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Abstract—The rapid growth of Internet of Things (IoT) and sensing technologies has led to an increasing interest in time-series data

analysis. In many domains, detecting patterns of IoT data and interpreting these patterns are challenging issues. There are several

methods in time-series analysis that deal with issues such as volume and velocity of IoT data streams. However, analysing the content

of the data streams and extracting insights from dynamic IoT data is still a challenging task. In this paper, we propose a pattern

representation method which represents time-series frames as vectors by first applying Piecewise Aggregate Approximation (PAA) and

then applying Lagrangian Multipliers. This method allows representing continuous data as a series of patterns that can be used and

processed by various higher-level methods. We introduce a new change point detection method which uses the constructed patterns in

its analysis. We evaluate and compare our representation method with Blocks of Eigenvalues Algorithm (BEATS) and Symbolic

Aggregate approXimation (SAX) methods to cluster various datasets. We have evaluated our algorithm using UCR time-series

datasets and also a healthcare dataset. The evaluation results show significant improvements in analysing time-series data in our

proposed method.

Index Terms—Lagrangian multiplier, data analytics, aggregation, data representation, change point detection
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1 INTRODUCTION

THE rapid growth of connected devices and networks gen-
erates massive amount of data. Some of this data is gener-

ated by Internet of Things (IoT) technologies which capture
information from the physical environment. IoT is pushing
the boundaries between the physical and digital world and
allows collecting continuous observations and measurements
and also provides means for actuation and interaction with
the physicalworld. IoT data is often represented as time-series
which is a collection of observations in a time domain [1].

Analysing time-series data can be beneficial in developing
effectivemethods for processing the observations and gaining
insight into relationships and hidden structures of the data. It
is also important to identify various patterns in time-series
data and gather information about how these patterns change
or co-relate over time. However, there are several challenges
in analysing IoT data including high dimensionality, volume,
scalability, noise and measurements errors, computational
costs, heterogeneity, diversity of sensor technologies and var-
iations in the quality of data. Due to the applications of time-
series data in different domains such as biology, industry and
finance, there have been several works on the development of
transformation and representation methods for time-series
data. One of the key steps in processing time-series data is

often dimensionality reduction and applying spatial methods
to transform the data from time domain to other domains [2]
such as Discrete Fourier Transform (DFT) [3], Discrete Wave-
let Transform (DWT) [4] and Singular Value Decomposition
(SVD) [5].

There are other types of representation techniques such as
Piecewise Linear Segmentation [6], Piecewise Aggregate
Approximation (PAA) [2] and Adaptive Piecewise Constant
Approximation (APCA) [7] that use simple statistical proper-
ties to reduce the size of time-series data. There are also meth-
ods that represent time-series data in symbolic or latent space
models; e.g., Symbolic Aggregate approXimation (SAX) [8]
and Blocks of EigenvaluesAlgorithm for Time-series Segmen-
tation (BEATS) [1]. However, in this paper, our purpose is not
just to reduce the size of time-series data. The main objective
is to identify and analyse the emerging patterns from the
time-series data.

Normalised time-series data can be represented by a
Gaussian model with mean of zero (m ¼ 0) and standard
deviation of one (s ¼ 1) [8]. Methods such as SAX use this
Gaussian property to represent the data based on the sym-
bolic representations. However, the existing segmentation
and representation methods for time-series data have limi-
tations in handling noisy data and do not adapt well to data
and concept drifts. In this paper, we introduce a time-series
data segmentation and pattern representation method
which capture the useful information of data. We explore
the spatial and temporal correlations of data in small time
segments. We represent the time-series as blocks of seg-
ments and later on as eigenvectors of those segments.

Detecting change points in time-series data is also one of
the key issues in analysing continuous data points. Several
approaches have been proposed in this area includingCUmu-
lative SUM method (CUSUM) [9], [10], Bayesian method [11]
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and Kullback-Leibler Importance Estimation Procedure
(KLIEP) [12].

The main contributions of this paper include a novel
method for representing time-series data and developing a
method for creating patterns based on eigenvector space
model and also change point detection by using entropymod-
els applied to the blocks of segments created by our pattern
representation method. We have evaluated our work by
applying clusteringmethods on a set of common datasets and
have compared ourworkwith some of the key state-of-the-art
works in this domain. The evaluation results show that our
proposed method provides better results in clustering time-
series data (up to 20 percent higher than the state-of-the-art
methods) and is also capable of detecting changes in time-
series data with a higher performance (around 37 percent
higher accuracy and around 10 percent higher reliability com-
pared with a baseline method) which can be found in
Section 5.

The remainder of this paper is organised as follows:
Section 2 describes the related work. Section 3 details the pro-
posed method and explains the mathematical details of the
algorithm. Section 4 describes the change point detection.
Section 5 presents the performance evaluations compared
with other representation and change point detection techni-
ques using a set of standard datasets and discusses the results
of experiments. Section 6 describes the complexity analysis of
the proposed method in representation and change point
detection. Section 7 concludes the paper and discusses future
work.

2 RELATED WORK

2.1 Time-Series Representation

One of the major challenges in analysing time-series data is
the volume of data pointswhichmakes data analysis complex
and expensive in terms of storage and processing time. There
are several solutions to tackle this problem. In most of the
existing work, segmentation has been used as a pre-process-
ing step. Segmentation is transforming a time-series of length
n to a sequence of l piecewise segments (l < n) [1]. After seg-
mentation, the representation methods are an important step
to process segments of time-series data. Time-series data
representation requires two key considerations: minimising
the true distance measure of representation with original
data, and preserving the key characteristics of the data while
representing the data in lower dimensions [13].

One solution is to represent each segment as a line which
connects the two endpoints. In other words, the representa-
tion of segments pi; . . . ; pj

� �
as lines is connecting each pi to

pj [14]. Keogh et al. [6] represent each segment with a line
and a weight related to its importance with a bottom-up
algorithm which uses merging of the sequences to get to the
required number of sequences. They also introduce a
weighted euclidean distance measure which includes the
weights of segments in the measurement (Eq. (2)).

The euclidean distance measure is shown below where
x ¼ ½x1; . . . ; xn� and y ¼ ½y1; . . . ; yn� are sequences of length n

Dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðxi � yiÞ2

s
: (1)

In the weighted euclidean distance measure, x and y sequen-
ces have slices in which each slice is in a segment of the data,
and each segment hasweight as shown below:

D0ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2segments

WjDðxj; yjÞ
s

; (2)

where xj and yj are the slices of x and y in the jth segment of
the method and Wj is the weight of the segment. In the sim-
ple line-based method some information will be lost; for
example, if local maximum or minimum points are not end-
points, their information will be lost. There can also be a big
change in the shape of the time-series within each segment,
which will not be represented using a simple linear model.
Shatkay et al. [15] deal with the above mentioned problems,
by breaking the time-series into extremum points (exclud-
ing the small local extremums). They present their solution
by using sliding windows, shifting a window through a
time-series and cutting at the point where the mean absolute
error passes a threshold. Each segment is represented by a
function which can be a linear regression, a line which is an
approximation of the curve, or interpolation through the
endpoint of each sequence or in other words, a line which
approximates the curve with including the endpoints [15].
There are existing works in introducing the streaming ver-
sion of this technique [16]. Duvignau et al. [17] implemented
a new Piecewise Linear Approximation (PLA) method in
streaming paradigm with introducing a “singleton stream”
contains only one value and using the number of points in
each segment rather than storing the entire timestamps.
Using the singleton stream reduces the generation of more
unnecessary data when there are not enough data points.

Another type of representation for segments is to use the
mean value [2], [7]. In [2], time-series of length n (x ¼
½x1; . . . ; xn�) are represented as vectors of w-dimensions;
where w (w < n) is the number of equal sized segments.
The representation is x ¼ ½�x1; . . . ; �xw�where

�xi ¼ w

n

Xnwi
j¼n

wði�1Þþ1
xj: (3)

This method is called Piecewise Aggregate Approximation
(PAA). PAA is simple and fast to compute, and for distance
measure, the weighted euclidean distance measure or euclid-
ean distance measure can be used. In [7], Keogh et al. discuss
an arbitrary lengths representation method which is called
Adaptive Piecewise Constant Approximation (APCA). Given
a time-series x ¼ ½x1; . . . ; xn�, the APCA representation is
given as

�X ¼ fð�x1; xr1Þ; . . . ; ð�xw; xrwÞg; (4)

where �xi is the mean value of ith segment and xri is the
right endpoint. One of the advantages of this method is the
ability to place one segment in the areas of low activity and
more segments in the areas of high activity. This technique
outperforms the original PAA, and it also creates a better
approximation for time-series. However, PAA and APCA
have a major drawback which is the lack of ability to pre-
serve the shape of time-series; in other words, two segments
with different shapes can have similar mean values [18].
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Other representation methods use transformation models
such as transforming to frequency domain, the number of
waves passing a point in a certain time. In these methods, the
main purpose is to preserve the frequency coefficients which
have the most ability to differentiate the transformed
sequence from other sequences. Discrete Fourier Transform
(DFT) is one of the methods which represents time-series
sequences as a finite number of sine or cosine waves which
can be shown via a set of complex numbers that are called
Fourier coefficients [2]. One of the main advantages of repre-
senting time-series in a frequency domain, besides data com-
pression, is the ability to use the DFT coefficients to construct
the original time-series [2]. The DFT results can also handle
the euclidean distance measure by data mining algorithms
such as clustering and classification. However, DFT cannot
capture an online event in an ad-hoc manner at a particular
time [18]. To deal with this problem, one can use Discrete
Wavelet Transform (DWT) and theHaar transform [19]which
provides a quick approximation. It also preserves the euclid-
ean distance measures between sequences in both time and
frequency domains [4]. Wavelet transform is a technique to
divide data into different frequency components based on
two variables: frequency and time. TheWavelet transform is a
time-frequency localisation to represent the frequency behav-
iour of a signal locally in time [20].

Another transformation method is Singular Value Decom-
position (SVD)which is a commonmodel in text anddata ana-
lytics. SVD is a data-dependent operation because unlike DFT
which takes cosine and sine as kernel functions, SVD com-
putes the kernel function from the input data [5]. The defini-
tion of SVD is given below [21]:

Theorem 1. Given an n�m matrix X we can represent it as

X ¼ U�L�VT ; (5)

where U is a column-orthonormal n� r matrix,L is a diagonal
r� rmatrix, andV is a column-orthonormalm� rmatrix.

The diagonal elements of matrixL are the eigenvalues ofX
and r is the rank ofXwhich is the number of the largest eigen-
values of X. SVD can be used to reduce dimensions of multi-
variate time-series data. However, one of the problems with
SVD is the cost of updates. We need to recalculate the entire
operation when there are new elements in the time-series [5].
SVD also is not efficient for large datasets [13]. Another form
of representation for time-series data is using symbolic forms.
One of the well-known methods in this area is Symbolic
Aggregate approXimation (SAX) which discretises a time-
series into a set of symbolic sequences [8]. SAX uses PAA as
an intermediate representation before creating symbolic rep-
resentations. SAX normalises data to have a mean of zero and
a standard deviation of one. It then reduces the length of time-
series data using PAA. After that, with the assumption of a
Gaussian distribution of normalised data [22], SAX uses
breakpoints to produce a equally probable areas under the
Gaussian curve [8].

Breakpoints:
Breakpoints are a sorted list of numbers B ¼ b1; . . . ;ba�1
such that the area under a Gaussian curve from bi to biþ1
is 1

a (b0 and ba are defined as �1 and1). a is the number
of symbols.

To represent a PAA representation as a sequence of sym-
bols which is called a SAX word, SAX performs as follows:
a sequence (PAA representation) c ¼ ½c1; . . . ; cw� will be rep-
resented as a word ĉ ¼ ½ĉ1; . . . ; ĉw�where

ĉi ¼ aj iff bj�14ci < bj; (6)

and aj is the jth element of the SAX alphabets, 14j4a [8].
SAX similar to PAA does not consider the segments trends;
in other words, two segments with same mean values have
same symbol representation [1].

The Gaussian assumption is also a drawback in applying
SAX todynamic data streams. To dealwith this problem, there
have been works to extend SAX; e.g., improving the break-
points using k-means clustering [23]. aSAX, adaptive SAX,
uses small number of PAA representations (first represents
normalised time-series as PAA) as training samples and the
alphabet size a as number of clusters and the breakpoints for
Gaussian curve as initialisation of clusters [23]. There are also
several other extensions of SAX, including ESAX (Extended
SAX) which is to tackle the issue of segments trends [24]. This
method adds maximum and minimum to each PAA segment
besides its mean value. Other extensions include SAX Trend
Distance (SAXTD) [24] and SAX with Standard Deviation
(SAXSD) [25]. SAXTD uses the start and endpoints of each
PAAsegment for improvement andSAXSD adds the standard
deviation of each PAA segment to it.

SAX introduces a distance measure with lower bounds
euclidean distance [8]. This distance measure is defined as

MINDISTðq̂; ĉÞ ¼
ffiffiffiffi
n

w

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXw
i¼1

distðq̂i; ĉiÞ2
s

; (7)

where q̂ and ĉ are the SAX representations of time-series
segments q and c and w is the reduced length of these seg-
ments representations. The distðÞ function computes the
distance of two symbols using a lookup function cellðr; cÞ
which is defined as

cellðr; cÞ ¼ 0 if jr� cj � 1
bmaxðr;cÞ�1 � bminðr;cÞ otherwise

�
: (8)

The distðq̂i; ĉiÞ is equal to look up function cellðr; cÞ when
q̂i ¼ ar and ĉi ¼ ac [8]. An issue with the above described
methods is using the normalising and re-scaling measures.
To construct a segment representation without the normal-
isation step, the Blocks of Eigenvalues Algorithm for Time-
series Segmentation (BEATS) divides the time-series into
equal sized blocks and then uses Discrete Cosine Transform
(DCT) and eigenvalues to represent the segments [1]. Dis-
crete Cosine Transform (DCT) is a frequency transformation
which takes cosine as its kernel function [1].

BEATS divides time-series data into windows of 64
observations and transforms each segment into a matrix M
of 8� 8. It then applies DCT and transforms M using
D ¼ UMUT , where

Ui;j ¼
ffiffi
2
p
2 if i; j ¼ 1
cosðpn ði� 1Þðj� 1

2ÞÞ if i; j > 1
2

�
: (9)

After that it uses Z (the standard quantisation matrix of
DCT [26]) to quantise the D matrix (Q ¼ D

Z), it then extracts
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the upper-left 4� 4 matrix of it and computes the eigenval-
ues and removes the duplicate values [1].

2.2 Change Point Detection

In time-series analysis change detection is another key issue. A
change detection method tries to find abrupt changes in the
properties of time-series data [27]. The change point could
have different interpretations in various methods. In some
methods, the change point detection identifies a point inwhich
the stationary properties change or in some method identifies
a region that the change occurs. CUmulative SUM method
(CUSUM) is a well-known algorithm. CUSUM is a sequential
analysis technique [9] which uses a parameter of the probabil-
ity distribution, mean, as a measurement to detect the change
[9]. It sums samples sequentially, and when the value exceeds
a threshold, it indicates a change point [9]. Another common
change detection method is Kullback-Leibler Importance

Estimation Procedure (KLIEP) that uses dissimilarity measure
between two segments of time-series [12]. The dissimilarity
measure which has been used in KLIEP is Kullback-Leibler
(KL) divergence [12]

KL½pðxÞjjp0ðxÞ� ¼ �
Z

p0ðxÞlog pðxÞ
p0ðxÞ ; (10)

where pðxÞ and p0ðxÞ are probability distributions of two suc-
cessive segments of time-series. Bayesian methods are also
used for change detection in time-series data [27]. The Bayes-
ian change detection method is based on the assumption that
a time-series can be divided into segments that each have a
probability distribution [11]. The process is based on Bayes
theorem, and it estimates the posterior distribution using a
Bayesian estimation method [11]. Bayesian change point
detection method uses a supplementary variable (rt) to show
the time passes after the previous change point. At each time
this variable can be set to zero or increase by one. The distribu-
tion of rt can be represented as below [27]:

P ðrtjx1:tÞ ¼
P

rt�1 P ðrtjrt�1ÞP ðxtjrt�1; xðrÞt ÞP ðrt�1; x1:t�1ÞP
rt
P ðrt; x1:tÞ ;

(11)

where x
ðrÞ
t is the data corresponding to rt, P ðrtjrt�1Þ is the

prior distribution in Bayes theorem which is the probability
distribution without further evidence, P ðxtjrt�1; xðrÞt Þ is the
likelihood function and P ðrt�1; x1:t�1Þ is the recursive mod-
ule for joint distributions in Bayes theorem [11].

In the next section, we describe our algorithm that repre-
sents the data as unit vectors. Unlike the existing methods
such as SAX, it also does not need the distribution assump-
tion. In representation algorithms, distance measure is one of
the requirementswhich has been considered in ourmethod.

3 METHODOLOGY

This section describes our proposed method that allows a
time-series of length n to be represented as a unit vector of w
(w < n) dimensions. We first reduce the length of the time-
series using PAA and then by applying the Lagrangianmulti-
plier1 change the PAA representation to a unit vector. In
mathematical optimisation, one can use the idea of Lagrang-
ian multiplier for finding the local maxima and minima of a
function related to equality constraints. This method allows
solving the optimisation problemswithout findingparametric
equations for the functions. Using the Lagrangian multiplier
in ourmethod has two key advantages: reducing the length of
the time-series and showing the differences between different
time-series without scaling problem by using unit vectors.We
use an example to explain our proposedmethod. The example
uses a time-series of length 80 as shown in Fig. 1.

Fig. 1. An example of the proposed method.

1. Lagrangian is a reformulation of the classical mechanics which
describes the motion of point particles. To compute the trajectory of a
system of particles, the path point particles follow, one can use the
Lagrangian multiplier. In the Newtonian law the equation of motion is
given based on force; however, Lagrangian system uses kinetic energy
(the energy which a system possesses because of the particles’ motion)
and potential energy (the energy which a system possesses due to the
position of the particles relatives to other objects).
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3.1 Length Reduction via PAA

PAA reduces the length of the time-series by splitting it intow
equal sized windows, represented by their means. A time-
series c of length n will be represented in a w-dimensional
space with a vector~�c ¼ ½�c1; . . . ; �cw�. The ith element of~�c is cal-
culated using

�ci ¼ w

n

Xnwi
j¼n

wði�1Þþ1
cj: (12)

This vector representation will be a reduced data represen-
tation (shown in Algorithm 1). We divide our example into
a sequence of nine equal sized windows, and each window
has been represented using its mean value. The PAA repre-
sentation of our example is: [0.093, 1.243, -0.181, 0.617, 1.531,
-0.086, -1.113, -0.771, -1.070].

Algorithm 1. PAA Algorithm

Input: w; c
Output: paa
1: w number of windows
2: n length of a sample
3: c ¼ ½c1; . . . ; cn� a sample from dataset
4: stepFloat n

w

5: step integerðdstepFloateÞ
6: sectionStart 1
7: j 1
8: while sectionStart4n� step do
9: section ½csectionStart; . . . ; csectionStartþstep�1�
10: paaj  meanðsectionÞ
11: sectionStart integerðj � stepFloatÞ
12: j jþ 1
13: end while

3.2 Aggregation via Lagrangian Multiplier

The Lagrangian multiplier allows us to maximise or mini-
mise a function subject to equality constraints. In this
method, we would like to find extrema, maximum or mini-
mum, of function EðuÞ ¼ Eðu1; . . . ; uwÞ. If we have no con-

straints, then the extrema must satisfy the ÏE ¼ 0 system of

equations which is equivalent to @E
@ui
¼ 0 for all i elements in

the time-series.
However, our goal is to find the extrema subject to a sin-

gle constraint gðuÞ ¼ 0. In other words, we want to find the
extrema points that satisfy the constraint. For this purpose,
in Lagrangian multiplier method, we define a new function

Lðu; �Þ ¼ EðuÞ � �gðuÞ. We then find the extrema of L with

respect to both x and � (dLd� ¼ 0 and dL
du ¼ 0). We find a unit

vector ~u ¼ ½u1; . . . ; uw� for each PAA representation~�c which
maximises the dot product ð~u �~�cÞ. The constraint is

~uk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXw
i¼1

u2
i

s
¼ 1 (13)

gðuÞ ¼
Xw
i¼1

u2
i � 1 ¼ 0: (14)

The Lagrangian function is shown below:

Lðu; �Þ ¼ ~u �~�c� �gðuÞ

Lðu; �Þ ¼
Xw
i¼1

ui�ci � �
Xw
i¼1

u2i � 1

 !
:

(15)

To solve this equation, we set ÏL equal to zero

@L
@ui
¼ �ci � �2ui ¼ 0 for i ¼ 1; . . . ; w

@L
@� ¼ �ð

Pw
i¼1 u

2
i � 1Þ ¼ 0

8<
: : (16)

And then by solving the equations, we obtain

ui ¼ 1

2�
�ci for i ¼ 1; . . . ; w; (17)

which means~u is proportional to~�c and they are in the same
direction. As a result, by normalising~�c we will have a unit
vector with the following properties:

~u ¼
~�c

~�c
�� �� : (18)

Therefore, ~u is a unit vector projection of PAA representa-
tion ~�c. As a result, we have a unit vector representation ~u
for each time-series ~c (shown in Algorithm 2). The PAA
representation of our example has been normalised and the
unit vector projection is shown below:

[0.034, 0.460, -0.067, 0.228, 0.567, -0.032, -0.412, -0.285, -0.396]

Algorithm 2. Lagrangian Representation Algorithm

Input: paa
Output: u
1: w length of sample after PAA
2: paa ¼ ½paa1; . . . ; paaw� PAA representation of a sample
3: u ¼ ½u1; . . . ; uw� unit vector variable
4: gðu1; . . . ; uwÞ  u2

1 þ � � � þ u2
w � 1

5: fðpaa;uÞ  paa1u1 þ � � � þ paawuw

6: Lðpaa;u; �Þ  fðpaa;uÞ � �gðuÞ
7: for i from 1 to w do
8: partialDeri ¼ paai � ð�2uiÞ
9: end for
10: partialDer� ¼ �u21 � � � � � u2

w þ 1
11: u Solve ðpartialDer1 ¼ 0; . . . ; partialDerw ¼ 0; partialDer�
¼ 0Þ

For a better understanding of Lagrangian multiplier, we
show the process by providing an example:

Example 3.2.1. Let a three dimensional vector ~v be defined
as follow: ~v ¼ ½3;�5; 4�. We want to find a unit vector
~u ¼ ½x; y; z� which maximises the ~v �~u product. The mag-
nitude of a unit vector is one. So

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ 1) x2 þ y2 þ z2 ¼ 1;

is our constraint.~v �~u is

x
y
z

2
4
3
5 � 3

�5
4

2
4

3
5 ¼ 3x� 5yþ 4z;
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which we want to maximise. The Lagrangian equation of
this example is

Lðx; y; z; �Þ ¼ 3x� 5yþ 4z� �ðx2 þ y2 þ z2 � 1Þ:
We now solve the ÏL ¼ 0 by setting each partial deriv-

ative of this expression equal to zero

@

@x
ð3x� 5yþ 4z� �ðx2 þ y2 þ z2 � 1ÞÞ ¼ 3� 2�x ¼ 0

@

@y
ð3x� 5yþ 4z� �ðx2 þ y2 þ z2 � 1ÞÞ ¼ �5� 2�y ¼ 0

@

@z
ð3x� 5yþ 4z� �ðx2 þ y2 þ z2 � 1ÞÞ ¼ 4� 2�z ¼ 0

@

@�
ð3x� 5yþ 4z� �ðx2 þ y2 þ z2 � 1ÞÞ
¼ �x2 � y2 � z2 þ 1 ¼ 0:

Solving for x, y and z in the first three equations
above, give us

x ¼ 3 � 1
2�

y ¼ �5 � 1
2�

z ¼ 4 � 1
2�

;

so

~u ¼ 1

2�

3
�5
4

2
4

3
5 ¼ 1

2�
~v:

Thismeans~u is proportional to~v. For themaximisation,
the unit vector is in the same direction as~v and the result of
Lagrangianmultiplier processwhich is shown below:

~umax ¼ ~v

~vk k :

So, in our example � is

3

2�

� �2

þ �5
2�

� �2

þ 4

2�

� �2

¼ 1 � ¼ 5
ffiffiffi
2
p

2
:

And~umax which is the result of Lagrangian multiplier is

~umax ¼ 1

5
ffiffiffi
2
p

3
�5
4

2
4

3
5:

The outcome of the Lagrangian multiplier applied to PAA
segmentation constructs our pattern representation model.
We then use the constructed patterns to process and analyse
the time-series. Since the constructed patterns are represented
as vectors, we can use various analysis method to process and
extract information from the underlying time-series data. In
the following section,we discuss change point detection using
the result of our Lagrangianmultiplier algorithm. In Section 5,
we also describe an evaluation of the algorithm for clustering
a set of common time-series datasets.

4 CHANGE POINTS DETECTION

In this section, we describe a method for change point detec-
tion using our Lagrangian multiplier based representation
method. As mentioned in Section 2, the change point is an

abrupt difference in the parameters of time-series, which is
useful in learning the structure of the data [27]. Entropy is the
amount of information one can expect to get if an event hap-
pens. Moreover, entropy and probability distribution have a
relationship; when the probability of the data is high, the
amount of new information we get is little, and the entropy is
small. However, entropy is sensitive to noise. For this reason,
before using an entropymeasure, we apply the Singular Spec-
trum Analysis (SSA) technique on the Lagrangian based rep-
resentations to reduce the noise. SSA decomposes a sequence
into an additive set of independent sequences. SSA has been
used for extracting trends and noises in signal processing [28].
The SSA method builds a Hankel matrix from the sequence
and then by applying SVD, decomposes thematrix into a sum
of matrices which can be reconstructed into sequences. The
sum of these resulting sequences is equal to the original
sequence. AHankelmatrix is a matrix with equal elements on
the anti-diagonals.

After applying SSA, we take the sequence and change the
representation of it in which each row represent a sliding
window from the data matrix. We then obtain the maxi-
mum and minimum of the values in the matrix and com-
pute the value range (max�min) and divide it into equal
sized ranges. After that, we change the matrix elements into
their relevant range. By computing the probability distribu-
tion of each element and their joint probabilities, we com-
pute the mutual information between each adjacent pair of
rows and compare them together to find the change points.
The following describes the above mentioned steps in more
details (see Algorithm 4). We also show the algorithm with
an example in Fig. 2.

4.1 Singular Spectrum Analysis

We now describe the SSA method in more details.

4.1.1 Step 1. Embedding

Let~u ¼ ½u1; . . . ; uw� be the sequence which has been obtained
from our Lagrangian representation method then in embed-
ding step, u is mapped to trajectory matrix M 2 Rl�k where
its first column is a segment from the u and its second column
is the one-step lagged version of the first and l ð1 < l < wÞ is
the window length and k ¼ w� lþ 1. The trajectorymatrix of
~u is [28]

M ¼ ½m1 : m2 : . . . : mk�

¼

u1 u2 u3 . . . uk

u2 u3 u4 . . . ukþ1
u3 u4 u5 . . . ukþ2

..

. ..
. ..

. . .
. ..

.

ul ulþ1 ulþ2 . . . uw

2
66666664

3
77777775
;

(19)

where mi ¼ ½ui; . . . ; uiþl�1�T ð1 � i � kÞ where k is the num-
ber of segments andM is a Hankel matrix which means that
it has equal elements on the anti-diagonals.

4.1.2 Step 2. Singular Value Decomposition

Singular Value Decomposition is a factorisation of the Han-
kel matrix M as Ml�k ¼ U � SS �VT , where U is an l� l uni-
tary matrix, S is a l� k rectangular diagonal matrix with
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non-negative numbers on the diagonal which are the square
roots of the non-zero eigenvalues of M �MT , and V is an
k� k unitary matrix. It can be proven that the trajectory
matrix M can be expressed as the summation of d matrices
which called elementary matrices M ¼ E1 þ E2 þ � � � þ Ed

where d is the number of eigenvalues of M �MT in decreas-
ing order (d1; . . . ; dd) and Ej ¼

ffiffiffiffi
dj

p � uj � vTj for j ¼ 1; 2; . . . ; d
where uj is the corresponding eigenvector, and the vector
vj is obtained from vj ¼MT � uj=

ffiffiffiffi
dj

p
[28]. The plot of eigen-

values in decreasing order is called the Singular Spectrum,
and the last matrices represent noise in the sequence [28].

4.1.3 Step 3. Reconstruction (Diagonal Averaging)

In this step, each elementary matrix Ej is transformed into a
sequence of length w which called principal component by

applying diagonal averaging method. Diagonal averaging
algorithm is as follows:

Let Ej ¼ ½Eqs�j, 1 � j � d, 1 � q � l and 1 � s � k. The
principal component pj ¼ ½ph�j where 0 � h < w, corre-
sponding to this elementary matrix is [28]:
for 0 � h < minðl; kÞ � 1

ph ¼ 1

hþ 1

Xhþ1
m¼1

Nm;h�mþ2; (20a)

forminðl; kÞ � 1 � h < maxðl; kÞ

ph ¼ 1

minðl; kÞ
Xminðl;kÞ

m¼1
Nm;h�mþ2; (20b)

formaxðl; kÞ � h < w

ph ¼ 1

w� h

Xw�maxðl;kÞþ1

m¼h�maxðl;kÞþ2
Nm;h�mþ2: (20c)

It can be shown that the squared norm of each elementary
matrix is equal to corresponding eigenvalue and the squared
norm of the trajectory matrix is the sum of the squared norms
of the elementary matrices [28]. To smooth the sequence, we
divide the principal components in two groups: dominant
and noise. We only take the combination of dominant princi-
pal components as the new sequence. As the two first princi-
pal components have the highest eigenvalues, we take them
as the dominant group.

4.2 Matrix Construction

After applying SSA and obtaining a smoother sequence, we
represent the data as a matrix by applying sliding windows.
The matrix has 8 columns so the window length is equal to
8, and we take slide of the window as half of the window
length (see Algorithm 3). Obviously, the other size matrices
can also be used here. However, we use a matrix with 8 col-
umns to explain our approach and to keep the complexity
of the SVD low (more experiments on choosing the window
size has been done in Evaluation section). After applying
the sliding window, we have a matrix Q ¼ ½Qij� which is
m� 8. We get the maximum and minimum numbers of this
matrix elements and calculate the range of the element val-
ues (r ¼ max�min). We then divide r into four equal sized
ranges with length of a ¼ r=4 (Eq. (21))

r ¼ r1 þ r2 þ r3 þ r4

¼ ½min;minþ aÞ þ ½minþ a;minþ 2aÞ
þ ½minþ 2a;minþ 3aÞ þ ½minþ 3a;max�:

(21)

After that, we take each element of matrix Q and convert it
to its corresponding range number and constructQ0 ¼ ½Q0ij�

Q0ij ¼
1 if Qij 2 ½min;minþ aÞ
2 if Qij 2 ½minþ a;minþ 2aÞ
3 if Qij 2 ½minþ 2a;minþ 3aÞ
4 if Qij 2 ½minþ 3a;max�

8>><
>>: : (22)

Fig. 2. An example of the proposed method for change detection.
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4.3 Probability and Joint Probability Calculation

We then calculate the probability distribution of each
element in matrix Q0. The probability of each element is the
number of times that an element occurs in the matrix Q0

divided by the total number of the elements in the matrix.
For calculating the joint probability of each pair of elements
in matrix Q0, we consider the number of times that the pairs
occur in a row and divide it by the total number of rows in
matrixQ0.

Algorithm 3. Sliding Window Algorithm

Input: x; window; slide
Output: ½row1; . . . ; rowrows�
1: window window length
2: slide slide length
3: x ¼ ½x1; . . . ; xw� input
4: rows dðw�windowþ1Þslide e
5: sectionStart 1
6: j 1
7: while j 4 rows do
8: rowj  ½xsectionStart; . . . ; xðsectionStartþwindow�1Þ�
9: sectionStart sectionStartþ slide� 1
10: j jþ 1
11: end while

4.4 Mutual Information Calculation

Mutual information measures the relationship between two
events. In other words, it measures how much information
one event communicates about the other one. We calculate
the mutual information of each pair of adjacent rows in
matrix Q0 ¼ ½q01; . . . ;q0m�T . The formal definition of mutual
information is given by [29]

Iðq0i;q0iþ1Þ ¼
X
x2q0i

X
y2q0iþ1

P ðx; yÞ log P ðx; yÞ
P ðxÞP ðyÞ; (23)

in which, P ðxÞ is the probability of element x in row q0i,
P ðyÞ is the probability of element y in row q0iþ1 and P ðx; yÞ
is the joint probability of elements x and y.

4.5 Change Points Detection

For finding the change points, we find the triangle fluctuations,
a downward trend following an upward trend or an upward
trend following a downward trend, among every three adja-
cent mutual information which means among Iðq0i�1;q0iÞ,
Iðq0i;q0iþ1Þ and Iðq0iþ1;q0iþ2Þ for i ¼ 1; . . . ; ðm� 2Þ where m
is the number of rows in matrix Q0. For each triangle fluctua-
tion, we can say the change point is among the ði� 1Þth, ith
and ðiþ 1Þth rows where each row has 8 elements and each
element is the Lagrangian representation of a window in the
PAA step of our proposed representation and aggregation
method. We take the middle row as the possible range for
change point, which is the ith row. Sowe find 8 elements, all in
a row, that each of them has the possibility of being a change
point.

As an example, we show one of the samples from the
dataset with a change in standard deviation in Fig. 3. We
show the real change in the sample, and we also show the
detected change points ranges in the mutual information

line plot which shows that the detected change points
ranges are 5th, 8th and 10th rows and we show every 8 ele-
ments of each row in the last line plot. Overall, the method
detected 24 samples as possible change points which is
12 percent (or 3

25) of the raw samples.

5 EVALUATION

To evaluate our method, we perform clustering based on a
set of common datasets. We have introduced some of the
common algorithms in Section 2. In this section, we com-
pare our algorithm with the state-of-the-art methods that
represent an improvement in comparison with elementary
ones. The codes for the existing methods have been accessed
from the authors’ public repositories, and when they were
not available, we used R and Python (Numpy and Sympy
libraries have been used) to program them. We perform
each technique using several datasets to demonstrate the
type of problems for which our method performs better
than the existing solutions. To evaluate our proposed
change point detection method, we compared our method
with one of the widespread change points detection meth-
ods using three different datasets.

Fig. 3. An example of the change detection.
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5.1 Datasets

The datasets are from the UCR Time-series Classification
Archive [30] and all of them have training and testing sam-
ples. For number of windows in PAA for each dataset, we
used the reduced length in [1] and in some of the experiments
we used different number of windows to compare the results.
We have also evaluated our pattern representation method
using additional real-world dataset in a healthcare applica-
tion, and using different window sizes. The results of these
experiments are shown in Appendices D and C, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2019.2961097. In the
SAX algorithm, we set a as 10 for all the datasets. The UCR
datasets2 that have been used in experiments are described
below:

5.1.1 Arrow Heads

The Arrow heads dataset has 211 time-series of length 251,
which have been clustered into three classes. This dataset con-
sists of the conversion of the shapes of the projectile points,
arrow heads, to time-series [31]. Projectile points can be
divided into different classes based on their location. The
reduced length for this dataset in [1] is 72. So in the PAA we
divide the samples of this dataset in 72 equal sizedwindows.

5.1.2 Lightning 7

The Lightning 7 dataset has 143 samples of length 319, which
is the transient electromagnetic events associated with light-
ning. This data has been gathered with a sample rate of 50
MHz for 800 microseconds and after that a Fourier transfor-
mation and some collapsing and smoothing have been per-
formed on the input data to produce series of length 637.
This dataset has seven classes which describe the ways of
lightning production.With information from [1], we reduced
the length of each time-series to 96windows.

5.1.3 Coffee

The Coffee dataset contains 56 time-series with length of 286,
which have been clustered into two classes. In this dataset, the
data has been gathered using Fourier transform infrared spec-
troscopy which is an alternative to wet chemical methods for
verification of different coffee species: Arabica and Robusta
[32]. Using [1], we reduced the length of each sample into 84
windows.

5.1.4 Ford A

This dataset has 1320 time-series of length 500, which has
two classes. This data has been generated for classification
competition and the clustering is based on existence of a
symptom which has been measured with engine noise [1].

Algorithm 4. Change Point Detection Algorithm

Input: lag
Output: all possible r
1: w length of sample after PAA
2: lag ¼ ½lag1; . . . ; lagw� Lagrangian representation of a sample
3: ssa ¼ ½ssa1; . . . ; ssaw�  SSAðlagÞ
4: M SlidingWindowðssa; window ¼ 8; slide ¼ 4Þ
5: n 8� rowsðMÞ
6: min minðMÞ
7: max maxðMÞ
8: l ¼ ðmax�minÞ

4

9: for i from 1 to 4 do
10: for all elements of M as m do
11: ifmin < m < minþ l then
12: m0  i
13: end if
14: end for
15: min minþ l
16: end for
17: for all elements of M0 as M 0 do
18: probabiltyðM 0Þ ¼ number of M 0 in M0

n

19: end for
20: for all pairs of elements of M0 as ðM 0; N 0Þ do
21: probabiltyðM 0; N 0Þ ¼ number of ðM 0 ;N 0Þ in rows of M0

rows of M0

22: end for
23: for all pair rows of M0 as ðr; ðrþ 1ÞÞ do
24: mutualInfoðr; ðrþ 1ÞÞ ¼PM 02r

P
N 02ðrþ1ÞðprobabiltyðM 0 ; N 0ÞÞ � log ð probabiltyðM 0 ;N 0Þ

probabiltyðM 0Þ�probabiltyðN 0ÞÞ
25: end for
26: for all quartet of rows in M0 as ððr� 1Þ; r; ðrþ 1Þ; ðrþ 2ÞÞ do
27: if ðmutualInfoððr� 1Þ; rÞ;mutualInfoðr; ðrþ 1ÞÞ; mutualInfoððrþ 1Þ; ðrþ 2ÞÞ is a triangle fluctuation then
28: r is a possible row for change point
29: end if
30: end for

2. http://www.cs.ucr.edu/�eamonn/time_series_data/

2826 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 7, JULY 2021

http://doi.ieeecomputersociety.org/10.1109/TKDE.2019.2961097
http://doi.ieeecomputersociety.org/10.1109/TKDE.2019.2961097
http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.cs.ucr.edu/~eamonn/time_series_data/


We changed the length of each time-series using PAA with
111 equal sized windows.

5.1.5 Proximal Phalanx Outline Age Group

This dataset has 605 samples of 80 observations. The dataset
has been gathered from Children’s Hospital in Los Angeles,
and the information is collected from radiography images to
test the hands’ and bones’ outline detection and to validate if
they are useful in bone age prediction [33]. This dataset has
information about the outline of Proximal Phalanx of hand,
the bone closest to the hand, and it has been used to predict
the subject age group (There are three different age groups)
[33]. Andwe reduced the number of observations to nine.

5.2 Clustering

Clustering is an unsupervised machine learning method
which deals with finding a structure for a collection of unla-
belled data and groups the data into different clusters. A clus-
ter is a collection of data which is similar but dissimilar to the
data from other clusters. In other words, clusteringminimises
the within-group-object similarity and maximises between-
group-object dissimilarity. With clustering, we can find pat-
terns in our time-series data. After transforming our data
using the proposedmethod, we applied two different cluster-
ing algorithms. First, the centroid based algorithm, k-means,
to cluster the samples. Second, the connectivity based algo-
rithm, hierarchical agglomerative clustering with complete
linkagemethod, in which the distance between two clusters is
themaximumdistance between their objects.

In our evaluation, we have a dataset of n samples
{u1; . . . ;un}. Each sample is the unit vector representation of a
time-series and has w dimensions (ui ¼ ½ui1; . . . ; uiw� for i ¼
1; . . . ; n). In clustering, one of the important elements we
should consider is distance measure. In our evaluation, we
used two different distancemeasures:

1) Euclidean distance: First we compute the average
vector ~m ¼ ½m1; . . . ;mw� of all the t samples

mi ¼
Pl

k¼1 uki

t
for i ¼ 1; . . . ; w: (24)

Then we calculate the cosine similarity (the cosine of
the angle between two vectors) between each sample
and ~m (see Eq. (25)). After that, we have a vector of
w dimensions which is our clustering input and we
perform our clustering algorithms based on euclid-
ean distance.

2) Cosine dissimilarity: Our n samples are our inputs,
but in the clustering algorithms, we use cosine dis-
similarity (which is one minus the cosine similarity)
to compute the distance between our samples

Similarity ¼ ~x~y

~xk k ~yk k ¼
Pw

i¼1 xiyiPw
i¼1 xi

Pw
i¼1 yi

: (25)

To determine the number of clusters, we used a fixed num-
ber in our clustering algorithms because we were aware of
the number of clusters of datasets. For evaluating our clus-
ter quality, we used the Silhouette coefficient. The Silhouette
coefficient is a measure of how similar an object is to its own

cluster compared to other clusters. Ranges from -1 to 1 and a
higher value means that the object has been clustered well.
The Silhouette coefficient of object i is defined as

sðiÞ ¼ bðiÞ � aðiÞ
maxfaðiÞ; bðiÞg ; (26)

where aðiÞ is average distance between i and all other
objects within the cluster and bðiÞ is the lowest average dis-
tance of object i to all objects in any other clusters which i is
not a member. We use this value to compare the perfor-
mance of different clustering algorithms.

We compare our algorithm with SAXSD and BEATS. We
chose SAXSD as it also uses PAA as an intermediate step and
represents time-series data in a finite domain. BEATS has
been chosen as it provides the highest results compared with
the other state-of-the-art algorithms discussed in Section 2.
The results of clustering experiments on the datasets are
shown in Table 1. The result of Silhouette coefficient with
using the euclidean distance and average vector have been
shown in Table 1a, and the results of applying cosine dissimi-
larity have been shown in Table 1b. Regarding BEATS, we
only used the hierarchical clustering for BEATS and SAXSD

because of their higher performance. For BEATS, we used
cosine dissimilarity, and for SAXSD, we used MINDIST [8].
We also compared our proposed algorithm with the cluster-
ing algorithms applied to the original data.

For the Arrow Head dataset, our proposed method out-
performs BEATS and SAXSD in both hierarchical and K-
means clustering methods. In Table 1a with using the hier-
archical clustering, our method performs around 3 percent
better than BEATS and 17 percent better than SAXSD. And
in Table 1b, the performance is 8 percent higher than BEATS
and 22 percent higher than SAXSD. For the Lightning 7 data-
set, our method performs better in all the clustering meth-
ods. However, it works better in Table 1a by around 31 and
35 percent higher. In Table 1b, it only outperforms the exist-
ing methods by 9 percent.

TABLE 1
The Silhouette Coefficient of Each Method

Using Each Dataset as Input

(a) Using euclidean distance.

Model \Dataset Arrow Head Lightning 7 Coffee Ford A Proximal

Lagrangian_HC 0.61 0.59 0.73 0.51 0.74

Lagrangian_Kmeans 0.67 0.57 0.69 0.56 0.62

BEATS_HC 0.58 0.24 0.25 0.35 0.4

SAXSD_HC 0.44 0.26 0.25 0.00 0.48

Raw Data_HC 0.49 0.13 0.29 0.02 0.43
Raw Data_Kmeans 0.47 0.12 0.33 0.05 0.46

(b) Using cosine dissimilarity.

Model \Dataset Arrow Head Lightning 7 Coffee Ford A Proximal

Lagrangian_HC 0.66 0.33 0.45 0.04 0.43

Lagrangian_Kmeans 0.67 0.27 0.47 0.10 0.61

BEATS_HC 0.58 0.24 0.25 0.35 0.4

SAXSD_HC 0.44 0.26 0.25 0.00 0.48

Raw Data_HC 0.49 0.13 0.29 0.02 0.43

Raw Data_Kmeans 0.47 0.12 0.33 0.05 0.46
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In the Coffee dataset, we experience the same type of
results as the Lightning 7 dataset, which shows more
improvements in Table 1a (around 44–48 percent). How-
ever, with around 20–22 percent better performance in
Table 1b, our proposed method shows its significant
improvements. In the Proximal dataset, the results are a lit-
tle different with a huge improvement in Table 1a with the
hierarchical clustering which is around 34 percent better
than BEATS and a small 3 percent improvement in Table 1b
with the hierarchical clustering compared to BEATS. How-
ever, SAXSD in this dataset performs better than our algo-
rithm with a small difference that can occur due to the
number of alphabets.

The only dataset which our proposed method does not
perform better in all the clustering methods is Ford A data-
set. In this dataset, our method does not provide higher per-
formance as shown in Table 1b. However, it outperforms
SAXSD in all the clustering methods. However, as shown in
Table 1a, our method performs around 20 percent better
than BEATS. As shown in Table 1, our proposed method
outperforms both hierarchical and K-means clustering
methods. We have also performed further evaluation on the
performance of the clustering method in Appendix B, avail-
able in the online supplemental material. Our proposed
method uses a Lagrangian multiplier to aggregate the time-
series and represents them as unit vectors and preserves the
important information of time-series in a smaller length. In
the next section, we discuss how these properties allow our
proposed method to provide an effective approach for
change detection in time-series. There are also further
experiments using our proposed method on a real-world
higher dimensional dataset, which are reported in Appen-
dix D, available in the online supplemental material.

5.3 Change Detection Method

To evaluate the change point detection method, we have
generated datasets which have specific change points. We
have generated three datasets with 200 observations in each
sample which have normal distribution, and there is a
change point in 100th timestamp of each sample.

In dataset A, the initial 100 timestamps of each sample
have normal distribution with mean of 1 and standard devi-
ation of 1, Nð1; 1Þ, and the remaining 100 observations have
normal distribution with mean of 2 and standard deviation
of 1,Nð2; 1Þ. Each sample of the dataset B has normal distri-
bution with mean of 0 and standard deviation of 1, Nð0; 1Þ
for the initial 100 observations and mean of 0 and standard
deviation of 2 for the remaining observations, Nð0; 4Þ. And
the dataset C has normal distribution with changes in both
mean and standard deviation values at each 100th observa-
tion. For a better presentation of datasets

A ¼ fxijfðxiÞ ¼ N ð1; 1Þ for i ¼ 1; . . . ; 100 & fðxiÞ
¼ N ð2; 1Þ for i ¼ 101; . . . ; 200g

B ¼ fxijfðxiÞ ¼ N ð0; 1Þ for i ¼ 1; . . . ; 100 & fðxiÞ
¼ N ð0; 4Þ for i ¼ 101; . . . ; 200g

C ¼ fxijfðxiÞ ¼ N ð1; 1Þ for i ¼ 1; . . . ; 100 & fðxiÞ
¼ N ð2; 4Þ for i ¼ 101; . . . ; 200g:

We compare our change detection method with CUmulative
SUM method (CUSUM) [9], [10] and the Bayesian change
detection method [11] which are two of the well-known and
widespread change point detection techniques. To evaluate
the influence of our representation technique in detecting
change points, we applied CUSUM and the Bayesian method
on both rawdatasets (each sample with 200 observations) and
Lagrangian multiplier based representation of the datasets.
With raw datasets as input for CUSUM: for dataset A (with
change in mean value) only in 561 samples of 1000 samples,
there was a change point; in dataset B, CUSUM performed
lower and could not find the true change points in any of
the samples; and in dataset C, only in 38 of 1000 samples, the
true change points were detected using CUSUM. However,
by applying our proposed representation method before
CUSUM, provides a significant improvement in the change
point detection ability of CUSUM. For dataset A, the number
of samples with detection of true change point improved
around 43 percent and became 990 out of 1000 samples. In
dataset C the improvement was around 60 percent, and it
became 642 samples. In dataset B the improvement was not
significant, and the number of samples with detection of true
change point was 5. For the Bayesian change detection
method, the difference between using the original data and
the Lagrangian represented data is not significant and only in
datasetC there is a 4 percent improvement. This could be due
to high sensitivity of this method on the location of change
points.

To compare the proposed change detection method with
the methods mentioned above and since our method finds a
row or a vector of 8 elements as a possible change point
range, for a fair comparison, we consider the matrix which
has been constructed in our change point detection method,
as the input of CUSUM and the Bayesian methods. As a
result, CUSUM and the Bayesian method find rows as
change points, too. In other words, to evaluate our change
point detection method, we first applied our Lagrangian
representation method on the datasets with the number of
windows equals to 57 (w ¼ 57). Particularly, we aggregated

each sample (x ¼ ½x1; . . . ; x200�) of datasets into a Lagrangian

representation (x0 ¼ ½x01; . . . ; x057�). To reduce the impact of

noise, we then applied SSA and made each Lagrangian
representation smoother. We then apply the sliding win-
dow algorithm with a fixed window length equals to 8 and
a slide equals to half of the window length (4) which con-
structed matrices with 13 rows and 8 columns. After matrix
construction, we apply our method, CUSUM and the Bayes-
ian method to each matrix. We then check if the true change
point is among the elements which have been detected as
possible change points in our proposed method, CUSUM
and the Bayesian method. The true change point happens in
100th timestamp (x100) of each sample and it aggregates into
29th timestamp (x029) after applying the Lagrangian repre-
sentation method. After matrix construction, this change
point (x029) appears in two rows of the matrix (rows 7 and 8).

In dataset A, the number of samples with real change
point that have been detected by our method is 800 out of
1000. In the dataset B, this number is 696 and in dataset C
this number is 759 out of 1000 samples.
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To evaluate the proposed method, we used accuracy, the
degree towhich the result of a calculation conforms to the cor-
rect value, recallwhich is the ability of themodel to find all the
relevant cases, precision which is the proportion of relevant
cases among the retrieved cases by the model and F1 score,
the combination of recall and precision. To calculate the value
of recall, we need to know True Positive (TP) and False Nega-
tive (FN). TP is the amount of data points classified as positive
or, in our case, the change points which are true change
points. FN is the number of points that the method identifies
as negative that actually are positive (see Eq. (27))

recall ¼ TP

TPþ FN
: (27)

For calculation of precision rather than TP we use False Pos-
itive (FP) counts which refers to the data points that the
method incorrectly detected as the change points while they
are not. The equation is

precision ¼ TP

TPþ FP
: (28)

F1 score calculation is as follow:

F1 ¼ 2� ðprecision� recallÞ
ðprecisionþ recallÞ : (29)

For accuracy, we also use True Negative (TN) which is
number of data points that are negative and defined cor-
rectly as negative. (see Eq. (30))

accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
: (30)

The results of applying the proposed change detection
method, CUSUM and the Bayesian method on datasets
have been shown in Table 2. It can be seen that the CUSUM
detected all the change points in datasets A and C and the
recall is 100 percent in these datasets but because of the
lower precision than the proposed method its ability to
detect only the relevant cases is lower than our method.
However, our proposed method with lower recall in A and
C datasets has higher precision, F1 score and accuracy com-
pare to CUSUM and it is more relevant and useful in change
detection. In dataset B, the proposed method performs even
better and it also has higher recall (69.6 percent compare to
61.2 percent) and because of the higher accuracy (67.45 per-
cent) and F1 score (28.00 percent), it is more useful and reli-
able. The result of the Bayesian change detection method is
the probability that each sample represent a change point.
To compare the results of the Bayesian change point detec-
tion with other methods, we chose a threshold of 0.8. This

indicates that for the points that the algorithm provides an
80 percent or higher probability of being a change point, we
consider it as a detected change point. As shown in Table 2,
the Bayesian method performs well in dataset A that
includes change in the mean value; however, the recall
value is around 16 percent less than our proposed algo-
rithm. In dataset B with changes in the standard deviation,
our proposed method performs higher than the Bayesian
method, and in dataset C, our proposed method has higher
recall (11 percent). Our proposed method works better on
datasets with changes in standard deviation rather than
mean value. However, it finds a range of possible time-
stamps for change point which extends the applicability of
our solutions to the scenarios which an approximation of
the change point is sufficient.

5.4 Processing Time

The representation, pattern creation and abstraction methods
for time-series data often work with statistical measurements,
symbolic representations, or stream processing. These meth-
ods have disadvantages such as normalisation as pre-process-
ing step, not preserving the shape of time-series and not being
efficient for large datasets. In Section 1, we have mentioned
IoT data analysis as one of themotivations of this work. In IoT
applications, memory is an important requirement to con-
sider. In our proposed pattern representation method, as the
process is applied to the segments, there is no need to store
large volumes of data. In other words, one of the advantages
of the proposed method is the suitability and low memory
usage, which make it appropriate to run on the edge devices.
Using a computer with an Intel Core i7-6700 Processor, 32 GB
RAM Memory, Windows 7 operating system and PyCharm
2018.1.3 IDE, we have measured the average processing time
of the Lagrangian representation for a time-series in Ford A
dataset, as it has the longest time-series among the datasets
which is around 400-500 milliseconds. We have also shown
the relative comparison of the processing time of each cluster-
ing algorithm applied to each dataset in Figs. 4 and 5. In Fig. 5,
we show the processing time in milliseconds and outside the
log space which makes the representation of the differences
larger. For FordA dataset, the processing time is much higher
because of the larger volume of data it has compared to other
datasets. In the proposed change detection method, the aver-
age processing time for each time-series in all datasets is
around 45-65 milliseconds. We carried out further analysis to
measure the delay in identifying the change points. With fur-
ther analysis, we found out that in our experiments, in aver-
age, we will have five samples delay before detecting the
change point. The algorithm uses a movingwindow and each
new value in time-series data is used to update the value and
checked for the change point detection. In cases of dynamic or

TABLE 2
Results of Applying the Proposed Method and CUSUM and Bayesian on Datasets

Dataset The Proposed Method CUSUM Bayesian

recall precision F1 score accuracy recall precision F1 score accuracy recall precision F1 score accuracy

A 80% 18.28% 29.77% 65.68% 100% 9.29% 17.00% 11.24% 63.5% 54.9% 58.93% 91.95%
B 69.6% 17.52% 28.00% 67.45% 61.2% 13.55% 22.19% 60.99% 44.4% 17.3% 24.62% 72.29%
C 75.9% 18.26% 29.44% 66.93% 100% 9.62% 17.56% 14.64% 64.2% 27.04% 38.05% 81%
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very slow-changing data streams, the delay in the number of
data points before detecting the change point could change.
We have also carried out further experiments with various
window sizes to show the effect of the chosen window size in
our change point detection. The results of these experiments
are reported in Appendix A, available in the online supple-
mentalmaterial.

6 COMPLEXITY ANALYSIS

The time complexity is represented as a function of the
length of time-series (N). There are different steps in
Lagrangian based representation and the one which has the
most impact on the time complexity is solving the system of
equations from the Lagrangian Multiplier technique. How-
ever, regarding the discussion in 3.2 section, this step is
only normalisation of the PAA vector representation of the
time-series which has the time complexity of OðNÞ. PAA
method and other steps of the proposed representation
method have the time complexity of OðNÞ. So, the time
complexity of the proposed method is OðNÞ.

For the time complexity of the change point detection
algorithm, we should consider the time complexity of SSA
which contains SVD. SVD is the most time consuming step is
SSA. SSA only uses the Partial SVD (i.e., uses the k compo-
nents of each matrix) and the matrix used to decompose in
SVD is Hankel matrix which makes the matrix-vector multi-
plications faster. There are different implementations for
SVDwith different time complexities. In our implementation
of the proposed change points detection method, we used
the SSA function from the “Rssa” package in R which is the

fastest implementation of SSA [34]. In this implementation,
they used Fast Fourier Transform (FFT) with complexity of
OðkN log ðNÞÞ where k is the number of components from
SVD. The “Rssa” package uses Lanczos-based Partial SVD
with the complexity ofOðkN log ðNÞÞ [34]. Lanczos is an iter-
ative algorithm which finds k most useful eigenvalues and
eigenvectors of a Hermitian matrix, a matrix that is equal to
its own conjugate transpose matrix. The package also uses
the FFT for reconstruction step.With these changes in imple-
mentation, it reduces the time complexity of SSA from
OðN3Þ toOðkN log ðNÞ þ k2NÞ. So, the overall time complex-
ity of the change points detection algorithm will be
OðN þ kN log ðNÞ þ k2N þN2 þN3Þ where OðN3Þ is the
time complexity of computing the joint probability and
OðN2Þ is the time complexity of computing the probability
matrix and there are also Lagrangian representation, sliding
window, range construction, computing the mutual infor-
mation of each adjacent pair of rows and finding the triangle
fluctuations steps which have time complexity of OðNÞ. As
OðN3Þ is the dominating term, the time complexity of change
point detection isOðN3Þ.

7 CONCLUSION

In this paper, we introduced a new method for aggregating
and representing time-series data. We use Piecewise Aggre-
gate Approximation (PAA) to reduce the length of time-series
data. We then use Lagrangian multiplier to represent time-
series as unit vectors. The proposedmethod preserves the key
information in a lower dimensional vector. Our method,
unlike PAA which only represents data in a sequence of

Fig. 4. Running time in log(milliseconds) for the clustering algorithms using the Lagrangian representations.

Fig. 5. Running time in milliseconds for the clustering algorithms using the Lagrangian representations.
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continuous numbers, provides a representation of the pat-
terns in time-series. We have shown that our representation is
more efficient in comparison with other representation meth-
ods. The results of the Lagrangian multiplier provide vector
representations which can be used to analyse patterns and
changes in time-series data. We describe our model by apply-
ing time-series clustering and also by extending the work to
develop a change point detection algorithm.

For change point detection, we used mutual information
and entropy. Because entropy is sensitive to noise, we first use
Singular Spectrum Analysis (SSA) technique to make our
Lagrangian representation smoother. After that, we use a
matrix construction and an entropy model to find a range for
change points. Compared to the-state-of-the-art algorithms,
our method shows significant improvements in clustering
time-series data. It offers around 20 percent higher perfor-
mance than Blocks of Eigenvalues Algorithm for Time-series
Segmentation (BEATS) and Symbolic Aggregate approXima-
tion (SAX) methods. For change point detection method
assessment, we have shown that our proposed method pro-
vides higher accuracy compared with CUmulative SUM
method (CUSUM)which is around 37 percent higher. In com-
parisonwith the Bayesianmethod, our proposedmethod out-
performs in dataset B but in other datasets it only shows
higher sensitivity compared to the Bayesianmethod.

In our evaluation, we used fixed values for window
length and sliding windows. The future work will focus on
adaptive window size selection and extending the solution
to multi-variate and non-stationary time-series data. We
will also work on using the constructed patterns in time-
series forecasting and change point prediction in dynamic
time-series datasets.
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