs from previous ~ o r k in that we use
two different parallel decompositions, 3 static one for
the finite element analysis and dymnic one for con-
tact detection. We present rsulm for this algorithm
in a parallel version of the t r a n s k t d:;namics code
PRONTO-3D runnicg on a large Imel Paragon.

1 Introduction

Transient dynamics models are &en formulated as
finite element simulations on Lagrzagiizn meshes. Un-
like Eulerian meshes which remain geometrically fixed
as the simulation proceeds, Lagrapan meshes can
be easily fitted to comples objecrs md can deform
as objects change shape during z sbulation. Pro-
totypical phenomena that are modeled in this way
include car crashes, and metal fornhg and cutting
for manufwturing processes. Comooly-used com-
mercial codes that simulate these ?fitcis include LS-
DYNA3D, ABACUS, and Pam-Crzsh. PRONTO-3D
is a DOE code of similar scope t h z v i s developed at
Sandia [ll].

'Sandia National Labs, AIbuquerFe, S.lf 87185-1110.
Email: [b a h , s j p l i m p , s w a t t a w , c t ~ ~ g h , ~ ~ ~ ~ ~ . s a n ~ a . g o v .

- - .

" - 3 .f .; f7-q L. " d l J 5 1-,J
A complicated process such as a cplljsioq o~::plo-

sion involving numerous comples obiect&req,iur;es a
large number of mesh elements to model accurately.
The underlying physics of the stress-strain relations
for a variety of interacting materials must also be in-
cluded in the model.-^Running such a simulation for
thousands or millions of timesteps can be very compu-
tationally intensive, and so is a natural candidate for
the power of paralle! computers.

The finite-element (FE) portion of the computation
within a single timestep can be parallelized straight-
forwardly. In an explicit timestepping scheme, each
mesh element interacts only with the neighboring ele-
ments it is connected to in the FE mesh topology. If
each processor is assigned a small cluster of elements
then the only interprocessor communication will be
the exchange of information on the cluster boundary
with a handful of neighboring processors. A variety of
algorithms and tools have been developed that opti-
mize this assignment task. For PRONTO-3D we use a
software package called Chaco [4] which partitions the
FE mesh so that each processor has an equal number
of elements and interprocessor communication is mini-
mized. In practice,+he resulting FE computations are
highly load-balanced and scale efficiently (over 90%)
when large meshes are mapped to thousands of pro-
cessors. The chief reasoa for the scalability is that the
communication required by the FE computation is lo-

cal in nature.

It is important to note that because the mesh con-
nectivity does not change during the simulation (with
a few minor exceptions), a static decomposition of the
elements is sufficient to insure good performance. To
achieve the best possible decomposition, we partition
the FE mesh as a preprocessing step before the tran-
sient dynamics simulation is run. Similar FE paral-
lelization strategies have been used in other transient
dynamics codes [6, 8, 9: lo].

In most simulations there is a second major compu-
tation which must be performed each timestep. This
is the detection of contacts between unconnected ele-
ments. For example, in Fig. 1, initial and 5 millisec-
ond snapshots are shown of a simulation of a steel rod

L U

colliding with a brick wall. Contacts occm any time
a surface element on one brick inrerpene- Laces a sur-
face element on another brick. These comacts impart
forces to the impactingobjects which mu5 be included
in the equations-of-motion for the interpmeirating el-
ements. Thus, PRONTO-3D performs r i e following
computations every timestep: (1) detec: cmiacts, (2)
compute contact forces, and (3) push-back dx contact-
ing e!ements so they no longer interpei?e:rt:e. Steps
(2; an i (3) are actually minor computanxs since at
any one timestep only a small fraction of t& elements
are in contact. However, the contact derecGon in step
(1) requires a global search of the simulzzion domain
and can require 30-50% of the overall run -&e when
PRONTO-3D runs on a vector machine E? the Cray
Y-MP. This is because, in principle, any -ipi-o surface el-
ements anywhere in the simulation domaiz c a come in
contact with each other during a $\-en i instep. This
is true even for surface elements on the s m e object, as

when a car fender is crumpled in a c o l k - i o ~ Efficient
schemes for spatially sorting and warchkg kts of ele-
ments have been devised to speed this coEptation in
the serial version of PROETO-3D [3]-

0 ms

Figure 1: Simulation of a steel rod h z i n g a brick
wall.

On a parallel machine, contact detzi5oE is even
more problematic. First, in conrrat cc 5 5 FE por-
tion of the computation, some form of _G-Sdd analysis

and communication is now required. This is because
the FE regions in contact can be owned by any two
processors. Second, load-balance is a serious problem.
Formally, the task is to find all the geometric penetra-
tions of a set of contact surfaces (faces of elements) by a
set of contact nodes (corner points of elements). These
contact surfaces and nodes come from elements that lie
on the surface of the meshed object volumes and thus
comprise only a subset of the overall FE mesh. Since
the FE decomposition described above load-balances
the entire FE mesh, it will not (in general) assign an
equal number of contact surfaces and nodes to each
processor. Finally, finding the one (or more) surfaces
that a node penetrates requires that the processor who
owns the node acquire information about all surfaces
that are geometrically nearby. Even if we devise a
global communication scheme or new decomposition
technique that provides this information it must be a
dynamic or adaptive method instead of static, since
the set of.nearby surfaces changes as the simulation
progresses.

Given these difficulties, how can we efficiently par-
allelize the task of contact detection? The most coni-
monly used a.pproach [S, 9, 101 has been to use a single.
static dacompositioo of the medl to perfma both FE
computation and contact detection. At each timestep,
the FE region owned by a processor is bounded with a
box. GIobal communication is performed to exchange
the bounding box’s extent with all processors. Then
each processor sends contact sarface and node informa-
tion to all processors with overlapping bounding boxes
so that contact detection can be performed locally on
each processor. Though simp!e in concept, this a p
proach is problematic for several reasons. For general
problems it will not load-balance the contact detec-
tion for the reasons given above. This is not as se-
vere a problem in [lo! because only meshes composed
of “shell” elements are considered. Since every elc-
ment is on a surface a single decomposition can bal-
ance both parts of the computation. However, con-
sider what happens in Fig. 1 if one processor o m s

surface elements’ on 2 or more bricks. As those bricks
fly apart, the bounding box surrounding the proces-
sor’s elements becomes arbitrarily large and will over-
lap with many other processor’s boxes. This will re-

quire large amounts of communication and force thli

processor to search a large fraction of the global do-
main for its contacts.

In this paper’ we describe a new strategy for con-
tact detection which we have implemented in a ver-

sion of PRONTO-3D developed for message-passing
MIMD parallel computers such as the Intel Paragor!
and Cray T3D. An important aspect of our approach
is that we use a different decomposition for contacr

c.
- . .

1 -

r . .
* I*

,

detection than we use for the finite elcmem calcula-
tion. This allows us to optimize each porrior. of the
code independently. For contact deteciion A, 2 use a

dynamic technique known as recursiw Cmr&at.e bi-
section (RCB) to generate the decompcsition a e w at
each timestep. We find several advanrags to -&is ap-
proach. First, and foremost, since each Sioc-Dr ends
iip with the same number of cont fct r x k z d sur-
faces. me can achieve nearly perfex 1o:d 32zzce in

the on-processor contact detectior. cd~:u!zz:a. Sec-

ond, the cost of performing an RCB decon2ceition is
minimal if it begins with a nearly--balanced 5t.arting
point. We use the result from the previoE -&step,
which will always be close to the correcc demm9osition
for the current timestep. Third, the local mnd global
communication patterns we use in o w zlgorkhm are
straightforward to implement and do cot rqorrire any
complicated analysis of the simulation gfsrreq-. The
price we pay for these advantages is thac ~e musr com-
municate information between the FE a d ant.act de-
compositions at every timestep. Our results indicate
that the advantage of achieving load bzlane greatly
outweighs the cost of maintaining two dwrrpmitions.

We have recently become aware of in&tndent
work [6] which h z s some similarity tc sui z2;rrach.
Like our technique, this approach uses a CiEcren; de-
composition for the contact detection thul for the fi-
nite element analysis. In their method- the:- decom-
pose the contact surfaces and nodes by ox-crl2;ing a
regular, coarse 3-D grid on the entire :~u!arion do-
main. The coarse grid is then divided do9g OE dimen-
sion into slices and each processor is r q ~ o ~ 3 1 e for
contzci detection within a slice. While c h ~ agproach
is likely to perform better than a static deconpcsiirim,
the implementation described in 163 sui’ertd 5cm load
imbalance and did not scale to large numbers of pro-
cessors.

In the next section we provide some bickgroud ma-
terial that will help explain our algorithm in 53. This
is followed in $4 by some performance resilts from sim-

ulations using PRONTO-3D.

2 Background

Our contact algorithm involves a numbei of un-
structured communication steps. In t k e opLarions,

each processor has some information ii wants 60 share
with a handful of other processors. Ah3ougk B given
processor knows how much informatior. i: ;rill s5nd and
to whom, it doesn’t know how much it + ~ 1 receive and
from whom. Before the communicaticri czz b e per-
formed efficiently, each processor nee& :.G knox about
the messages it will receive. We accor-?!ish is3 Kith

the approach sketched in Fig. 2.

(1) Form vector of 0/1 denoting who I send to
(2) Fold vector over all P processors
(3) nrecvs = vector(q)

(4) For each processor I have data for,
send message containing size of the data

(5) Receive nrecvs messages with sizes coming to me
(6) Allocate space & post asynchronous receivzs
(7) Synchronize
(8) Send all my data

(9) Wait until I receive my data

Figure 2: Parallel algorithm for unstructured com-
munication for processor q.

In steps (1-3) each processor learns how many other
processors want to send it data. In step (1) each of the
P processors initializes a P-length vector with zeroes
and stores a 1 in each location corresponding to a pro-
cessor it needs to send data to. The fold operation

[2] in step (2) communicates this vector in an optimal
way; processor q ends up with the sum across all pro-
cessxs of only location q, which is the total number
of messages it will receive. In step (4) each processor
sends a short message to the processors it has data for,
indicating how much data they should expect. These
short messages are received in step (5). With this in-
formation, a processor can now allocate the appropri-
ate amount of space for all the incoming data, and post
receive calls which tell the operating system where to
put the data once it arrives. After a synchronization
in step (7), each processor can now send its data. The
processor can proceed once it has received all its data.

The recursive coordinate bisectioning (RCB) algo-
rithm we use was first propcsed as a static technique.
for partitioning unstructured meshes [l]. Aithough for
static partitioning it has been eclipsed by better ap-
proaches, RCB has a number of attractive properties
as a dynamic partitioning scheme which have been ex-
ploited by Jones and Plassmann [7]. The subdomains
produced by RCB are geometrically compact and mell-
shaped. The algorithm can also be parallelized in a
fairly inexpensive manner. And it has the attractive
property that small changes in the geometry induce
only small changes in the partitions. Most partition-
ing algorithms do not exhibit this behavior.

The collection of points we want to divide equally
among P processors is the combined set of N contact
surfaces and nodes as shown in Fig. 3 for a 2-d ex:
ample. For this operation we treat each surface as a

single point. Initially each processor owns some subset
of the points which may be scattered anywhere in the

the cut. These steps are outlined in Fig. 4.
I

0 0 1 0

I

0
43

8

0

I
I

4-ca
I
I

. I
I O

a 0
0

Q

8

Figure 3: Top: First cut of RCB decomposition. Bot-
tom: Final partitioning for 8 processors.

domain. The first step is to choose one of the coorii-

nate directions, x, y, or z. We choose the direction €or
which the bcx bounding the points is longest, 30 that
when we cut orthogonal to that direction, the result-
ing sub-domains will be as cubic as possible. The ne----
task is to position the cut, shown as the dotted line in
the figure, at a location which puts half the points on
one side of the cut, and half on the other. This is
equivalent to finding the median of a distributed set of
values in parallel. We do this in an iterative fzshion.
First we try the midpoint of the box. Each processor
counts the number of points it owns that are OE one
side of the cut. Summing this result across procssoE
determines which direction the cut should be m o d
to improve the median guess. In practice, K i - i . a

few iterations we find a suitable cut that par-‘-’ L l LlORS

the points exactly. Then we divide the processol- -= XtQ

two groups, one group on each side of the cut. Each
processor sends its ,points that fa11 on the far side of
the cut to a partner processor in the other group. and
likewise receives a set of points that lie on its side of

(1) Choose a coordinate axis (xyz)
(2) Position cut so as to partition points equally
(3) Send points that lie on far side of cut

(4) Receive points that lie on my side of cut

Figure 4: Parallel algorithm €or recursive coordinate
bisection.

After the first pass through steps (1-4), we have
reduced the partitioning problem to two smaller prob-
lems, each of which is to partition N/2 points on P f 2
processors within a 3e.w .bounding box. Thus we can
recurse on these s t e p until we have assigned X f P
points to each processor, as shown in Fig. 4 for an
8-processor example. The final geometric sub-domain
owned by each processor is a regular parallelepiped.
Note that it is simple to generalize the RCB procedure
for any N and non-power-of-two P by adjusting our
desired “median” criterion at each stage to insure the
correct number of points end up on each side of the

cut.

3 Parallel Contact Algorithm

Our parallel algorithm for contact detection is out-
lined in Fig. 5. In step (l), the current position of each
contact surface and node is communicated by the pro-
cessor who owns and updated it in the FE decomposi-
tion to the processor who owned that surface or node in
the RCB decomposition of the previous timestep. (01:
the first timestep this step is simply skipped.) This in-
volves unstructured communication as detailed in (h+:
previous section. The purpose of this step is to git.(
the RCB decomposition a starting point that is closr;
to the correctly balanced answer, since the finite elc
ments do not move far in any one timestep. In step

(2) we perform the RCB decomposition as described in
the previous section to rebalance the contact surfaces
and nodes based on their current positions.

The entire RCB decomposition can be repre: -enred
as a set of P - 1 cuts, one of which is stored by each
processor as the RCB decomposition is carried out. In
step (3) we communicate this cut information so that
every processor has a copy of the entire set of cuts.

This is done via an expand operation [2]. Before con-

tact detection is performed, each processor must know
about all contact surfaces that are near any of its COIP

tact points. Because me represented a surface as a
single point during the RCB decomposition, some of

4 Results
(1) Send contact data to old RCB decomposition

(2) Perform parallel RCB to rebalance
(3) Share RCB cut info with all processors
(4) For all my surfaces

If surface extends beyond my RCB bos
Determine what other processorj need ir

(5) Send overlapping surfaces to nearby proctssxs
(6) Find contacts within my RCB bos
(7) Send contact results to FE owncrs

Fig. 6 shows the results of a PRONTO-3D simula-
ticn of a steel shipping container being crushed due to
an impact with a flat inclined wall. The front of the
figure is a symmetry plane; actually only one half of
the container is simulated. As the container crumples,
numerous contacts occur betv.-een layers of elements on
the folding surface. We have used this problem to test
and benchmark our parallel contact algorithm.

Figure 5: A parallel algorithm for contact detection.

these nearby surfaces will actually be owned by sui-
rounding processors. So in step (4), each procswr
determines which of its contact surfaces extends bf-
yond its RCB sub-domain. For those that do, a kt of

processors who need to know about that surface k c r e
ated. This is done using the RCB vector of cuts c r e a t i
in step (3). The information in this vector enables a

processor to know the bounds of the RCB sub-dom&
owced by every other processor. In step (5) the dtzrz.
for cjverlapping contact surfaces is communicated 10
the appropriate processors.

In step (6) each processor can now find all the con-
tacts that occur in its geometric RCB sub-domziin.
A nice feature of our algorithm is that this detection_
problem is identical conceptually to the global detec-
tion problem we originally formulated, namely to fin2
all the contacts between a set of surfaces and n o d s
bounded by a box. In fact, in our contact a l g c r i t h
each processor calls the original serial PROSTO-3D
contact detection routine to accomplish step (6). Thi=
enables the code to take acivantage of the special mri-

ing and searching features the serial routine u s s to e?-

ficiently find contacts. It also means we did not have 10

recode the complex geometry equations that compux
intersections between moving 3-d surfaces and point_:
Finally, in step (7), information about contacting sui-
faces and nodes is communicated back to the p r o c s
sors who own them in the FE decomposition. Thfi?
processors can then perform the appropriate force c2-
culations and element push-back. .

In summary, steps (l), (5), and (7) all i nvok
unstructured communication of the form ourhed ix
Fig. 2. Steps (2) and (3) also consist primarily ofcor-
munication. Steps (4) and (6) are solely on-process::
computation. A fuller explanation of tile c!etaik oi tL=

algorithm are given in [5].

Figure 6: Simulation of a crushed shipping container
from initial impact to final state after 3.2 milliseconds.

The first set of timing results we present is for a

fked-size problem geometry containing 7152 finite el-
ements. Both the container and wall were meshed 3
elements thick, so roughly 213 of the elements are on a
surface. Since each surface element contributes both a
surface and node, there were about 9500 contact sur-
faces and nodes in the problem. The average CPU
time per timestep for simulating this problem on var-
ious numbers of Intel Paragon processors from 4 to

1840 is shown in Fig. 7. Whether in serial or parallel,
PRONTO-3D spends virtually all of its time in two
portions of the timestep calculation - FE computa-
tion and contact detection. For this problem, both por-
tions of the code speed-up adequately on small num-
bers of processors, but begin to fall off when there itre

only a few dozen elements per processor.

zontal line on this plot, we see apparent super-linear
speed-up for some of the data points! This is due to
rhe fact that we are really not exactly doubling the
computational work each time we double the number
of finite elements. First, the mesh refinement scheme
we used does not keep the surface-to-volume ratio of
the meshed objects constant, so that the contact algo-
rithm may have less (or more) work to do relafive to
rhe FE computation for one mesh size versus another.
Second, the timestep size is reduced as the mesh is re-
fined. This actually reduces the work done in any one
rimestep by the serial contact search portion of the
conract algorithm (step (6) in Fig. 5), since contact
surfaces and nodes are not moving as far in a single

r.aCW that occur in - a ~ y given timestep will not exactly
double just because tlie number of finite elements is
doubled.

Figure 7: Average cpu time Per timestep to crush rimestep. More generally, the number of actual con-
a container with 7152 finite elements on the Intel
Paragon. The dotted line denotes perfect speed-up.

Fig. 8 shows performance on a scalable version of the
crush simulation where the container and surface are
meshed more finely as more processors are used. On
one processor a 1875-element model was run. Each
time the processor count was doubIed, the number of
finite elements was also doubled by halving the mesh
spacing in a particular dimension. Thus ai! the daxi
points are for simulations with 1875 elements per proc
cessor; the largest problem is 480,000 elements on 2.56
processors.

1 2 4 8 16 32 64 128 256

Number of Processors

Figure 8: Average CPU time per timestep on the
Intel Paragon to crush a container meshed at varying
resolutions. The mesh size is 1875 finite elements per
processor at every data point.

In contrast to the previous graph, we now see es-
cellent scalability. A breakdown of the timings show
that the performance of the contact detection portion
of the code is now scaling as well or better than the
FE computation, which was our original goal with this
work. In fact, since linear speed-up would be a hori-

5 Conclusions

The chief advantages of the parallel contact dekec-
rion a!gorithm we have proposed are as follon-s:
[1) Ttle contact surfaces 2nd codes are nearly perfectly
spr*ac! across processors, ensuring that the contact de-
r.eczion is load-balanced.
(2) The RCB decomposition technique takes advan-
sage of the fact that the partitioning does not change
dramatically from one timestep to the next.
(3) The para!lel code can use the same singleprocessor
rouine used in the original serial code to perform the
acnal of contact detection.

The chief disadvantage of our method is that \i-e

nius communicate-data back-and-forth between the
FE and RCB decompositions each timestep. In prac-
tic? we obs5rved this to be a very minor cost. Almost
all of the time in the parallel contact detection was

spent performing the RCB decomposition and in the
on-processor contact detection effort. There is also a

memory cost in our method for the contact surface and
no& data to be duplicated by the processors that store
it in rhe RCB decomposition. This has not been a ma-
jor bottleneck for us because the duplication is only for
surfzce elements and because we are typically compu-
tadonally bound, not memory bound, in the problems
Lha: we run with PRONTO-3D.

Acknowledgements

Me benefited from helpful discussions about the
pa.rzile1 contact algorithm with David Greenberg and
Rob Leland. Martin Heinstein provided insighi

into the sequential contact detection algorithm in
PRONTO-3D.

References

M. J. BERGER AND S. H. BOKHARI, A partition-
ing strategy for nonuniform problems on multi-
processors, IEEE Trans. Computers, C-36 (19S7).
pp. 570-580.

G. C. Fox, M. A. JOHNSON, G. A. LYZENGX.
S. W. OTTO, J. K. SALMON, AND D. W.
WALKER, Solving Problems on Concurrent Pro-
cessors: Volume I , Prentice Hall, Englewood
Cliffs, NJ, 1988.

M. W. HEINSTEIN, S. W. ATTAWAY, F. J.
MELLO, AND J. W. SWEGLE, A general-purpose
contact detection algorithm for nonlinear struc-
tural analysis codes, Tech. Rep. SAND92-2141.
Sandia National Laboratories, Albuquerque, Nhl.
1993.

B. HENDRICKSON AND R. LELAND, The Chaco

user’s guide: Version 2.(?, Tech. Rep. SANDS-!-
2692, Sandia National Labs, Albuquerque, Nhl.
June 1995.

B. HENDRICKSON, S. PLIMPTON, S. ATTAWAY:
C. VAUGHAN, AND D. GARDNER, A new algo-
rithm for paralleliring the detection of contacts in
finite element simulations. In preparation.

C. G. HOOVER, A. 2. DEGROOT, J. D.
MALTBY, AND R. D. PROCASSINI, Paradyn:
DynaSd for massively parallel computers, October
1995. Presentation at Tri-Laboratory Engineer-
ing Conference on Computational Modeling.

M. JONES AND P. PLASSMAX, Computational re-
sults for parallel unstructured mesh computations.

Computing Systems in Engineering, 5 (1994).

G. LONSDALE, J. CLINCKEMAILLIE, S. VLA-

CHOUTSIS, AND J. DUBOIS, Communication re-
quirements in parallel crashworthiness simulation.
in Proc. HPCN’94, Lecture Notes in Computer
Science 796, Springer, 1994, pp. 55-61.

G. LONSDALE, B. ELSXER, J. CLINCKE-
MAILLIE, s. VLACHOUTSIS, F. DE BRUYXE.
AND M. HOLZNER, Experiences with industrial
crashworthiness simulation using ihc portable.
message-passing PAM-CRASH code, in Proc.

pp. 297-309.

.-
il I - -

HPCN’95, Lecture Notes in Computer Science
919, Springer, 1995, pp. 856-862.

J. G. MALONE AND N. L. JOHNSON, A parallel
.finite element contact/impact algorithm for non-
linear ezplicit transient analysis: Part IT - parallel

implemeniation, Intl. J. Num. Methods Eng., 37
(19941, pp- 591-603.

L. .M. TAYLOR AND D. P. FLANAGAN, Update of

PRO?.TO-2D and PRO-VTO-CB transient solid
dynamics program, Tech. Rep SAND90-0102,
Sandia National Laboratories, .4 rbuquerque, NM,
1990.

