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Abstract

The last decade has been marked by tremendous progress in our

understanding of the cell biology of mitochondria, with the identifi-

cation of molecules and mechanisms that regulate their fusion,

fission, motility, and the architectural transitions within the inner

membrane. More importantly, the manipulation of these machineries

in tissues has provided links between mitochondrial dynamics and

physiology. Indeed, just as the proteins required for fusion and fission

were identified, they were quickly linked to both rare and common

human diseases. This highlighted the critical importance of this

emerging field to medicine, with new hopes of finding drugable

targets for numerous pathologies, from neurodegenerative diseases

to inflammation and cancer. In the midst of these exciting new

discoveries, an unexpected new aspect of mitochondrial cell biology

has been uncovered; the generation of small vesicular carriers that

transport mitochondrial proteins and lipids to other intracellular

organelles. These mitochondrial-derived vesicles (MDVs) were first

found to transport a mitochondrial outer membrane protein MAPL to

a subpopulation of peroxisomes. However, other MDVs did not target

peroxisomes and instead fused with the late endosome, or multive-

sicular body. The Parkinson’s disease-associated proteins Vps35,

Parkin, and PINK1 are involved in the biogenesis of a subset of these

MDVs, linking this novel trafficking pathway to human disease. In

this review, we outline what has been learned about the mechanisms

and functional importance of MDV transport and speculate on the

greater impact of these pathways in cellular physiology.
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Introduction

Mitochondria are very complex organelles, housing hundreds of

biochemical reactions from energy production to amino acid and

lipid synthesis, to hormone production. These biochemical reactions

involve substrates and products that flow between the many

organelles within the cell. Rather than metabolite shuttling through

free diffusion mechanisms, there is increasing evidence that direct

interorganellar contacts are required. For example, elemental iron

uptake into the mitochondria has been shown to require “kiss-and-

run” contacts between the endosome and mitochondria (Zhang et al,

2005; Sheftel et al, 2007). Direct contacts between mitochondria and

lipid droplets and peroxisomes are thought to facilitate fatty acid

transport. The most advanced understanding of these contacts is

between the ER and the mitochondria. It has long been known that

ER is the source of lipids for mitochondrial biogenesis (Shiao et al,

1995) and that these contacts are important for cellular calcium

homeostasis (Rizzuto et al, 1998). More recently, it was discovered

that ER wrapping around the mitochondria marks the sites for mito-

chondrial division. A molecular understanding of these contacts has

been advanced through studies in yeast and mammalian models

(Csordas et al, 1999; de Brito & Scorrano, 2008; Kornmann et al,

2009) and is reviewed elsewhere. It is now clear that there is exten-

sive biochemical cross talk between organelles, but the mechanisms

are only beginning to emerge (Sheftel et al, 2007; Zehmer et al,

2009; Rowland & Voeltz, 2012; Mesmin et al, 2013).

This review will outline the emerging role of vesicular transport

as another means of interorganellar communication. Mitochondrial-

derived vesicles (MDVs) are generated through the selective incorpora-

tion of protein cargoes, which can be limited to the outer membrane,

or can include outer, inner membrane, and matrix content, as

illustrated in Fig 1 (Neuspiel et al, 2008; Soubannier et al, 2012a,b).

Ultrastructural analysis revealed their size to be relatively uniform,

between 70 and 150 nm, and their scission does not require the estab-

lished mitochondrial fission GTPase Drp1 (Neuspiel et al, 2008;

Soubannier et al, 2012a,b). Two distinct fates were identified for

MDVs, with their targeting either to the late endosome/multivesicular

body for degradation (Soubannier et al, 2012a), or to a subpopulation

of peroxisomes (Neuspiel et al, 2008). Although this area of

research is just emerging, this review will outline the molecular

details of cargo selection, vesicle formation, and delivery, as well as

the established and predicted impact of these pathways in cellular

physiology.

The selection of cargo for transport

Mitochondrial-vesicle transport carries cargo to peroxisomes and

lysosomes. Cargo destined for the lysosomes is ultimately degraded

(Soubannier et al, 2012a), and in vitro studies have shown
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enrichment of oxidized proteins within MDVs (Soubannier et al,

2012b). However, the purpose of vesicle delivery to the peroxisomes

is unclear (Mohanty & McBride, 2013). Currently, only one protein

is known to traffic to the peroxisomes, a membrane anchored

protein ligase called MAPL (also called MULAN, MUL1, GIDE and

HADES) (Neuspiel et al, 2008; Braschi et al, 2009). With just one

known cargo, it is difficult to predict the mechanisms and principles

that govern cargo selection. However, we can look to evolution to

help generate testable, working hypotheses. We will first consider

the mechanisms of cargo selection based on each target destination

separately.

Cargo selection for transport to lysosomes

There are two primary pieces of evidence that contribute to our

understanding of the nature of the cargo en route to the late endo-

some/lysosome. Firstly, MDVs generated in vitro from isolated mito-

chondria were shown to be enriched in oxidized protein, in a

process that was stimulated by mitochondrial stress (Soubannier

et al, 2012b). This reconstitution of MDV formation further revealed

a selective incorporation of protein cargo based on the nature of the

mitochondrial stress induced. For example, the generation of ROS in

the reaction with xanthine oxidase/xanthine led to a stimulation of

MDVs carrying the outer membrane pore protein VDAC, but genera-

tion of ROS within the mitochondria, upon addition of a complex III

inhibitor antimycin A, led to MDVs carrying the complex III subunit

core2, without any enrichment in VDAC (Soubannier et al, 2012b).

These data suggest that potentially any cargo could be included

within MDVs; assuming that they are first oxidized, which would

“damage” the complex. This also suggests that oxidation may

trigger aggregation or oligomerization, acting as a seed to initiate

membrane curvature from the inside.

The process of MDV formation has likely been conserved from

archaebacteria, the mitochondrion’s ancestors (Deatherage &

Cookson, 2012). So, are there clues as to the cargo selection

mechanisms within these ancient systems? All gram-negative bacteria,

including Archae strains, shed vesicles, from those living within

the soil to infectious strains like Helicobacter pylori, causing ulcers,

or Treponema pallidum, the cause of syphilis (Kulp & Kuehn, 2010;

Bonnington & Kuehn, 2014). These bacterial strains bud a variety of

vesicles carrying specific cargoes, with unique tasks from the trans-

port of virulence factors, or peptides that arrest the host cell cycle,

to the generation of a biofilm. In addition, the quantity of bacterial

protein incorporation into vesicles ranges from 0.1% to 8–12%,

showing a remarkable > 100-fold variation in cargo incorporation

(Soubannier et al, 2012b; Bonnington & Kuehn, 2014). Environ-

mental changes in pH or nutrients are often a signal for bacterial

vesicle secretion; however, the molecular mechanisms responsible

for such varied cargo selection are not well understood (Deatherage

& Cookson, 2012). Given the diversity and complexity of bacterial

vesicle formation, we consider it unlikely that a single evolutionary

set of machinery could be mapped to MDVs from the ancestral

mechanisms of shedding. However, the utility of vesicles in all

membrane systems has been demonstrated and mitochondria are no

exception. Indeed, the lessons from bacteria help to frame our

understanding of the use of vesicles as a highly selective way to sort

mitochondrial proteins.

The second important finding was that the generation of MDVs

destined for lysosomes required the protein kinase PINK1 and the

cytosolic ubiquitin E3 ligase Parkin (McLelland et al, 2014). PINK1

and Parkin are both mutated in familial cases of Parkinson’s disease

(PD) (Trinh & Farrer, 2013) and were initially shown to act in a

common pathway in mitochondrial quality control in Drosophila

models of PD (Clark et al, 2006; Park et al, 2006; Yang et al, 2006).

More recent work has shown that PINK1 is targeted to the mito-

chondria but is normally degraded very rapidly. During import,

PINK1 is first cleaved by the matrix processing peptidases and PARL

(Jin et al, 2010; Greene et al, 2012); however, almost all of the

cleaved PINK1 is then released from the import channel and

degraded in the cytosol through the N-end rule proteolytic pathway

(Kondapalli et al, 2012; Lazarou et al, 2012; Yamano & Youle,

2013). Upon mitochondrial depolarization, the import machinery is

inactivated and PINK1 becomes trapped either within the import

channel or becomes anchored to the mitochondrial outer membrane

near the import channel (Greene et al, 2012; Lazarou et al, 2012).

This exposes the kinase domain to the cytosol where it phosphory-

lates ubiquitin and Parkin, leading to stable Parkin recruitment and

activation at the mitochondrial surface (Kim et al, 2008; Shiba-

Fukushima et al, 2012; Iguchi et al, 2013; Kane et al, 2014;

Kazlauskaite et al, 2014). Parkin ubiquitinates a series of proteins

on the mitochondrial surface, which are then recognized by auto-

phagic adaptor proteins and delivered to the autophagosome

(Narendra et al, 2008; Gegg et al, 2010; Lee et al, 2010; Matsuda

et al, 2010; Tanaka et al, 2010; Chan et al, 2011; Chen & Dorn,

2013; Sarraf et al, 2013).

Given that PINK1 and Parkin are also required for MDV trans-

port, we predict that the same mechanisms apply, but at a much

more localized level (see model, Fig 2). The import channels are

spatially restricted upon the mitochondrial surface, as shown with

super-resolution microscopy or immunoelectron microscopy (Wurm

et al, 2011). Protein misfolding in the matrix was recently shown to

trigger mitophagy after long incubations (Jin & Youle, 2013), with-

out any loss of electrochemical potential. Therefore, we consider

that local protein aggregation at the import site, perhaps due to local

oxidative damage, or complex assembly defects, would block the

import process. Should the matrix chaperones become saturated, or

cardiolipin become oxidized locally, then the inner membrane

import channel may fail. Cardiolipin oxidizes to phosphatidic acid, a

lipid known to alter membrane curvature (Yurkova et al, 2008;

Donaldson, 2009; Horvath & Daum, 2013), and may help initiate the

outward bending of the membrane. Upon complete depolarization

or organelle dysfunction, the mechanism may switch from a local

removal of a “patch” of mitochondrial content to the global arrest of

PINK1 in all import channels, activation of the autophagic machin-

ery, and entire engulfment of the organelle. This “patch” may not

be strictly cargo selective, since whatever aggregated or oxidized

proteins and lipids reside in proximity to an arrested import channel

would be ejected. Supporting this concept, the kinetic analysis

of events following treatment with antimycin A revealed the

generation of MDVs at an early stage of ROS production, while

global mitochondrial depolarization led to the kinetically slower

process of mitophagy (McLelland et al, 2014). This indicates that

MDVs are likely a first round of defense for the mitochondria to

eject damaged proteins in order to avoid the complete failure of the

organelle. This first response does not require the activation of auto-

phagy machinery, as it occurs in the absence of Atg5, Rab9, or

beclin (Soubannier et al, 2012a; McLelland et al, 2014).
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A second argument in favor of the import channel acting as a

sentinel for MDV formation is that import channels are restricted to

the boundary membranes, where the inner and outer membrane are

in close apposition to thread precursor proteins into the matrix and

inner membrane. This explains how the two membranes may bud

out together, since they would be locked in place by the arrested

PINK1 precursor. It also lends insight into why PINK1 and Parkin

are not required for the generation of MDVs that carry only outer
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Figure 2. Working hypothesis for vesicle initiation by PINK1 and Parkin.

(A) Immunogold staining of endogenous Tom20 within COS7 cells reveals the regular spacing of the import channels indicated by arrowheads. Note the close tethering of

three multivesicular bodies to the mitochondria. (B) An illustration of our working hypothesis of PINK1/Parkin-mediatedMDV formation. In Step 1, unfolded, oxidized proteins

within matrix, triggered by ROS or failure to assemble, leads to protein aggregation (blue). Oxidation of cardiolipin will generate PA, contributing to altered membrane

curvature. In Step 2, protein aggregates may saturate chaperones, leading to a very localized failure to import at an individual channel. In addition, local oxidation of

cardiolipin would further interfere with import channels. PINK1, which is rapidly imported, would then accumulate at these failed import channels. In Step 3, PINK1

phosphorylates both ubiquitin and the ubiquitin-like domain of Parkin, stabilizing the recruitment of activated Parkin. The ubiquitination activity of Parkin is required to

generate MDVs, suggesting that domains on the surface may be cleared. In Step 4, a vesicle is formed and released in a process that will certainly involve a number of

unidentified proteins. Future studies are needed to test this hypothesis and uncover the details governing the generation of MDVs.

Figure 1. Summary of MDVs cargo variability.

Immunofluorescent and EM images illustrate the diversity of cargo-selected MDVs. Immunofluorescent staining of Tom20 (an outer membrane protein) and pyruvate

dehydrogenase (PDH, matrix protein) reveals a number of cargo-selected vesicular structures lying outside of the mitochondria (top left panels, circles versus arrowheads).

Although Tom20 is absent from PDH-positive structures (arrowheads), EM and biochemical experiments confirm that these vesicles are double membrane bound. An example

is shown to the left where both membranes are seen within the vesicle emerging from the intact mitochondria [with permission from Soubannier et al (2012b)]. Similar cargo

selectivity is seen for MDVs carrying MAPL that target the peroxisomes [top right panel of immunofluorescent images, taken with permission from Neuspiel et al (2008)]. We

also observe single membrane MDVs derived from just the outer mitochondrial membrane (EM panel on right side). Bottom electron microscopic pictures show MDVs

containing Tom20 labeled by immunogold particles enter the multivesicular body [taken with permission from Soubannier et al (2012a)]. Scale bars in EM pictures represent

100 nm.

◂
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membrane proteins like the import receptor Tom20. Ultrastructural

analysis of mitochondrial single membrane vesicles reveal a more

pleotropic appearance, rather like “blebs” than true, well-

constructed vesicles (Fig 1, Soubannier et al, 2012b). The trigger for

these vesicles may more closely mirror the bacterial mechanisms of

outer membrane vesicle release, the mechanisms of which remain

unclear. Indeed, despite the relatively greater abundance of these

Tom20 outer membrane vesicles compared to, for example, MDVs

carrying matrix pyruvate dehydrogenase that lack Tom20, to date

no protein machineries required for their biogenesis have been

identified.

A role for Parkin in vesicle trafficking has been shown previ-

ously. In receptor-mediated endocytosis, a ubiquitin-interacting

motif (UIM) within the adaptor protein Eps15 was shown to bind

the ubiquitin-like domain (UBL) of Parkin (Fallon et al, 2006). This

led to the monoubiquitination of Eps15 and inhibition of its capacity

to recruit the endocytic machinery, thereby regulating its function

as an adaptor for endocytosis of the EGF receptor (EGFR). In this

way, by delaying EGFR endocytosis and degradation, Parkin can

enhance signaling downstream of the receptor. Parkin was also

shown to bind and monoubiquitinate the endocytic BAR domain

protein endophilin A via a Ubl-SH3 interaction (Trempe et al, 2009).

As BAR domains are involved in membrane remodeling and curva-

ture, this finding further links Parkin to vesicle budding and traffick-

ing machinery. It is unclear what the signal is to recruit and activate

Parkin at the cell surface as it is unlikely to be PINK1, which is

constitutively targeted to mitochondria. However, very recent data

have shown that PINK1, upon stabilization at the mitochondrial

outer membrane, phosphorylates ubiquitin at position S65 (Kane

et al, 2014; Kazlauskaite et al, 2014; Koyano et al, 2014). Three

independent studies demonstrated that phosphorylated ubiquitin

efficiently activated Parkin ubiquitin ligase activity at the mitochon-

drial surface in acute settings of mitochondrial uncoupling. In this

situation, there was a nearly stoichiometric phosphorylation of

cellular ubiquitin, which is likely to reach other cellular ubiquitin

targets. In this way, the generation of phosphor-ubiquitin at the

mitochondrial surface could act as a signaling mechanism for a

global cellular response to mitochondrial stress. Regardless of the

mechanisms by which Parkin is activated in endocytosis, the data

indicate that Parkin may have a multifaceted role in vesicle trans-

port, at the plasma membrane, mitochondrial surface, and perhaps

elsewhere. It will be particularly interesting to determine whether

these or other adapters are involved in the membrane budding

and trafficking involved in the biogenesis of the subset of MDVs

involving PINK1 and Parkin at mitochondria. Thus, whereas Parkin

clearly plays a role in mitophagy, it also has a steady-state role in

the removal of selected, oxidized cargo in a pathway parallel to

mitophagy.

Cargo selection for transport to peroxisomes

The fate of mitochondrial cargo transiting to the lysosome is to be

degraded. However, it is much less obvious why there may be a

need for vesicle transport to the peroxisomes. The only cargo iden-

tified to date transits to a subpopulation of peroxisomes, about

10–20% of the total peroxisomes in the cell (Neuspiel et al, 2008;

Braschi et al, 2010). Immunogold analysis of MAPL-positive MDVs

revealed the presence of two membranes (Neuspiel et al, 2008),

leading us to consider that the cargo is not limited to outer

membrane content. There is some information on the mechanisms

of MAPL enrichment within peroxisome-bound MDVs. The retro-

mer complex containing Vps35, Vps26, and Vps29 was identified

as a MAPL binding partner in an affinity chromatography approach

(Braschi et al, 2010). The retromer complex was first established as

a coat-like complex that binds and enriches cargo into vesicles

from the endosome for their return to the Golgi apparatus (Seaman

et al, 1998; Arighi et al, 2004; Seaman, 2012). The retromer

complex also binds to the sorting nexin family of proteins that

contain a PX-BAR domain that facilitates membrane curvature

required for vesicle formation. More recent experiments reveal a

much broader role for the retromer complex in many transport

pathways, where specificity is granted through the combinatorial

use of different sorting nexin members, and variants of the retro-

mer subunits (Rojas et al, 2007; Collins et al, 2008; Cullen &

Korswagen, 2012). In each case, the Vps35 subunit of the retromer

binds to cargo tails, hinting that transport to the peroxisome will

be more signal specific compared with the mechanisms of transport

to the lysosome. Silencing Vps35 blocked the delivery of MAPL to

peroxisomes, confirming the functional requirement for this

complex in MDV transport (Seaman, 2012). MAPL contains ubiqu-

itin and SUMO E3 ligase activities within the cytosolic domain

(Braschi et al, 2009), however mutations in the RING finger

domain did not alter the delivery to the peroxisome (Neuspiel et al,

2008; Braschi et al, 2010), indicating that the SUMOylation/ubiqui-

tination activity of MAPL are not mechanistically required for MDV

formation. At this time, we consider that MAPL constitutes vesicle

cargo that does not function in the generation of peroxisome-bound

vesicles. Clearly, there is a great deal of work remaining to eluci-

date the extent of cargo incorporation and the role of the retromer

complex in this pathway.

Vps35 participates in a variety of transport pathways throughout

the cell. However, with mutations in Vps35 being recently linked to

PD and Alzheimer’s disease (Vilarino-Guell et al, 2011; Zimprich

et al, 2011), its role in MDV transport has emerged as an intriguing

functional arc that may link defects in Vps35 with mitochondrial

dysfunction. Future work will determine whether an alteration in

cargo delivery to peroxisomes may contribute to PD.

Mechanisms of MDV transport and delivery

As described above, we have identified three factors required for the

generation of at least a subset of MDVs; those carrying matrix

content for delivery to the lysosome (PINK1 and Parkin), and MDVs

destined for the peroxisome (retromer complex). However, if we

look to other vesicle transport paradigms, it is apparent that this is

likely the tip of the iceberg. In addition to cargo selection mecha-

nisms, MDV formation will require machineries that facilitate

membrane curvature, potential coat complexes, incorporation of

fusion machinery, and motility factors. MDVs are formed in the

absence of the mitochondrial dynamin GTPase Drp1, indicating

additional mechanisms are also required for the final scission event

(Neuspiel et al, 2008; Soubannier et al, 2012a; McLelland et al,

2014). The independence of Drp1 is consistent with the diameter of

the yeast mitochondrial dynamin (Dnm1) ring limited to 100 nm,

which would be too large to constrict an MDV neck (Ingerman et al,

2005).
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We may find clues as to the identity of MDV factors within the

MitoCarta, an annotated map of the mitochondrial proteome

(http://www.broadinstitute.org/pubs/MitoCarta/). For example,

there are a number of vesicle-related proteins whose roles have

not yet been characterized on the mitochondrial outer membrane.

Two enzymes are predicted to modulate phosphatidylinositol

phosphates (PIPs) on the surface; PI(4)-kinase IIIb and splice

variant of the PI(5)-phosphatase synaptojanin-2A (Nemoto et al,

2001). Although the presence of PIP-based microdomains on the

mitochondria has not been studied intensively, PI(3)P domains

were observed to form during mitophagy (Yang & Yang, 2013).

PIP-related microdomains are known to recruit adaptor proteins

that could favor membrane bending and vesicle generation

(Mayinger, 2012). Consistent with adaptors that facilitate altera-

tions in membrane curvature, another endophilin family member,

endophilin B1 (Karbowski et al, 2004; Takahashi et al, 2005,

2007), and a mitochondrial phospholipase D, MitoPLD (Choi et al,

2006; Huang et al, 2011), may also modulate membrane dynamics

at the outer membrane. Endophilin B1 has been implicated in

the binding of Bax (Pierrat et al, 2001), beclin (Takahashi

et al, 2007) and in the process mitochondrial fission (Karbowski

et al, 2004). These lipid binding and modifying enzymes are all

candidates for MDV transport machinery given the established

roles for their activities in vesicle transport within the biosynthetic

and endocytic pathways. Finally, several Rab GTPases have

been shown to impact mitochondrial morphology, biogenesis or

turnover, including Rab32, Rab11, Rab4, and Rab7 (Alto et al,

2002; Bui et al, 2010; Caza et al, 2013; Landry et al, 2014; Talaber

et al, 2014; Yamano et al, 2014). Therefore, it would not be

surprising if some of these small GTPases were involved in MDV

transport as well.

It is also critical to learn how MDVs may fuse with their target

organelle. A splice variant of VAMP1A, called VAMP1B, was identi-

fied in 1998 and contains a mitochondrial targeting sequence in

place of the C-terminal tail anchor (Isenmann et al, 1998). VAMP1B

is ubiquitously expressed, whereas VAMP1A variants are exclusive

to neurons. The function of VAMP1B is currently unknown, but it is

a prime candidate to mediate fusion events of MDVs with target

organelles. Mitochondrial proteomic studies have not identified a

t-SNARE or SNAP25 homologue, suggesting that the mitochondria

may be unable to receive incoming vesicles.

Interestingly, a high-resolution proteome of a very divergent

mitochondrion-related organelle, called a mitosome, from the para-

site Giardia intestinalis was recently published (Jedelsky et al,

2011). Mitosomes have lost their mtDNA, as well as their capacity

to respire, and have almost-unrecognizable import machinery.

Their major role is in fact to generate iron sulfur clusters for

distribution throughout the cell. Despite its divergence from a

typical mitochondrion, the highly purified mitosome proteome

included potential orthologues of the retromer component Vps35,

an R-SNARE 3 (a v-SNARE) and VAP, a VAMP (vesicle associated

membrane protein)-interacting protein (Jedelsky et al, 2011). Like

mammalian mitochondria, Giardia mitosomes are also limited to

v-SNAREs in the absence of t-SNAREs or SNAP orthologues. This

provides a clue that even the simplest mitosome may sort cargo

within vesicles for delivery within the cell, perhaps to distribute

iron sulfur clusters to other organelles, or for degradation as we see

in mammalian cells.

The physiological contribution of MDV transport to

mitochondrial quality control

MDV transport to lysosomes adds a fourth mechanism to the para-

digms of mitochondrial quality control. MDVs function alongside

the actions of mitochondrial proteases, ubiquitin-mediated protea-

somal degradation, and mitophagy. The unanswered question is to

define the relative contributions and potential hierarchy of these 4

mechanisms (Fig 3). Mitochondrial proteases degrade unfolded and

oxidized proteins within the matrix and intermembrane space

(Tatsuta & Langer, 2009). In yeast, an in vitro peptide export assay

indicated that mitochondrial proteases degrade between 6–12% of

proteins per hour, consistent with proteases as a front line of mito-

chondrial quality control (Augustin et al, 2005). It is also possible

that proteases may trim down complexes and cargoes, leaving more

hydrophobic regions to be subsequently removed via MDVs, a

possible example of the overlap among these pathways. Loss of

mitochondrial proteases leads to various forms of neurodegenera-

tion, including spastic paraplegia (Casari et al, 1998; Atorino et al,

2003; Nolden et al, 2005). For example, mutations in AFG3L2, an

m-AAA protease within the inner membrane, are responsible for

spinocerebellar ataxia 28 (SCA28) (Di Bella et al, 2010). In addition,

mitochondrial proteases are required for the processing of PINK1

(Greene et al, 2012), further supporting the interdependence

between multiple quality control pathways.

Some outer membrane proteins are ubiquitinated and degraded

by p97-dependent retrotranslocation and delivery to the cytosolic

proteasome (Heo et al, 2010; Tanaka et al, 2010; Chan et al, 2011;

Xu et al, 2011). This process efficiently removes surface proteins,

which may be linked to quality control or to the selective removal

of mitochondrial proteins in response to cellular signals (Neutzner

et al, 2007). For example, the anti-apoptotic Bcl-2 family protein

Mcl-1 is ubiquitinated by MULE during apoptosis, and its removal

facilitates Bax activation and cell death (Warr et al, 2005; Zhong

et al, 2005).

Mitophagy is an important mechanism to remove entirely

dysfunctional mitochondria, whether linked to global protein

misfolding or depolarization (Youle & Narendra, 2011). But what is

the contribution of MDVs to steady-state quality control, and how

does this compare with mitophagy? Unfortunately, since PINK1 and

Parkin are required for both pathways, gene editing or siRNA

approaches will not allow us to easily answer this. Loss of these

genes in flies leads to a loss of dopaminergic neurons and flight

muscle defects, consistent with their importance in mitochondrial

quality control (Clark et al, 2006; Park et al, 2006; Yang et al,

2006). However, the loss of PINK1 or Parkin in mice leads to very

mild phenotypes and a notable absence of neurodegeneration

(Goldberg et al, 2003; Kitada et al, 2009). This hints at the existence

of redundancies in both mitophagy and MDV formation in higher

eukaryotes. Until we identify MDV-specific factors essential for their

formation, we cannot determine the relative contributions in vivo.

We do know that MDVs are released within 2–6 h following a mild

stress like antimycin A, where mitophagy occurs between 12–24 h

(McLelland et al, 2014). The prediction is that MDV formation

protects the mitochondria from mitophagy by removing PINK1 and

Parkin from each failed import channel. Any loss of MDV-specific

machinery should therefore trigger premature mitophagy. Alterna-

tively, the loss of MDVs may lead to increased global cellular
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damage since the mitochondria may need to deteriorate to an appro-

priate level in order to engage the mitophagy pathway. Deteriorating

mitochondria would release increased levels of ROS and likely begin

to consume cellular ATP in efforts to maintain their electrochemical

potential.

Beyond a global consideration of MDVs acting upstream of mito-

phagy in quality control, there are a few clues that shed some light

on the functional importance of MDV formation in mitochondrial

homeostasis. Treating cultured cells with the lysosomal inhibitors

bafilomycin A or pepstatin A/E-64D led to a significant accumula-

tion of MDVs in the cytosol or within the multivesicular bodies

(Soubannier et al, 2012a; McLelland et al, 2014). This demonstrated

that MDV transport occurs in steady state, even in the absence of

mitochondrial or redox-based stress. In addition, the amount of

cargo released into MDVs using the in vitro budding assay was

quantified, indicating that up to 4% of some proteins are ejected per

hour (Soubannier et al, 2012b). While there are certainly limitations

to these kinds of quantifications, it suggests that MDVs are trans-

porting significant amounts of cargo in steady state.

In other approaches, a number of recent studies have quantified

the half-lives of mitochondrial proteins under various conditions,

from yeast to flies and mammalian tissues. The most striking obser-

vation from all of these studies is the extreme variety of half-lives of

mitochondrial proteins—from minutes to weeks. For example, a

recent study in mice demonstrated a threefold range in the turnover

rates of different complex I subunits, indicating that mitochondrial

proteins within the same macromolecular complex have differing

half-lives (Kim et al, 2012). This is consistent with the existence of

multiple, overlapping pathways for mitochondrial protein degrada-

tion. In an elegant study in Drosophila by the Pallanck lab, the

accumulation of cellular proteins in flies lacking the core autophagy

protein Atg5, compared with those lacking Parkin or PINK1, was

quantified by mass spectrometry (Vincow et al, 2013). In the

absence of Atg5, many cellular proteins—including ones targeted to

mitochondria—accumulated, indicating that Atg5 was required for

their turnover. There was a great deal of overlap between the Atg5

and Parkin accumulated proteomes, consistent with them function-

ing along the same pathway in mitophagy. However, there was a

distinct subset of highly hydrophobic proteins of the mitochondrial

inner membrane that accumulated specifically in the absence of

Parkin (Vincow et al, 2013). This indicates that Parkin plays an

additional role the selective removal of these proteins, most likely

through vesicular carriers.

In yeast, the Abeliovich lab recently confirmed the selective

degradation of mitochondrial content using a similar approach

(Abeliovich et al, 2013). In this case, they observed a selective accu-

mulation of proteins in stationary phase yeast upon the loss of

Dnm1, the functional homologue of the fission GTPase Drp1. The

authors concluded that mitophagy results in the selective removal of

damaged content at very different rates and that this process

requires ongoing fusion and fission events. Exactly how the cargo

would be sorted into two halves of a dividing mitochondrion

remains unclear. The authors proposed a type of “percolation” of

specific proteins into large domains, perhaps based on aggregation.

These large domains would eventually be separated from the func-

tional organelle by dynamin-mediated constriction (Abeliovich et al,

2013). On the other hand, it is formally possible that yeast mito-

chondria bud vesicles in a Dnm1-dependent manner, where the

lateral segregation of cargo may occur in an analogous manner to

MDV transport in mammalian systems. There is a great deal of

1 Mitochondrial proteases

Proteases

3 Mitochondria bud vesicles

to carry damaged cargo to 

lysosomes

MVB/MVB/
LysosomeLysosome

MVB/
Lysosome

4 Fission and depolarization

recruits Parkin for 

mitophagy

LC3

Parkin

PINK1

Parkin

PINK1

Ub

Ub

2 Selective ubiquitin-mediated 

degradation by proteasome

Ub

Ub

Proteasome

Figure 3. Outline of the 4 pathways of mitochondrial quality control.

A schematic diagram depicting the presence of mitochondrial proteases within the mitochondrial matrix and intermembrane space, which likely acts as a first line of defense

against unfolded and oxidized soluble proteins. Outer membrane proteins are instead removed from the mitochondria through a retrotranslocation pathway following

ubiquitination. Degradation of these proteins is completed within the cytosolic proteasome, similar to the ER-associated degradation pathway. We propose that the third line

of defense is the removal of mitochondrial patches through the generation of MDVs, which transit to the late endosome. Only upon complete mitochondrial dysfunction, or

upon a failure of most import channels would the entire organelle be targeted to the autophagosome. Different tissues and cellular states may rely on each of these

mechanisms to a variable degree, making it important to understand the levels of redundancy and overlap among these pathways.
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evolutionary distance between these two models, so these possibili-

ties should not be ruled out without formally testing them with

higher resolution imaging and biochemical analysis. Overall, quanti-

tative mass spectrometry approaches are helping define the turnover

of critically important mitochondrial proteins and lipids under a

myriad of conditions.

The field of mitochondrial quality control has exploded with the

causal links to many degenerative diseases. So do any of the recent

studies support a role for MDVs in quality control? The most

common approach is to use the protonophore CCCP to globally

depolarize mitochondria and induce Parkin-dependent mitophagy.

However, recent studies are expanding the analysis to more physio-

logical systems, including the unfolded protein response (Jin &

Youle, 2013), laser-induced damage (Yang & Yang, 2013), and the

manipulation of mitochondrial proteases that interfere with PINK1

processing, such as the matrix processing protease (MPP) (Greene

et al, 2012). Indeed, modest knockdown of the catalytic subunit

MPPb leads to PINK1 accumulation, Parkin recruitment, and mito-

phagy, without the widespread effects seen with CCCP on protein

import and mitochondrial function (Greene et al, 2012). Using a

different approach, the Youle lab employed a non-cleavable mutant

of ornithine carbamyl transferase (Jin & Youle, 2013), first used to

induce the mitochondrial unfolded protein response by Nick

Hoogenraad (Zhao et al, 2002). Cells expressing this construct accu-

mulated PINK1-YFP at specific foci along the mitochondrial tubules

(Jin & Youle, 2013), presumably reflecting sites of failed import.

Parkin was recruited to these sites as well, and after extended accu-

mulation of unfolded proteins, respiratory competent mitochondria

were cleared by mitophagy. Similarly, foci of Parkin and PI(3)P

were observed along mitochondria following laser ablation (Yang &

Yang, 2013), and these small fragments were targeted for mito-

phagy. In all these studies, the authors did not explore whether they

were actually imaging MDVs as an early, targeted response to the

stress. Certainly, if the magnitude of the damage is great enough,

mitophagy will ensue, as is commonly observed. Interestingly, two

tail-anchored mitochondrial membrane proteins, FKBP38 and Bcl-2,

were shown to translocate to the endoplasmic reticulum to escape

CCCP-induced mitophagy (Saita et al, 2013). The mechanism for

this relocalization is not known, but the authors suggested the

possibility of vesicle-based transport prior to mitochondrial removal

by mitophagy. As the size of MDVs is smaller than the wavelength

of light, routine confocal microscope approaches cannot distinguish

between a mitochondrial fragment (~400 nm diameter) and an MDV

(~100 nm) (Neuspiel et al, 2008; Soubannier et al, 2012a). Antibody

staining can reveal the selection of specific mitochondrial cargo in

these structures, and silencing Drp1 can help address the question

of fission vs. budding. In the end, ultrastructural analysis is critical

to directly visualize these events, something lacking from current

studies. Some experimental considerations relevant to the analysis

of cellular MDVs are listed in Box 1.

In order to ultimately define the functional contribution of MDV

transport to mitochondrial quality control in vivo, we will continue

to identify the core machinery required to generate and transport

MDVs. We are currently utilizing the cell-free mitochondrial

budding assay to generate vesicles in the presence of non-hydrolyz-

able GTP, for example, to stabilize potential coat proteins and other

machinery. Mass spectrometry of isolated vesicles will help identify

both the cargo and machinery. Lipidomics should lend insights into

any lipid oxidation or enrichments that are likely to be very impor-

tant cargoes as well. As the mechanisms gain in resolution, we will

be able to directly assess the consequences on mitochondrial func-

tion and cell survival in different cell types and tissues.

The meaning of MDV transport to the peroxisome

Next to the ER, it can be argued that the peroxisome is the most

closely linked organelle to the mitochondria (Mohanty & McBride,

2013). In mammalian cells, both organelles are responsible for the

Box 1. Experimental considerations for MDV analysis

– MDVs are visualized as small vesicular structures that show

evidence of cargo selectivity. This is done using highly specific

antibodies against endogenous mitochondrial proteins, or with a

combination of transfected mitochondrial GFP-tagged constructs

with antibodies to label a second or third mitochondrial protein.

The limitation of antibody usage is the absolute dependence on

the specificity and low or zero background signal. GFP-tagged and

overexpressed proteins have not been efficient cargoes in general,

perhaps because they are first targeted by proteases. We continue

to evaluate mitochondrial content in MDVs and look to proteo-

mics approaches for future analysis.

– To increase the ability to visualize MDVs, it is useful to minimize

mitochondrial fragmentation by silencing the fission machinery,

or expressing a dominant-negative Drp1. This results in hyper-

fused mitochondria, enabling the visualization of small, Drp-

independent MDVs within the cell.

– To capture MDVs within the cytosol, prior to delivery to the lyso-

some, cells can be pre-treated with bafilomycin A. Alternatively,

inhibition of lysosomal proteases with E64D/pepstatin A allows

delivery to lysosomes, but blocks protein degradation. For trans-

port to peroxisomes, the cargo is not degraded, so MAPL-positive

MDVs en route to peroxisomes (or already within peroxisomes) is

monitored by triple-labeling mitochondria, MAPL and peroxisomes.

We do not yet have the tools to block the fusion of MAPL-positive

MDVs with peroxisomes and accumulate them within the cytosol.

– Our experience with immunofluorescence approaches indicates a

requirement for high percentages of PFA (5–6%), added directly to

cells at 37�C without a PBS wash. This hints that the lipid/protein

ratio in MDVs is not easily crosslinked and may be lost with low

concentrations of fixative.

– The signal intensity of cargo within MDVs varies; Tom20-positive

MDVs are brighter in Tom20 signal compared with Tom20 inten-

sity within mitochondria, but PDH is less enriched in MDVs

compared with the mitochondria. Given this variability, it is impor-

tant to use an appropriate objective lens, preferably 100×, with

the highest NA possible, at least a 1.4. Cameras for spinning confo-

cal continue to improve, increasing the ability to visualize MDVs,

and laser scanning confocal at high resolution also works well.

– Ultrastructural analysis is important to directly visualize MDVs

within the cell using immunogold labeling. This is to confirm their

size and differentiate them from Drp1-dependent fragments. The

probabilities of capturing an unbudded MDV from the mitochon-

dria is low unless cells are treated with stress agents like xanthine

oxidaze/xanthine. Overexpressing MAPL in cells led to a dramatic

stabilization of unbudded structures, suggesting that the GFP tag

interfered with efficient removal. With the ongoing identification

of new machinery required to generate MDVs, their silencing

should help capture MDVs in various stages of formation. Tomog-

raphy of tissues from disease animal models should also help visu-

alize MDVs emerging in situ at high resolution.
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beta-oxidation of fatty acids, where peroxisomes selectively oxidize

very long-chain fatty acids and perform alpha-oxidation reactions.

Both organelles neutralize damaging oxidative by-products—per-

oxides (peroxisomes) or ROS (mitochondria)—and the biogenesis of

both organelles is signaled by the peroxisome proliferator-activated

receptor coactivator 1 alpha (PGC1a) pathway (Mohanty & McBride,

2013). The biogenesis and growth of both organelles is also coupled

to the ER, which provides lipids to facilitate their growth. Finally,

the organelle division machinery is shared, including the core

fission GTPase Drp1 and its receptor Mff (Koch et al, 2003;

Gandre-Babbe & van der Bliek, 2008). Indeed, membrane-anchored

proteins like Mff are commonly localized to both peroxisomes and

mitochondria, (Koch et al, 2005; Gandre-Babbe & van der Bliek,

2008). Most of these tail-anchored proteins appear to be imported

into peroxisomes using the canonical, peroxisomal import

machinery (Delille & Schrader, 2008).

We identified MAPL as a SUMO E3 ligase containing two trans-

membrane domains, with a C-terminal RING domain exposed to

the cytosol and a approximately 40 kDa intermembrane space

domain of unknown function (Li et al, 2008; Neuspiel et al, 2008;

Zhang et al, 2008; Braschi et al, 2009; Jung et al, 2011). This

protein has a unique evolutionary phylogeny, with the inter-

membrane space and transmembrane domains being conserved

within distant bacteria, as well as plants (Andrade-Navarro et al,

2009). MAPL promotes the sumoylation of Drp1, stabilizing its

recruitment to the mitochondria and promoting fission (Neuspiel

et al, 2008; Braschi et al, 2009).

If peroxisomes can import their own proteins, why would MAPL

require such a complex vesicular transport pathway? We are

actively pursuing an answer to this question, so will only speculate

here. Peroxisomes grow and divide as autonomous organelles.

However, unlike the mitochondria, which multiply exclusively as a

result of the enlargement and fission of existing organelles, peroxi-

somes can also be generated de novo (Dimitrov et al, 2013). Current

evidence, primarily in yeast, supports a role for the ER in the gener-

ation of new peroxisomal precursor vesicles that may mature

(Hoepfner et al, 2005), or fuse to form a mature organelle (Lam

et al, 2010). The population of “young” versus “mature” peroxi-

somes varies depending on the cell type and growth conditions. As

a regulator of Drp1, MAPL is likely to participate in peroxisomal

biogenesis and division. The silencing of MAPL does not phenocopy

Drp1, so it is not essential for mitochondrial fission, rather it can

promote and stabilize Drp1 recruitment. It may be that MAPL is

targeted to “young” or newly formed peroxisomes, which may have

a higher rate of fission, or different regulatory mechanisms than the

“older”, more mature peroxisomes.

A second reason to consider that MAPL-containing MDVs would

target “young” peroxisomes is that old peroxisomes cannot fuse,

only the ER-derived pre-peroxisomes are thought to be fusogenic

(Dimitrov et al, 2013). Therefore, MDVs may deliver their cargo to

the pool of nascent peroxisomes, and this cargo exchange may be

necessary for peroxisomal maturation. As these peroxisomes grow

and divide, MAPL would become diluted, or perhaps selectively

degraded in some way. From an evolutionary perspective, it is inter-

esting that most of the peroxisomal enzymes appear to derive from

an archaebacterial origin (Gabaldon et al, 2006). This has led some

to suggest that peroxisomes originated as specialized mitochondria

responsible for the breakdown of very long-chain fatty acids (and a

number of other biochemical processes) (Speijer, 2014). Perhaps,

this ancient vesicular transport pathway allowed the selective

segregation of potentially damaging (or highly ROS generating)

mitochondrial pathways to a newly formed organelle within the

primitive eukaryotic cell.

Supporting the idea that the mitochondria contribute to the

generation of peroxisomes de novo is the fact that many peroxisomal

membrane proteins default to the mitochondrial outer membrane in

patient fibroblast cells lacking peroxisomes (Sacksteder et al, 2000;

South et al, 2000; Kim et al, 2006; Toro et al, 2009). This is not an

exclusive pathway, as other peroxins target the ER under these

conditions (Kim et al, 2006; Toro et al, 2009; Yonekawa et al,

2011), as in yeast. To date, this mitochondrial default pathway in

mammalian cells has not been considered physiologically meaning-

ful. However, this observation is consistent with the mitochondria

as a contributor to peroxisomal biogenesis. Indeed, a recent study

from the Erdman laboratory showed that a yeast mutant strain lack-

ing Pex3 was rescued by ectopically targeting Pex3 to the mitochon-

dria, resulting in the biogenesis of functional peroxisomes in cells

that previously lacked these organelles (Rucktaschel et al, 2010).

This indicates that the machinery exists to generate peroxisomes

from mitochondria, even in yeast. We are currently exploring

whether the retromer subunit Vps35 may bind to mitochondrial-

localized peroxins like Pex3. Upon transfection of Pex3-GFP, some

cells show high levels of mitochondrial targeting even when peroxi-

somes are functioning normally (Kim et al, 2006). It is also possible

to test whether the retromer is required to generate new peroxi-

somes in patient fibroblasts upon rescue with the missing peroxin.

Approaches like this should help define the functional contribution

of MDV transport to peroxisomes.

What mitochondrial cargo do peroxisomes require that cannot be

simply imported directly from the cytosol? These organelles share

many metabolites, including heme, which is generated from iron

sulfur clusters in the mitochondria and required for peroxisomal

enzymes like catalase (Lazarow & de Duve, 1973; Stehling et al,

2014). Phospholipids like phosphatidylethanolamine, which is used

to generate plasmalogens (Braverman & Moser, 2012), and perhaps

even very long-chain fatty acids that may be misdirected to the

mitochondria could be carried more easily within MDVs rather than

via a soluble, cytosolic intermediate. With the identification of the

retromer complex as requisite for this vesicle transport pathway, we

can dissect the functional consequences on peroxisomal function

when Vps35 is lost (Braschi et al, 2010). For example, if heme is a

cargo, then loss of Vps35 may lead to oxidative stress within peroxi-

somes through catalase dysfunction. This would be particularly

dangerous for neurons, since it is established that patients suffering

from peroxisomal disorders present with a primarily neurological

phenotype (Powers, 2001). Patients suffering from Zellweger

syndrome carry mutations in core peroxisomal import proteins and

therefore lack peroxisomes. The primary manifestation of the

disease is a loss of myelination and neuronal cell death through the

accumulation of very long-chain fatty acids and ROS production

(Barry & O’Keeffe, 2013). Although primarily a disease of infants, an

analysis of peroxisomal dysfunction in age-related diseases like PD

is currently gaining momentum (Fransen et al, 2013). In general

terms, it is clear that the mitochondria and peroxisomes are

intimately linked and that the dysfunction of one can lead to the

dysfunction of the other (Baumgart et al, 2001).
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An alternative fate for MAPL-containing MDVs may be to a

specialized functional population of peroxisomes. For example, it is

possible that peroxisomes may not all be identical; some may

specialize in bile acid synthesis, some in long-chain beta-oxidation,

and others in plasmalogen synthesis. It is difficult to envision how

the import machinery would select for a subset of functional

enzymes. On the other hand, the delivery of an MDV to a peroxi-

some would change the content by supplying metabolite substrates

or enzymes, thereby actively generating a functionally distinct class

of peroxisome. Although some evidence supports the existence of

different populations of peroxisomes in isolated tissue, identified by

altered buoyant densities (Schrader et al, 1994), the functional

implications of these different pools have not been established.

Again, once the fusion machinery and cargo are identified, we can

directly test these hypotheses.

Other fates for MDVs?

The fate of mitochondrial cargo entering the late endosome/multive-

sicular body is primarily to be degraded, since the inhibition of lyso-

somal proteases led to an accumulation of mitochondrial content

(Soubannier et al, 2012a; McLelland et al, 2014). However, there

may be other fates of this cargo. The multivesicular body can be

routed to the cell surface, where its limiting membrane can fuse

with the plasma membrane (Raposo & Stoorvogel, 2013). This leads

to the release of its internal contents—intralumenal vesicles

(exosomes), which can contain protein and microRNAs, as well as

vacuolar proteases—that can have broad-ranging effects on neigh-

boring cells; from microRNA-based reprogramming to cancer cell

migration (Raposo & Stoorvogel, 2013). Proteomic analysis of

exosome content, compiled within the “Vesiclepedia” (http://www.

microvesicles.org) indicates that up to 10% of secreted proteins are

mitochondrial (Choi et al, 2013; Burke et al, 2014), although it is

not known whether this is functionally significant. Autophagosomes

can also be a source of unconventional secretion, which can include

a subset of leaderless cytosolic proteins (Zhang & Schekman, 2013),

with some evidence of transit through the recycling endosome

(Duran et al, 2010; Manjithaya et al, 2010). The most robust exam-

ple of secreted autophagosomes occurs during erythrocyte

development when the cytosolic organelles are ejected to form the

red cell (Ney, 2011). MDV transport to the late endosome in steady

state would predict the presence of selected mitochondrial content in

exosomes under most conditions (Fig 2). Therefore, both mitophagy

and MDV transport to the late endosome provide a means for the

secretion of mitochondrial content from the cell.

The steady-state presence of mitochondrial content in exosomes

may have some important physiological consequences. Under the

conditions we have examined so far, we have shown that MDVs can

contain at least three of the five complexes of the electron transport

chain. Complexes III and IV both include subunits encoded by the

mitochondrial DNA, which are translated with a formylated initiat-

ing methionine, conserved from bacterial translation (Kozak, 1983).

The presence of extracellular formylated proteins or peptides can

launch an immune response, whether of bacterial or mitochondrial

origin (Zhang et al, 2010). This is because non-methylated DNA

(Pollack et al, 1984) and formylated peptides bind and activate

Toll-like receptor 9 leading to cytokine release and lymphocyte

infiltration (Zhang et al, 2010). This pathway was shown to become

activated within the endosome of cells lacking the lysosomal

DNAseII (Oka et al, 2012). The subsequent accumulation of mtDNA

within the autophagosome eventually escaped into the endosomal

compartments, activating the receptors in the lumen of the endo-

some. Therefore, whether secreted through exosomes, or accumu-

lated within the endosome, mitochondrial content has the potential

to launch an inflammatory response.

Another possible link between MDVs, exosomes and disease may

involve a-synuclein. a-synuclein is an aggregation-prone cytosolic

protein important in the pathogenesis of sporadic PD. Moreover,

mutations in a-synuclein, like those in Parkin and PINK1, lead to a

familial form of PD, albeit a dominant iteration of the disease (Klein

& Westenberger, 2012). Secretion and cell-to-cell transfer of

a-synuclein has been shown both in cells and in vivo (Lee et al,

2004, 2005, 2008a,b; Desplats et al, 2009; Luk et al, 2012a,b),

and exosomes constitute a proposed method of propagation

(Emmanouilidou et al, 2010; Kong et al, 2014; Lee et al, 2014).

While a functional role for a-synuclein has been proposed in the

assembly of presynaptic SNARE complexes (Chandra et al, 2005;

Burre et al, 2010; Diao et al, 2013), a-synuclein has also been

shown to function at mitochondria. A number of studies have iden-

tified a-synuclein as present either within mitochondria (Cole et al,

2008; Devi et al, 2008), or localized to mitochondrial-associated

membranes of the ER (Guardia-Laguarta et al, 2014) and have

implicated it in binding to anionic and cardiolipin-containing

membranes (Nakamura et al, 2011; Zigoneanu et al, 2012; Diao

et al, 2013) and in promoting Drp1-independent fission (a hallmark

of MDV formation) in cells (Kamp et al, 2010; Nakamura et al,

2011). Thus, the incorporation of a-synuclein into multivesicular

bodies via MDVs represents an intriguing candidate mechanism for

its exosomal secretion, with additional implications for PD.

Final thoughts

With advances in the mechanistic characterization of MDV trans-

port, we hope the field will be encouraged to carefully examine

these structures within various physiological paradigms. There are

many lines of evidence supporting the importance of MDV transport

in mitochondrial cell biology; from an unbiased evolutionary

consideration of the process (Kulp & Kuehn, 2010; Jedelsky et al,

2011), to their potential roles in peroxisomal function (Neuspiel

et al, 2008; Braschi et al, 2010) and mitochondrial quality control

(Soubannier et al, 2012a,b; McLelland et al, 2014). MDVs can be

observed by monitoring multiple mitochondrial markers by confocal

microscopy, particularly in cells where Drp1 function is lost

(Box 1). With the resulting hyperfused reticulum, these small

vesicles are much more noticeable using high-resolution imaging

techniques. Technically, there are still some limitations, primarily in

the limited assortment of antibodies. There are approximately 1,000

proteins in the mitochondria, and we can only follow a handful

using immunofluorescence approaches. In addition, we have noted

that MDVs are somewhat fragile and not as easily fixed compared

with the mitochondrial tubules (we routinely fix with 5–6% para-

formaldehyde, for example). This likely reflects differences in lipid

and protein composition within MDVs. In future studies, it will be

important to examine the functional contribution of MDVs in
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the physiology of specific tissues, particularly neurons, given the

apparent links to Parkinson’s disease.

The mitochondria are the most recent eukaryotic organelle from

which vesicle transport has been observed. However, there is some

irony in the knowledge that this process has clearly been conserved

from the organelle’s humble origins as archaebacteria. It leads us to

wonder what other fascinating and unexpected cellular pathways

are waiting to be discovered as we dig deeper into the mechanisms

and meaning of mitochondrial vesicles.
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