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Consider the problem of estimating the mean of a Gaussian random vec-
tor when the mean vector is assumed to be in a given convex set. The most
natural solution is to take the Euclidean projection of the data vector on to
this convex set; in other words, performing “least squares under a convex
constraint.” Many problems in modern statistics and statistical signal pro-
cessing theory are special cases of this general situation. Examples include
the lasso and other high-dimensional regression techniques, function estima-
tion problems, matrix estimation and completion, shape-restricted regression,
constrained denoising, linear inverse problems, etc. This paper presents three
general results about this problem, namely, (a) an exact computation of the
main term in the estimation error by relating it to expected maxima of Gaus-
sian processes (existing results only give upper bounds), (b) a theorem show-
ing that the least squares estimator is always admissible up to a universal
constant in any problem of the above kind and (c) a counterexample showing
that least squares estimator may not always be minimax rate-optimal. The
result from part (a) is then used to compute the error of the least squares
estimator in two examples of contemporary interest.

1. Theory.

1.1. The setup. Throughout this manuscript, Z = (Z1, . . . ,Zn) denotes an
n-dimensional standard Gaussian random vector. Let μ = (μ1, . . . ,μn) ∈ R

n be
a point in R

n, and let Y = Z + μ. We are interested in estimating μ from the data
vector Y . If nothing more is known, the vector Y itself is the maximum likelihood
estimate of μ.

Suppose now that μ is known to belong to a closed convex set K ⊆ R
n. Let PK

denote the Euclidean projection on to K . That is, for a vector x ∈ R
n, PK(x) is the

point in K that is closest to x in the Euclidean distance. It is a standard fact about
closed convex sets (see Lemma 4.2 in Section 4) that PK is a well-defined map.
Under the assumption that μ ∈ K , the maximum likelihood estimate of μ in the
Gaussian model is μ̂ := PK(Y ). We will refer to μ̂ as the least squares estimator
(LSE) of μ under the convex constraint K . As mentioned in the abstract, many
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problems in modern statistics are special cases of this general setup, including
the lasso and other high-dimensional regression techniques, function estimation
problems, matrix estimation and completion, shape-restricted regression, etc.

Let ‖x‖ denote the Euclidean norm of a vector x ∈ R
n. Our main goal is to un-

derstand the magnitude of the estimation error ‖μ̂ − μ‖. The standard approach to
computing upper bounds on the expected squared value of this error (the “risk”) is
via empirical process theory and related entropy computations. As a consequence
of path-breaking contributions from a number of authors over a period of more
than thirty years, including Birgé [5], Tsirelson [62–64], Pollard [50], van de Geer
[65–67], Birgé and Massart [6], van der Vaart and Wellner [72] and many others,
we now have a fairly good idea about how to convert results for expected maxima
of empirical processes to upper bounds on estimation errors in problems of the
above type, especially in the context of regression. To know more about this im-
portant branch of theoretical statistics and machine learning, see the monographs
of Bühlmann and van de Geer [9], Massart [41], van de Geer [68] and van der
Vaart and Wellner [72].

In a different direction, this general problem has recently gained prominence
in the statistical signal processing literature. The least squares problem outlined
above is essentially equivalent to the problem of constrained denoising in signal
processing. It is also intimately connected with the so- called linear inverse prob-
lems. The history of this line of investigation, although of relatively recent origin,
is already quite formidable. Important papers include those of Rudelson and Ver-
shynin [54], Stojnic [56], Oymak and Hassibi [47, 48], Chandrasekaran et al. [16],
Chandrasekaran and Jordan [15] and Amelunxen et al. [1]. For some interesting
recent developments, see McCoy and Tropp [42, 43], Foygel and Mackey [31] and
Tropp [61].

In the signal processing context, the expected squared error E‖μ̂ − μ‖2 is
closely related to the concept of “statistical dimension” recently introduced in
Amelunxen et al. [1]. It is also related to the older existing notions of “Gaus-
sian width” in probability, functional analysis and signal processing, “mean width”
in convex geometry and “Gaussian complexity” in learning theory and machine
learning.

1.2. Main result. One limitation of the theory based on empirical processes
in its current form is that it only gives upper bounds on the error. There are some
lower bounds “in spirit,” in the form of necessary and sufficient conditions for
consistency (e.g., in Tsirelson [62] and van de Geer and Wegkamp [70]) but the
lower bounds are not explicit. The first main result of this manuscript, presented
below, shows that if one looks at expected maxima of certain Gaussian processes
(instead of upper bounds on these maxima) then one can get an approximation for
the actual error instead of just an upper bound. Not only that, the theorem also
shows that the error ‖μ̂ − μ‖ is typically concentrated around its expected value.
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Let x ·y denote the usual inner product on R
n and let K be any nonempty closed

convex set. For any μ ∈ R
n and any t ≥ 0, let

fμ(t) := E

(
sup

ν∈K : ‖ν−μ‖≤t

Z · (ν − μ)
)

− t2

2
,

where Z is an n-dimensional standard Gaussian random vector. If μ /∈ K , then
there is no ν ∈ K satisfying ‖μ − ν‖ ≤ t if t is strictly less than the distance of μ

from K . In that case, define fμ(t) to be −∞, following the standard convention
that the supremum of an empty set is −∞.

Let tμ be the point in [0,∞) where fμ attains its maximum. We will show
below that tμ exists and is unique. Recall that PK denotes the projection on to K ,
and that

μ̂ := PK(Z + μ)

is the least squares estimate of μ based on the data vector Z + μ. The following
theorem shows that irrespective of the dimension n and the convex set K , it is
always true that

‖μ̂ − μ‖ = tμ + O
(
max{√tμ,1}).

In particular, if tμ is large, then the random quantity ‖μ̂ − μ‖ is concentrated
around the nonrandom value tμ.

THEOREM 1.1. Let K , μ, μ̂, fμ and tμ be as above. Let tc := infν∈K ‖ν −μ‖.
Then fμ(t) is equal to −∞ when t < tc, is a finite and strictly concave function of
t when t ∈ [tc,∞), and decays to −∞ as t → ∞. Consequently, tμ exists and is
unique. Moreover, for any x ≥ 0,

P
(∣∣‖μ̂ − μ‖ − tμ

∣∣≥ x
√

tμ
)≤ 3 exp

(
− x4

32(1 + x/
√

tμ)2

)
.

Note that μ is not required to be in K in this theorem. The tail bound is valid
even if μ is a point lying outside K .

The above theorem can potentially give rise to many corollaries. One basic
corollary, presented below, gives estimates for the expected squared error of μ̂. Al-
though Theorem 1.1 contains a lot more information than this corollary, expected
squared errors are culturally important.

COROLLARY 1.2. Let all notation be as in Theorem 1.1. Then there is a uni-
versal constant C such that if tμ ≥ 1, then

t2
μ − Ct3/2

μ ≤ E‖μ̂ − μ‖2 ≤ t2
μ + Ct3/2

μ ,

and if tμ < 1, then

E‖μ̂ − μ‖2 ≤ C.
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It may be illuminating to see an example at this point. Consider the simplest
possible example, namely, that K is a p-dimensional subspace of Rn, where p ≤ n.
This is nothing but the linear regression setup, assuming that μ = Xβ , where X is
an n × p matrix of full rank and β ∈ R

p is arbitrary.
Since K is a subspace, Z · x = PK(Z) · x for any x ∈ K . Moreover, PK(Z) is

a standard Gaussian random vector in K . A simple application of the rotational
invariance of Z shows that we may assume, without loss of generality, that K is
simply a copy of Rp contained in R

n. Combining these observations, we see that
for any μ ∈ K and t ≥ 0,

fμ(t) = E

(
sup

x∈Rp,‖x‖≤t

W · x
)

− t2

2
,

where W is a p-dimensional standard Gaussian random vector. The above expres-
sion can be exactly evaluated, to give

fμ(t) = E
(
t‖W‖)− t2

2
.

Clearly, fμ is maximized at

tμ = E‖W‖ = √
p + O(1),

where O(1) denotes a quantity that may be bounded by a constant that does not
depend on p or n. By Theorem 1.1, this shows that when K is a p-dimensional
subspace of Rn, then with high probability,

‖μ̂ − μ‖ = √
p + O

(
p1/4).

Of course, this result may be derived by other means. It is included here only to
serve as a simple illustration.

The above example is, in some sense, exceptionally simple. In general, it will be
very difficult to compute tμ exactly, since we have only limited tools at our disposal
to compute expected maxima of high-dimensional Gaussian processes. However,
the strict concavity of the function fμ gives an easy way to calculate upper and
lower bounds on tμ (and hence, upper and lower bounds on the estimation error
‖μ̂ − μ‖) by calculating bounds on fμ at a small number of points.

PROPOSITION 1.3. If 0 ≤ r1 < r2 are such that fμ(r1) ≤ fμ(r2), then tμ ≥ r1.
On the other hand, if fμ(r1) ≥ fμ(r2), then tμ ≤ r2. In particular, if μ ∈ K and
r > 0 is such that fμ(r) ≤ 0, then tμ ≤ r .

In Section 2, we will see applications of this proposition in computing matching
upper and lower bounds for estimation errors in two nontrivial problems.
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1.3. The LSE is admissible up to a universal constant. Does the constrained
least squares estimator μ̂ enjoy any kind of general optimality property that holds
for any K? A priori, this may sound like a hopeless question due to the completely
arbitrary nature of the convex set K . One may hope that the LSE is minimax op-
timal in some asymptotic sense, but as we will show later, this is not the case.
Fortunately, it turns out that μ̂ indeed enjoys a certain other kind of universal op-
timality property, as shown in Theorem 1.4 below. From a purely mathematical
point of view, this is the deepest result of this paper.

The famous Stein paradox [55] shows that the least squares estimate μ̂ is inad-
missible under square loss when K = R

n. Stein’s example gave birth to the flour-
ishing field of shrinkage estimates. The following theorem shows that although the
LSE μ̂ may be inadmissible, it is always “admissible up to a universal constant,”
whatever be the set K . In particular, shrinkage—or any other clever idea—cannot
improve the risk beyond a universal constant factor everywhere on the parameter
space.

THEOREM 1.4. There is a universal constant C > 0 such that the following is
true. Take any n and any nonempty closed convex set K ⊆ R

n. Let g :Rn →R
n be

any Borel measurable map, and for each μ ∈ R
n define the estimate μ̃ := g(Z +

μ), where Z is a standard Gaussian random vector. Let μ̂ be the least squares
estimate PK(Z +μ), as in Theorem 1.1. Then there exists μ ∈ K such that E‖μ̃−
μ‖2 ≥ CE‖μ̂ − μ‖2.

Again, it may be a good idea to understand the impact of Theorem 1.4 through
an example. Consider the problem of �1-penalized regression with p covariates,
where p may be bigger than n. Here, K is the set of all μ of the form Xβ , where X

is a given n×p matrix and β is a point in R
p with �1 norm bounded by some pre-

specified constant L. The convex-constrained least squares estimate in this prob-
lem is the same as the lasso estimate of Tibshirani [58] in its primal form. One may
consider various other procedures for computing estimates of β in this problem.
Theorem 1.4 says that no matter what procedure one considers, there is always
some β with �1 norm ≤ L where the prediction error of the new procedure is at
least as big as the prediction error of the lasso, multiplied by a universal constant.

It is interesting to figure out the optimal value of the universal constant in The-
orem 1.4. Note that by the Stein paradox, the largest possible value is strictly less
than 1.

1.4. The LSE may not be minimax rate-optimal. Theorem 1.4 shows that there
is always some region of the parameter space where the least squares estimate μ̂

does not perform too badly in comparison to any given competitor. This immedi-
ately raises the question as to whether the same is true about the maximum risk: is
the maximum risk of the least squares estimate always within a universal constant
multiple of the minimax risk? (Here the “risk” of an estimator μ̃ under square loss
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is defined, as usual, to be E‖μ̃ − μ‖2.) Surprisingly, the answer turns out to be
negative, as shown by the following counterexample.

Take any n. Define a closed convex set K ⊆ R
n as follows: take any α ∈ [0,1],

θ1, . . . , θn ∈ [−1,1], and let

μi := αn−1/4 + αθin
−1/2, i = 1, . . . , n.

Let K be the set of all μ = (μ1, . . . ,μn) obtained as above.

PROPOSITION 1.5. The set K defined above is closed and convex. As before,
let μ̂ = PK(Z + μ) be the least squares estimate of μ ∈ K obtained by projecting
the data vector Y = Z + μ on to K . Let μ̃ be the estimate whose coordinates
are all equal to the average of the coordinates of Y . Then, under square loss, the
maximum risk of μ̂ is bounded below by C1n

1/2 whereas the maximum risk of μ̃ is
bounded above by C2, where C1 and C2 are positive constants that do not depend
on n.

It is interesting to understand whether this example is a pathological exception,
or if there is a general rule that dictates whether the LSE is minimax rate-optimal
or not in a given problem. Theorem 1.4 gives a sufficient condition for minimax
rate-optimality, namely, that the risk is of the same order everywhere on K . This
is expressed quantitatively in the following proposition. But this condition may be
difficult to verify in examples.

PROPOSITION 1.6. Let μ̃ and μ̂ be as in Theorem 1.4. For each μ ∈ K , let
R1(μ) be the risk of μ̂ at μ and R2(μ) be the risk of μ̃ at μ. Then

sup
μ∈K

R2(μ) ≥ CL sup
μ∈K

R1(μ),

where C is the universal constant from Theorem 1.4 and

L := infμ∈K R1(μ)

supμ∈K R1(μ)
.

The counterexample given in Proposition 1.5 also raises the question as to
whether there is a general estimator that is guaranteed to be minimax up to a uni-
versal constant.

2. Examples. This section contains two nontrivial applications of Theo-
rem 1.1, to supplement the easy example worked out in Section 1.2. We only
present the results here. The details are worked out in Section 4.
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2.1. Lasso with nonsingular design. Let p ≥ 1 and n ≥ 2 be two integers, and
let X be a given n × p matrix with real entries. Let L be a positive real number,
and let

K0 := {
β ∈ R

p : |β|1 ≤ L
}
,(1)

where |β|1 stands for the �1 norm of β , that is, the sum of the absolute values of
the components of β . Let

K := {Xβ :β ∈ K0}.(2)

The least squares estimator for the convex constraint K is nothing but the lasso
estimator in its primal form as defined by Tibshirani [58]. The number L is called
the “penalty parameter.”

The theoretical properties of the lasso and related procedures have been exten-
sively studied over the last ten years, notably by Donoho and coauthors [20–26],
Knight and Fu [38], Zou [78], Wainwright [73], Candès and Tao [11, 12], Mein-
shausen and Bühlmann [44], Meinshausen and Yu [45], Koltchinskii [39], Wang
and Leng [74], Zhao and Yu [77], Bunea et al. [10], van de Geer [71], Greenshtein
and Ritov [32], Bickel et al. [4], Bartlett et al. [3], Rigollet and Tsybakov [52], Oy-
mak et al. [49] and many others. For a more complete set of references and a clear
exposition of the results and techniques, see the wonderful recent monograph of
Bühlmann and van de Geer [9]. The investigators have tried to understand a num-
ber of different kinds of consistency for the lasso estimator. The expected squared
error E‖μ̂−μ‖2 translates into what is known as the “squared prediction error” in
the lasso literature. Among the papers cited above, the ones dealing mainly with
the behavior of the prediction error are [10, 32, 71]. If the prediction error vanishes
on an appropriate scale, the lasso procedure is called “risk consistent.”

Risk consistency does not require too many assumptions [9, 17, 32], but the
available bounds on the expected squared prediction error are solely upper bounds.
Matching lower bounds are not known in any case. In particular, it is not known
how the error depends on the choice of the penalty parameter L. Practitioners be-
lieve from experience that choosing the penalty parameter correctly is of crucial
importance, and this is usually done using cross-validation of some sort, for ex-
ample, in Tibshirani [58, 59], Greenshtein and Ritov [32], Hastie et al. [35], Efron
et al. [30], and van de Geer and Lederer [69], although some other techniques have
also been proposed, for example, in Tibshirani and Taylor [60] and Zou et al. [79].
For some nascent theoretical progress on cross-validation for the lasso and further
references, see Homrighausen and McDonald [36].

The following theorem demonstrates, for the first time, the critical importance
of choosing the correct penalty parameter value. If the penalty parameter L is cho-
sen to be equal to |β|1, then the prediction error is vastly smaller than if the two
quantities are unequal. Although the theorem is restricted to the case of nonsingu-
lar design matrices, we may expect the phenomenon to hold in greater generality.
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THEOREM 2.1. Take any L > 0 and let K be defined as in (2). Let � :=
XT X/n, and let a and b be the smallest and largest eigenvalues of �. Assume that
a > 0, and that all the diagonal entries of � are equal to 1. Take any β ∈ R

p and
let μ := Xβ . Let s be the number of nonzero entries of β . Let

δ := L − |β|1
and r := p/n. Let tμ be as in Theorem 1.1, for the set K defined in (2). If δ > 0,
then given any ε > 0 there is a constant C1 depending only on δ, ε, a, b, s, r and L

such that whenever n > C1, we have

n1/4−ε ≤ tμ ≤ n1/4+ε.

If δ = 0, then there is a constant C2 depending only on a, b, s, r and L such that

tμ ≤ C2

√
logn.

Finally, if δ < 0, there are positive constants C3 and C4 depending only on δ, a, b,
s, r and L such that

C3
√

n ≤ tμ ≤ C4
√

n.

The reader may easily check the implications of the above bounds on the pre-
diction error by looking back at Theorem 1.1. In particular, they show that the
squared prediction error E‖Xβ̂ − Xβ‖2 equals n1/2+o(1) if the penalty parameter
L is greater than |β|1, is of order n if L is less than |β|1, and is bounded above by
some constant multiple of logn if the penalty parameter is chosen correctly, to be
equal to |β|1. Therefore, it is very important that L is chosen correctly when im-
plementing the lasso procedure. However, there is a caveat: Theorem 2.1 does not
prove anything in the case where L is chosen using the data. It only shows the im-
portance of choosing the correct value of the penalty parameter, besides being the
first result that establishes a lower bound on the lasso error. To prove an analogous
result for the case where L is chosen using the data requires further work.

2.2. Isotonic regression. Define the convex set

K := {
(μ1, . . . ,μn) ∈ R

n :μ1 ≤ μ2 ≤ · · · ≤ μn

}
.(3)

The least squares problem for this convex constraint, popularly known as “isotonic
regression” or “monotone regression,” has a long history in the statistics litera-
ture, possibly beginning in Ayer et al. [2] and Grenander [33]. The LSE is easily
computed using the so-called “pool adjusted violators algorithm” (see Robertson
et al. [53], Chapter 1).

There is substantial literature on the properties of individual μ̂i , as i/n is fixed
and n goes to infinity, with some appropriate limiting behavior assumed for the
mean vector μ. Some notable papers on such local errors are those of Prakasa Rao
[51], Brunk [8], Groeneboom and Pyke [34], Durot [28], Carolan and Dykstra [13],
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Cator [14] and Jankowski [37]. The global error ‖μ̂−μ‖ has also received consid-
erable attention, notably in van de Geer [66, 67], Donoho [20], Birgé and Massart
[6], Wang [75], Meyer and Woodroofe [46], Zhang [76] and Chatterjee, Gunto-
boyina and Sen [18].

It is now generally understood that if the μi’s are “strictly increasing” in some
limiting sense, then μ̂i −μi is typically of order n−1/3, whereas the error is smaller
if the μi’s have “flat stretches” [18]. Therefore, it is natural to expect that in the
strictly increasing case, ‖μ̂ − μ‖ should be of order n1/6. Using Theorem 1.1, it
turns out that we may not only get finite sample upper and lower bounds for the
global risk E‖μ̂ − μ‖2, but also show that ‖μ̂ − μ‖ is concentrated around its
mean value; that is, there is some constant C(μ) depending on μ such that with
high probability,

‖μ̂ − μ‖ = C(μ)n1/6 + O
(
n1/12).(4)

The following theorem makes this precise.

THEOREM 2.2. Let K be the convex set defined in (3). Take any μ ∈ K and
let μ̂ = PK(Z + μ) be the LSE of μ obtained from the data vector Z + μ. Let

D := max{μn − μ1,1},
A := min

1≤i≤n−1
n(μi+1 − μi),

B := max
1≤i≤n−1

n(μi+1 − μi).

Let tμ be as in Theorem 1.1, for the set K defined in (3). Then

C1A
8/3n1/6

B4/3D
≤ tμ ≤ C2D

1/3n1/6,

where C1 and C2 are positive universal constants.

The reader may easily check the consequences of the above bounds on tμ by
looking back at Theorem 1.1 and Corollary 1.2, and in particular, that it proves (4)
when D, A and B are all of constant order.

Just to be clear, the upper bound on the expected mean-squared error that we get
from Theorem 2.2 can be derived from existing results such as those in Zhang [76].
The new contribution of Theorem 2.2 is the lower bound, and also the conclusion
(in combination with Theorem 1.1) that the squared error concentrates around its
expected value.

3. Proof sketches. Since the proofs of the main results (Theorems 1.1
and 1.4) are somewhat technical, I will try to give a readable sketch of the main
ideas in this section. The details are given in Section 4.
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The proof of Theorem 1.1 goes roughly as follows. Define a random function

Fμ(t) = sup
ν∈K : ‖ν−μ‖≤t

Z · (ν − μ) − t2

2
,

so that fμ(t) = E(Fμ(t)). Using the convexity of K , prove that Fμ and fμ are
both strictly concave functions. Let t∗ be the unique point at which Fμ is maxi-
mized. Again, use convexity of K and some algebraic manipulation to prove the
key identity

‖μ̂ − μ‖ = t∗.

Note that this is a purely deterministic identity, having nothing to do with the
modeling assumptions.

Next, using the concentration of Gaussian maxima, show that Fμ(t), although
random, is close to fμ(t) with high probability. Since Fμ and fμ are two strictly
concave functions that are close to each other with high probability, their points of
maxima must also be close. That is, tμ ≈ t∗ = ‖μ̂ − μ‖ with high probability.

The proof of Theorem 1.4 is more complex and it is quite hard to present the
ideas in a nutshell. Still, a high level overview of the main steps may be given as
follows.

Throughout this proof sketch, “constant” will mean “positive universal con-
stant.” Take any μ∗ ∈ K and let B0 be a ball of radius C1tμ∗ around μ∗, where C1

is a small constant that will be chosen later. Let ρ be a probability measure on B0,
also to be chosen later. Let g(Z + μ) be any estimator of μ. Suppose that we are
able to prove ∫

B0

E
∥∥μ − g(Z + μ)

∥∥2
dρ(μ) ≥ C2t

2
μ∗(5)

for some constant C2. Upon solving some technical hurdles, it can be shown that
the dependence of tμ on μ is smooth enough to guarantee that if the constant
C1 is chosen small enough, then there is a constant C3 such that tμ∗ ≥ C3tμ for
all μ ∈ B0. Combined with (5) and Corollary 1.2, this implies the existence of
μ0 ∈ B0 such that

E
∥∥μ0 − g(Z + μ0)

∥∥2 ≥ C2t
2
μ∗ ≥ C2C

2
3 t2

μ0
≥ C4E

∥∥μ0 − PK(Z + μ0)
∥∥2

for some constant C4, completing the proof.
The main challenge, therefore, is to show (5). We now make a specific choice

of ρ. Let ρ be the probability measure of the point ν∗ that maximizes Z · (μ−μ∗)
among all μ ∈ B0. Let Z′ be an independent copy of Z, and let Y ′ = Z′ + ν∗.
Then observe that the expression on the left-hand side of (5) is nothing but E‖ν∗ −
g(Y ′)‖2.
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The main trick now is the following. Let ν′ be another K-valued random vari-
able, such that ν∗ and ν′ are i.i.d. given Y ′. Then it is not difficult to argue that for
any measurable function h,

E
∥∥ν∗ − h

(
Y ′)∥∥2 ≥ 1

2E
∥∥ν∗ − ν′∥∥2

.

In particular, this holds for h = g. Thus, it suffices to show that

E
∥∥ν∗ − ν′∥∥2 ≥ C5t

2
μ∗(6)

for some constant C5.
Let B1 be the ball of radius C6tμ∗ around ν∗, where C6 is a constant that will

be chosen later. Note that unlike B0, B1 is a random set. If we can show that
P(ν′ /∈ B1) is larger than a universal threshold, it will complete the proof of (6).

To prove this, the first step is to explicitly write down

P
(
ν′ ∈ B1|Y ′, ν∗)=

∫
B1

e−Z′·(ν∗−ν)−1/2‖ν∗−ν‖2
dρ(ν)∫

B0
e−Z′·(ν∗−ν)−1/2‖ν∗−ν‖2

dρ(ν)
.

After a sequence of relatively complicated technical steps involving concentration
inequalities and second moment lower bounds, one can produce an upper bound
on the expectation of the right-hand side. The complications arise from the fact
that the right-hand side is a ratio of random variables. When the dust settles, we
get the inequality

P
(
ν′ ∈ B1

)≤ C7

√
E
(
ρ(B1)

)
.

The proof, therefore, will be complete if we can show that E(ρ(B1)) can be made
as small as we like by choosing C6 small enough. By the definition of ρ, it is clear
that

ρ(B1) ≤ P
(
M2 ≥ M1|ν∗),

where

M1 = sup
μ∈B0

Z′ · (μ − μ∗), M2 = sup
μ∈B1

Z′ · (μ − μ∗).
Consequently, E(ρ(B1)) ≤ P(M2 ≥ M1). To make the right-hand side as small
as we need it to be, it makes sense to choose μ∗ such that E(M1) is as large as
possible, and then choose C6 so small that E(M2) is small enough. Working out
the details of this step involves delicate technical problems. Carefully solving these
problems leads to the completion of the proof of Theorem 1.4.
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4. Proofs. This section contains the proofs of all the results stated in Sec-
tions 1 and 2. We will follow a certain notational convention about universal
constants throughout this section. Within the proof of each lemma or theorem or
proposition, C1,C2, . . . will denote positive universal constants. The values of the
Ci ’s may change from one lemma to the next. On the other hand, c1, c2, . . . will
denote universal constants whose values are important; once defined, they will not
change.

The first goal is to prove Theorem 1.1. We need the following ingredient from
measure concentration theory.

LEMMA 4.1 (Cirelson, Ibragimov and Sudakov [19]). Let V1, . . . , Vn be
jointly Gaussian random variables, each with mean zero and second moment
bounded above by 1 (but not necessarily independent). Let M := max1≤i≤n Vi .
Then for any t ≥ 0,

max
{
P
(
M −E(M) ≥ t

)
,P
(
M −E(M) ≤ −t

)}≤ e−t2/2.

The above inequalities were proved in [19], although they follow (with slightly
worse constants) from the earlier papers [7] and [57].

We also need a standard fact from convex geometry. A proof is included for the
sake of completeness.

LEMMA 4.2 (Projection on to convex sets). Let K be a nonempty closed con-
vex subset of Rn. For any x ∈ R

n, there is a unique point in K , that we call PK(x),
which is closest to x.

PROOF. Let s := infy∈K ‖x − y‖. Since K is nonempty, s is finite. Let K ′ be
the set of all points in K that are within distance s + 1 from x. This is clearly
nonempty, convex and bounded. Furthermore, since K is closed, so is K ′. The
compactness of K ′ ensures the existence of at least one point in K ′ that is at dis-
tance exactly s from x. This proves the existence of a projection. Suppose now that
there are two points y and z in K that are both at distance exactly s from x. Then
the three points x, y and z form an isosceles triangle with the line segment joining
y and z as the base. But this line segment is contained in K , because K is convex.
Since y = z, this proves that there is a point in K that is at distance strictly less
than s from x, which is impossible. �

We are now ready to prove Theorem 1.1, Corollary 1.2 and Proposition 1.3.

PROOF OF THEOREM 1.1. Fix μ ∈ R
n and let Y = Z +μ. Define two random

functions M and F from [0,∞) into [−∞,∞) as

M(t) := sup
ν∈K : ‖ν−μ‖≤t

Z · (ν − μ)
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and

F(t) := M(t) − t2

2
,

with the usual convention that the supremum of an empty set is −∞. Let m(t) :=
E(M(t)). Note that E(F (t)) = fμ(t) = m(t) − t2/2.

Note that M(t), F(t), m(t) and fμ(t) are all finite if t ≥ tc, and −∞ if t < tc.
Take any tc ≤ s ≤ t . Let ν1 and ν2 be points in K such that

‖ν1 − μ‖ ≤ s and ‖ν2 − μ‖ ≤ t.(7)

Take any u ∈ [0,1] and let ν := uν1 + (1 − u)ν2. Then ‖ν − μ‖ ≤ r := us + (1 −
u)t . On the other hand,

Z · (ν − μ) = uZ · (ν1 − μ) + (1 − u)Z · (ν2 − μ).

Maximizing over all ν1 and ν2 satisfying (7), this gives

M(r) ≥ uM(s) + (1 − u)M(t).(8)

Thus, M is a concave function of t . Consequently, F is strictly concave. Note that
limt→∞ F(t) = −∞, since

M(t) ≤ sup
ν∈Rn : ‖ν−μ‖≤t

Z · (ν − μ) = t‖Z‖.(9)

The strict concavity and the decay to −∞ prove the existence and uniqueness of a
(random) point t∗ ∈ [tc,∞) where F is maximized.

Taking expectation on both sides in (8) implies that m is also concave, and
therefore fμ is strictly concave. Similarly by (9), m(t) ≤ tE‖Z‖, which proves
that limt→∞ fμ(t) = −∞. Therefore, tμ exists and is unique.

Let ν∗ be a point in K that maximizes Z · (ν − μ) among all ν ∈ K satisfying
‖ν − μ‖ ≤ t∗. Let t0 := ‖ν∗ − μ‖. If t0 < t∗, then

F(t0) ≥ Z · (ν∗ − μ
)− t2

0

2
= M

(
t∗
)− t2

0

2
> F

(
t∗
)
,

which is false. Therefore, t0 = t∗. This shows that for any ν ∈ K ,

Z · (ν − μ) − ‖ν − μ‖2

2
≤ F

(‖ν − μ‖)

≤ F
(
t∗
)= Z · (ν∗ − μ

)− ‖ν∗ − μ‖2

2
.

Since

‖Y − ν‖2 = ‖Y − μ‖2 − 2
(
Z · (ν − μ) − ‖ν − μ‖2

2

)
,
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this proves that ‖Y − ν‖ ≥ ‖Y − ν∗‖ for all ν ∈ K . Therefore, by the uniqueness
of projection on to closed convex sets, μ̂ = ν∗. In particular,

‖μ − μ̂‖ = t∗.
Now note that for any t ≥ tc, the inequality fμ(t) ≤ fμ(tμ) may be rewritten as

m(t) ≤ m(tμ) + t2 − t2
μ

2
.(10)

By concavity of m, for any ε ∈ (0,1),

m
(
(1 − ε)tμ + εt

)≥ (1 − ε)m(tμ) + εm(t).(11)

Applying (10) to (1 − ε)tμ + εt instead of t gives

m
(
(1 − ε)tμ + εt

)≤ m(tμ) + (−2ε + ε2)t2
μ + 2(1 − ε)εtμt + ε2t2

2
.

Combining this inequality with (11) gives

εm(t) ≤ εm(tμ) + (−2ε + ε2)t2
μ + 2(1 − ε)εtμt + ε2t2

2
.

Dividing both sides by ε and taking ε → 0, we get

m(t) ≤ m(tμ) − t2
μ + tμt,(12)

which may be rewritten as

fμ(t) ≤ fμ(tμ) − (t − tμ)2

2
.

Note that the above two inequalities hold even if t < tc. Take any x > 0 and let
r1 := tμ −x

√
tμ and r2 := tμ +x

√
tμ. First assume that r1 ≥ tc. Then by the above

inequality,

max
{
fμ(r1), fμ(r2)

}≤ fμ(tμ) − x2tμ

2
.

By the concentration inequality for maxima of Gaussian random variables
(Lemma 4.1), for any t ≥ 0 and y ≥ 0,

max
{
P
(
F(t) ≥ fμ(t) + y

)
,P
(
F(t) ≤ fμ(t) − y

)}≤ e−y2/2t2
.

Taking y = x2tμ/4 and z = fμ(tμ) − y, a combination of the last two displays
gives the inequalities

P
(
F(r1) ≥ z

) ≤ P
(
F(r1) ≥ fμ(r1) + y

)≤ e−y2/2r2
1 ,

P
(
F(r2) ≥ z

) ≤ P
(
F(r2) ≥ fμ(r2) + y

)≤ e−y2/2r2
2 ,

P
(
F(tμ) ≤ z

)= P
(
F(tμ) ≤ fμ(tμ) − y

)≤ e−y2/2t2
μ.
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Let E be the event that F(r1) < z, F(r2) < z and F(tμ) > z. By the above three
inequalities,

P
(
Ec)≤ e−y2/2r2

1 + e−y2/2r2
2 + e−y2/2t2

μ ≤ 3e−y2/2r2
2 .

On the other hand, by the concavity of F , if E happens then t∗ must lie in the
interval (r1, r2). Together with our previous observation that t∗ = ‖μ − μ̂‖, this
completes the proof of the theorem when r1 ≥ tc.

If r1 < tc, the inequality fμ(r2) ≤ fμ(tμ) − x2tμ/2 is still true. Redefine E to
be the event that F(r2) < z and F(tμ) > z. Then the upper bound on P(Ec) is still
valid, and the occurrence of E implies that t∗ ∈ [tc, r2) ⊆ (r1, r2). This finishes the
argument in the case r1 < tc. �

PROOF OF COROLLARY 1.2. Throughout this proof, C denotes an arbitrary
universal constant whose value may change from line to line. First, suppose that
tμ ≥ 1. Then by Theorem 1.1,

P
(∣∣‖μ̂ − μ‖ − tμ

∣∣≥ x
√

tμ
)≤ 3e−x4/32(1+x)2

.

This shows that

E
(‖μ̂ − μ‖ − tμ

)2 ≤ Ctμ,

which gives the first set of inequalities. On the other hand, if tμ < 1, then putting
z = x

√
tμ, Theorem 1.1 gives

P
(∣∣‖μ̂ − μ‖ − tμ

∣∣≥ z
)≤ 3e−z4/32(tμ+z)2 ≤ 3e−z4/32(1+z)2

,

which gives the second inequality. �

PROOF OF PROPOSITION 1.3. The first two assertions are obvious by the strict
concavity of fμ. For the third one, observe that if μ ∈ K , then fμ(0) = 0, and apply
the second assertion. �

The next goal is to prove Theorem 1.4. In addition to Lemmas 4.1 and 4.2,
we need a few more standard results. The first result, stated below, is called the
“Gaussian concentration inequality.”

LEMMA 4.3 (Gaussian concentration inequality). Let Z be an n-dimensional
standard Gaussian random vector, and let f :Rn → R be a function that satisfies
|f (x) − f (y)| ≤ L‖x − y‖ for all x and y, where L is a positive constant. Then
for any θ ∈ R,

E
(
eθ(f (Z)−E(f (Z))))≤ eL2θ2/2.

Consequently, for any t ≥ 0,

max
{
P
(
f (Z) −E

(
f (Z)

)≥ t
)
,P
(
f (Z) −E

(
f (Z)

)≤ −t
)}≤ e−t2/2L2

.
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This famous result possibly appeared for the first time as an implied conse-
quence of the theorems in [7, 19, 57]. For a simple proof, originally appearing
in [19], see the argument following equation (2.35) in [40].

We also need the fact that the projection PK on to a closed convex set is a
contraction with respect to the Euclidean norm. This, again, is quite standard but
we provide a short proof for the sake of completeness.

LEMMA 4.4. For any closed convex set K ⊆ R
n and any x, y, ‖PK(x) −

PK(y)‖ ≤ ‖x − y‖.

PROOF. Let z = PK(x) and w = PK(y). If z = w, there is nothing to prove.
So assume that z = w. Let S be the line segment joining z and w. Then S is entirely
contained in K . Let H1 be the hyperplane passing through z that is orthogonal to S,
and H2 be the hyperplane passing through w that is orthogonal to S.

The hyperplane H1 divides R
n \ H1 into two open half-spaces, one of which

contains w. If x belongs to the half-space that contains w, then there is a point on
S that is closer to x than z. This is impossible. Similarly, H2 divides Rn \ H2 into
two open half-spaces, and y cannot belong to the one that contains z. Therefore,
both of the parallel hyperplanes H1 and H2 must lie between x and y. This proves
that ‖x − y‖ ≥ the distance between H1 and H2, which is equal to ‖z − w‖. �

Finally, we need the so-called “second moment inequality,” also known as the
“Paley–Zygmund inequality.”

LEMMA 4.5 (Second moment inequality). If X is a nonnegative random vari-
able with E(X) > 0 and finite second moment, then for any a ∈ [0,E(X)],

P(X > a) ≥ (E(X) − a)2

E(X2)
.

The proof of this standard inequality may be found in graduate probability text
books such as [29].

We now embark on the proof of Theorem 1.4. Several preparatory lemmas are
required.

LEMMA 4.6. Let K ⊆ R
n be a line segment of length l. Let Z be an n-

dimensional standard Gaussian random vector. Let f :Rn → R
n be any Borel

measurable map. Then there exists μ ∈ K such that

E
∥∥f (Z + μ) − μ

∥∥2 ≥ c1 min
{
l2,4

}
,

where c1 is a positive universal constant.
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PROOF. Let λ denote the uniform distribution on K . Let ν be point chosen
uniformly at random from K . Let Y := Z + ν. Given Y and ν, let ν′ be drawn
from the posterior distribution of ν given Y . Explicitly, if θ denotes the joint law
of (ν, Y, ν′), then

dθ
(
μ,y,μ′)= e−1/2‖y−μ′‖2

e−1/2‖y−μ‖2

(2π)n/2
∫
K e−1/2‖y−x‖2

dλ(x)
dλ(μ)dy dλ

(
μ′).(13)

The above expression clearly shows that ν and ν′ are i.i.d. given Y and, therefore,

E
(∥∥f (Y ) − ν

∥∥2|Y ) ≥ E
(∥∥E(ν|Y) − ν

∥∥2|Y )
(14)

= 1
2E

(∥∥ν′ − ν
∥∥2|Y ).

[In the above display, E(ν|Y) denotes the random vector whose ith coordinate is
E(νi |Y). The inequality in the first line is simply a consequence of the fact that for
any random variable X, E(X − a)2 is minimized when a = E(X).] Next, let

M := sup
x∈K

∣∣Z · (x − ν)
∣∣.

Note that since the function being maximized is convex and the set K is a line
segment, therefore the maximum is necessarily attained at one of the endpoints of
the line segment K . From this, it easy to see that

E
(
e2M)≤ C1e

C1l
2
.(15)

Take any ε > 0. Given Y and ν, let I denote the set of all points in K that are
within distance ε from ν. Then by (13),

P
(∥∥ν′ − ν

∥∥≤ ε|Y, ν
)=

∫
I eZ·(x−ν)−1/2‖x−ν‖2

dλ(x)∫
K eZ·(x−ν)−1/2‖x−ν‖2

dλ(x)
≤ 2e2M+l2ε

l
.

Taking expectation and applying (15), we get

P
(∥∥ν′ − ν

∥∥≤ ε
)≤ C2e

C2l
2
ε

l
,

and, therefore,

E
∥∥ν′ − ν

∥∥2 ≥ ε2
P
(∥∥ν′ − ν

∥∥> ε
)≥ ε2

(
1 − C2e

C2l
2
ε

l

)
.

If l ≤ 2, then combined with (14) and taking ε = C3l for some small enough C3,
this proves that

E
∥∥f (Z + ν) − ν

∥∥2 ≥ C4l
2.

In particular, there exists μ ∈ K such that

E
∥∥f (Z + μ) − μ

∥∥2 ≥ C4l
2.

If l > 2, then choose a subinterval K ′ ⊆ K of length ≤ 2 and work with K ′ instead
of K . �
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LEMMA 4.7. There is a positive universal constant c2 such that following is
true. Let K be a closed convex subset of Rn with diameter ≥ 2. For each μ ∈ K ,
let tμ be defined as in Theorem 1.1. Then tμ ≥ c2n

−1/2 for all μ ∈ K .

PROOF. Take any μ ∈ K . Since the diameter of K is ≥2, there exists ν ∈ K

such that ‖ν − μ‖ ≥ 1. By the convexity of K , this implies that there exists ν ∈ K

such that ‖ν −μ‖ = 1. For each t ∈ [0,1] let νt := (1 − t)μ+ tν. Then νt ∈ K and
‖νt − μ‖ = t . Therefore, there exists positive C1 and C2 such that if t ≤ C1 then

fμ(t) ≥ E
(
max

{
0,Z · (νt − μ)

})− t2

2
≥ C2t.

On the other hand, by (9),

fμ(t) ≤ C3t
√

n.

Thus, with C4 := C1C2/C3,

fμ

(
C4n

−1/2)≤ C2C1 ≤ fμ(C1).

Taking C3 large enough, we have C4n
−1/2 < C1. By Proposition 1.3, this shows

that tμ ≥ C4n
−1/2. �

LEMMA 4.8. Let K be a closed convex subset of Rn and let tμ be defined as
in Theorem 1.1. Then for any μ,ν ∈ K such that ‖μ − ν‖ ≤ tμ/24,

11tμ

24
≤ tν ≤ 50tμ

24
.

PROOF. If tμ = 0 there is nothing to prove. So assume that tμ > 0. For any
γ ∈ K and t ≥ 0, let

B(γ, t) := {
γ ′ ∈ K :

∥∥γ ′ − γ
∥∥≤ t

}
(16)

and

mγ (t) := E

(
sup

γ ′∈B(γ,t)

Z · (γ ′ − γ
))= E

(
sup

γ ′∈B(γ,t)

Z · γ ′).(17)

Let B0 := B(μ, r), where r := tμ/24. Take any ν ∈ B0. Note that for any positive
integer k,

B
(
μ, (k − 1)r

)⊆ B(ν, kr) ⊆ B
(
μ, (k + 1)r

)
,

and, therefore,

mμ

(
(k − 1)r

)≤ mν(kr) ≤ mμ

(
(k + 1)r

)
.(18)

Applying (18) with k = 11 gives

mν(11r) ≤ mμ(12r) = mμ(tμ/2),
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and with k = 25, we get

mν(25r) ≥ mμ(24r) = mμ(tμ).

Therefore, by the inequality (12) from the proof of Theorem 1.1,

fν(25r) − fν(11r) = mν(25r) − mν(11r) − (252 − 112)r2

2

≥ mμ(tμ) − mμ(tμ/2) − 252t2
μ

576
≥ t2

μ

2
− 7t2

μ

16
≥ 0.

Therefore, by Proposition 1.3,

tν ≥ 11r = 11tμ

24
.

Next, note that by (18),

fν(50r) − fν(25r) = mν(50r) − mν(25r) − 1875r2

2

≤ mμ(51r) − mμ(24r) − 1875r2

2
.

By the inequality (12),

mμ(51r) − mμ(24r) = mμ(27r + tμ) − mμ(tμ) ≤ 27rtμ = 648r2.

Combining the last two displays gives

fν(50r) − fν(25r) ≤ 648r2 − 1875r2

2
≤ 0.

By Proposition 1.3, this proves that tν ≤ 50r . �

We are now ready to prove Theorem 1.4.

PROOF OF THEOREM 1.4. First, suppose that l := diam(K) ≤ 2. Choose
a line segment I ⊆ K of length l. By Lemma 4.6, there exists μ0 ∈ I such that
E‖g(Z + μ0) − μ0‖2 ≥ c1l

2. But E‖PK(Z + μ0) − μ0‖2 ≤ l2, since any two el-
ements of K are within distance l of each other. This completes the proof of the
theorem when diam(K) ≤ 2. For the rest of the proof, assume that diam(K) > 2.

For μ ∈ K and t ≥ 0, let mμ(t) be defined as in (17). Since diam(K) > 2,
Lemma 4.7 implies that for all μ ∈ K ,

tμ ≥ c2n
−1/2.(19)

Let

s := sup
μ∈K

mμ

(
10−3tμ

)
.
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Then there exists at least one point μ∗ ∈ K such that

mμ∗
(
10−3tμ∗

)≥ s − c2
2

106n
.

For ν ∈ K and t ≥ 0 let B(ν, t) be defined as in (16). Let B0 := B(μ∗, r), where
r := 10−3tμ∗ . Lemma 4.8 implies that for all ν ∈ B0,

11tμ∗

24
≤ tν ≤ 50tμ∗

24
.(20)

Define a probability measure ρ on B0 as follows. Let ν∗ be the point that maxi-
mizes Z · (ν − μ∗) among all ν ∈ B0. If there are more than one such points, take
the one that is the least in the lexicographic ordering (it is easy to prove that there
is a least element since the set of maximizers is closed). Let ρ be the law of ν∗. Let
Z′ be a standard Gaussian random vector, independent of Z. Let Y ′ := Z′ + ν∗.
Let ρ′ be the conditional distribution of ν∗ given Y ′. It is easy to see that

dρ ′(ν) = L−1e−1/2‖Y ′−ν‖2
dρ(ν), ν ∈ B0,

where

L :=
∫
B0

e−1/2‖Y ′−ν‖2
dρ(ν).

Given Y ′ and ν∗, let ν′ be a random point generated from the distribution ρ′. Then
ν′ and ν∗ are conditionally i.i.d. given Y ′, as is evident from the joint law θ of the
triple (ν∗, Y ′, ν′):

dθ(ν1, y, ν2) = e−1/2‖y−ν2‖2
e−1/2‖y−ν1‖2

(2π)n/2
∫
B0

e−1/2‖y−ν‖2
dρ(ν)

dρ(ν1) dy dρ(ν2),

where ν1, ν2 ∈ B0 and y ∈R
n.

Let E(ν∗|Y ′) be the random vector whose ith coordinate is E(ν∗
i |Y ′) and g be an

arbitrary Borel measurable map from R
n into itself, as in the statement of Theo-

rem 1.4. Then

E
(∥∥ν∗ − ν′∥∥2|Y ′)= 2E

(∥∥ν∗ −E
(
ν∗|Y ′)∥∥2|Y ′)

≤ 2E
(∥∥ν∗ − g

(
Y ′)∥∥2|Y ′).

Thus,

E
∥∥ν∗ − ν′∥∥2 ≤ 2E

∥∥ν∗ − g
(
Y ′)∥∥2

.(21)

Let B1 denote the (random) set B(ν∗,10−3r) ∩ B0. Then

P
(
ν′ ∈ B1|Y ′, ν∗)= L−1

∫
B1

e−1/2‖Y ′−ν‖2
dρ(ν)

(22)

=
∫
B1

e−Z′·(ν∗−ν)−1/2‖ν∗−ν‖2
dρ(ν)∫

B0
e−Z′·(ν∗−ν)−1/2‖ν∗−ν‖2

dρ(ν)
.
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Let L1 and L2 denote the numerator and the denominator in the last expression.
First, note that

E
(
L2

1|ν∗) ≤
∫
B1

E
(
e−2Z′·(ν∗−ν)−‖ν∗−ν‖2 |ν∗)dρ(ν)

(23)
=
∫
B1

e‖ν∗−ν‖2
dρ(ν) ≤ e10−6r2

ρ(B1).

Next, note that E(L2|ν∗) = 1, and

E
(
L2

2|ν∗)
=
∫
B0

∫
B0

E
(
e−Z′·((ν∗−ν1)+(ν∗−ν2))−1/2(‖ν∗−ν1‖2+‖ν∗−ν2‖2))dρ(ν1) dρ(ν2)

=
∫
B0

∫
B0

e(ν∗−ν1)·(ν∗−ν2) dρ(ν1) dρ(ν2) ≤ e4r2
.

Therefore by the second moment inequality (Lemma 4.5),

P
(
L2 > 1/2|ν∗)≥ (E(L2|ν∗))2

4E(L2
2|ν∗)

≥ 1

4
e−4r2

.(24)

Now note that, by a slight abuse of notation,

∂

∂Z′
i

logL2 = − 1

L2

∫
B0

(
ν∗
i − νi

)
e−Z′·(ν∗−ν)−1/2‖ν∗−ν‖2

dρ(ν).

Consequently,

n∑
i=1

(
∂

∂Z′
i

logL2

)2

≤
∫
B0

‖ν∗ − ν‖2e−Z′·(ν∗−ν)−1/2‖ν∗−ν‖2
dρ(ν)∫

B0
e−Z′·(ν∗−ν)−1/2‖ν∗−ν‖2

dρ(ν)
(25)

≤ 4r2.

Therefore, by the Gaussian concentration inequality (Lemma 4.3), for any x ≥ 0,

P
(
logL2 ≥ E

(
logL2|ν∗)+ x|ν∗)≤ e−x2/8r2

.(26)

Now suppose that 4r2 > log 4, or in other words,

tμ∗ > 500
√

2 log 2.(27)

Under the above condition, taking x = 8r2 in (26) gives

P
(
logL2 ≥ E

(
logL2|ν∗)+ 8r2|ν∗)≤ e−8r2

< 1
4e−4r2

.

Comparing this with (24), we realize that under (27), it must be true that

E
(
logL2|ν∗)≥ −8r2 − log 2.
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Therefore, if (27) holds, then

E
(
L−2

2 |ν∗)= e−2E(logL2|ν∗)
E
(
e−2(logL2−E(logL2|ν∗))|ν∗)

≤ 4e16r2
E
(
e−2(logL2−E(logL2|ν∗))|ν∗).

But by the Gaussian concentration inequality (Lemma 4.3) and the estimate (25),

E
(
e−2(logL2−E(logL2|ν∗))|ν∗)≤ e8r2

.

Combining the last two displays gives

E
(
L−2

2 |ν∗)≤ 4e24r2
.(28)

By (22), (23) and (28), we see that under condition (27),

P
(
ν′ ∈ B1|ν∗)= E

(
L1L

−1
2 |ν∗)

≤ (
E
(
L2

1|ν∗)
E
(
L−2

2 |ν∗))1/2(29)

≤ 2e13r2√
ρ(B1).

Define

M1 := sup
ν∈B0

Z′ · (ν − μ∗), M2 := sup
ν∈B1

Z′ · (ν − ν∗),
M3 := Z′ · (ν∗ − μ∗).

The basic fact, easy to see, is that

ρ(B1) ≤ P

(
sup
ν∈B1

Z′ · (ν − μ∗)≥ sup
ν∈B0

Z′ · (ν − μ∗)|ν∗)
(30)

≤ P
(
M2 + M3 ≥ M1|ν∗).

Having understood this, note that by the definitions of μ∗ and s and the lower
bounds (19) and (20),

E
(
M1|ν∗)= mμ∗

(
10−3tμ∗

)≥ s − c2
2

106n
(31)

≥ mν∗
(
10−3tν∗

)− t2
μ∗

106 ≥ mν∗(11r/24) − r2.

On the other hand,

E
(
M2|ν∗)≤ mν∗

(
10−3r

)
.(32)
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Let δ := 11r/24 − 10−3r . By the concavity of mν∗ , and the inequalities (12)
and (20),

mν∗(11r/24) − mν∗
(
10−3r

)
= mν∗(11r/24) − mν∗(11r/24 − δ)

(33)
≥ mν∗(tν∗) − mν∗(tν∗ − δ)

≥ tν∗δ ≥ 11tμ∗δ

24
≥ 110tμ∗r

242 ≥ 100r2.

By (31), (32) and (33), we see that

E
(
M1|ν∗)−E

(
M2|ν∗)≥ 99r2.

Let x = 33r2. Then by the above inequality,

P
(
M2 + M3 ≥ M1|ν∗)

≤ P
(
M1 ≤ E

(
M1|ν∗)− x|ν∗)

+ P
(
M2 ≥ E

(
M1|ν∗)− 2x|ν∗)+ P

(
M3 ≥ x|ν∗)

≤ P
(
M1 ≤ E

(
M1|ν∗)− x|ν∗)

+ P
(
M2 ≥ E

(
M2|ν∗)+ x|ν∗)+ P

(
M3 ≥ x|ν∗).

By the concentration inequality for Gaussian maxima (Lemma 4.1) and the fact
that E(M3|ν∗) = 0, this shows that

P
(
M2 + M3 ≥ M1|ν∗)≤ e−x2/2r2 + e−x2/2(10−3r)2 + e−x2/2r2

≤ 3 exp
(−500r2).

Combined with (29) and (30), this shows that if (27) holds, then

P
(
ν′ ∈ B1|ν∗)≤ C1 exp

(−C2t
2
μ∗
)
.

Therefore, there is a universal constant C3 ≥ 500
√

2 log 2 such that if tμ∗ ≥ C3,
then

E
∥∥ν′ − ν∗∥∥2 ≥ (

10−3r
)2
P
(
ν′ /∈ B1

)≥ C4t
2
μ∗,

and so by (21),

E
∥∥ν∗ − g

(
Z′ + ν∗)∥∥2 ≥ C5t

2
μ∗ .

Since

E
∥∥ν∗ − g

(
Z′ + ν∗)∥∥2 =

∫
B0

E
∥∥μ − g

(
Z′ + μ

)∥∥2
dρ(μ),

this shows that there exists μ0 ∈ B0 such that

E
∥∥μ0 − g(Z + μ0)

∥∥2 ≥ C5t
2
μ∗ .
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By (20), tμ∗ ≥ 24tμ0/50. On the other hand if tμ∗ ≥ C3, then by (20), tμ0 ≥
11tμ∗/24 ≥ 200

√
2 log 2. Therefore, by Corollary 1.2,

E
∥∥μ0 − g(Z + μ0)

∥∥2 ≥ C6t
2
μ0

≥ C7E
∥∥μ0 − PK(Z + μ0)

∥∥2
.

This completes the proof of the theorem when tμ∗ ≥ C3 and diam(K) > 2.
Suppose now that tμ∗ < C3 and diam(K) > 2. For each μ, let

l2
μ := E

∥∥PK(Z + μ) − μ
∥∥2

.

Then by Corollary 1.2, lμ∗ ≤ C8. Let I be a line segment in K of length 1, with
one endpoint at μ∗. By Lemma 4.6, there exists μ0 ∈ I such that

E
∥∥g(Z + μ0) − μ0

∥∥2 ≥ c1.(34)

On the other hand, by Lemma 4.4,∥∥PK(Z + μ0) − μ0
∥∥

≤ ∥∥PK(Z + μ0) − PK

(
Z + μ∗)∥∥+ ∥∥PK

(
Z + μ∗)− μ∗∥∥+ ∥∥μ∗ − μ0

∥∥
≤ ∥∥PK

(
Z + μ∗)− μ∗∥∥+ 2

∥∥μ∗ − μ0
∥∥

≤ ∥∥PK

(
Z + μ∗)− μ∗∥∥+ 2.

Consequently,

E
∥∥PK(Z + μ0) − μ0

∥∥2 ≤ 2l2
μ∗ + 8 ≤ C9.

Together with (34), this completes the proof of the theorem when tμ∗ < C3 and
diam(K) > 2. �

The next goal is to prove Proposition 1.5. The proof is a simple consequence
of Proposition 1.3. We just have to carry out some computations to verify the
conditions of Proposition 1.3.

PROOF OF PROPOSITION 1.5. We have to first prove that the set K is closed
and convex. It is obviously closed, and it is convex because for any α,α′ ∈ [0,1]
and θi, θ

′
i ∈ [−1,1],

t
(
αn−1/4 + αθin

−1/2)+ (1 − t)
(
α′n−1/4 + α′θ ′

i n
−1/2)

= αtn
−1/4 + αtθi,tn

−1/2,

where

αt = tα + (1 − t)α′ ∈ [0,1]
and

θi,t = tαθi + (1 − t)α′θ ′
i

tα + (1 − t)α′ ∈ [−1,1].
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Let �Y := ∑n
i=1 Yi/n, so that the components of μ̃ are all equal to �Y . Defining

μ̄ =∑n
i=1 μi/n and θ̄ =∑n

i=1 θi/n, we have

E(μ̃i − μi)
2 = Var(μ̃i) + (μ̄ − μi)

2 = 1 + α2(θi − θ̄ )2

n
≤ 5

n
.

Therefore,

E‖μ̃ − μ‖2 ≤ 5,

which proves one part of the proposition.
Next, let μ = (0,0, . . . ,0). Take any t ≥ 0 and any ν ∈ K such that ‖ν −μ‖ ≤ t .

Suppose that

νi := αn−1/4 + αθin
−1/2,

where α ∈ [0,1] and θi ∈ [−1,1]. Note that

‖ν − μ‖2 ≥ α2√n
(
1 − n−1/4)2.

Therefore, α ≤ tn−1/4/(1 − n−1/4). Since

Z · (ν − μ) = αn−1/4
n∑

i=1

Zi + αn−1/2
n∑

i=1

Ziθi,

this proves that

sup
ν∈K : ‖ν−μ‖≤t

Z · (ν − μ) ≤ tn−1/2

1 − n−1/4

∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣+ tn−3/4

1 − n−1/4

n∑
i=1

|Zi |.

Consequently,

fμ(t) ≤ C1tn
1/4 − t2

2
.(35)

On the other hand, if t ≤ n1/4, then taking θi = sign(Zi) and α = tn−1/4/2, we get
‖ν − μ‖ ≤ t and

Z · (ν − μ) = tn−1/2

2

n∑
i=1

Zi + tn−3/4

2

n∑
i=1

|Zi |,

proving that

fμ(t) ≥ C2tn
1/4 − t2

2
.(36)

Without loss of generality, assume that C2 < 1 < C1. Let

r1 := C2
2n1/4

4C1
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and r2 := C2n
1/4. Then by (35),

fμ(r1) ≤ C2
2n1/2

4
.

On the other hand, since r2 ≤ n1/4, therefore, by (36),

fμ(r2) ≥ C2
2n1/2

2
.

Since r1 < r2, Proposition 1.3 shows that tμ ≥ r1. �

Finally, we give the proof of Proposition 1.6, which is an easy corollary of
Theorem 1.4.

PROOF OF PROPOSITION 1.6. By Theorem 1.4, there exists μ0 ∈ K such that
R2(μ0) ≥ CR1(μ0), where C is a universal constant. Therefore,

sup
μ∈K

R2(μ) ≥ R2(μ0) ≥ CR1(μ0) ≥ C inf
μ∈K

R1(μ) = CL sup
μ∈K

R1(μ).

This completes the proof of the proposition. �

We now turn to the proofs of the theorems from Section 2. The first goal is to
prove Theorem 2.1. Let us begin with some basic facts about Gaussian random
variables.

LEMMA 4.9 (Gaussian tails). Let V be a standard Gaussian random variable.
Then for any x > 0,(

1

x
− 1

x3

)
2e−x2/2
√

2π
≤ P

(|V | > x
)≤ 2e−x2/2

x
√

2π
,

E
(|V |; |V | > x

)= 2e−x2/2
√

2π
and

E
(
V 2; |V | > x

) ≤ 2(x2 + 1)e−x2/2

x
√

2π
.

PROOF. The upper bound in the first inequality is well known as the Mills
ratio upper bound for the Gaussian tail. To prove this, just note that

P
(|V | > x

)= 2
∫ ∞
x

e−y2/2
√

2π
dy ≤ 2

∫ ∞
x

ye−y2/2

x
√

2π
dy = 2e−x2/2

x
√

2π
.

For the lower bound, we apply integration by parts two times to get∫ ∞
x

e−y2/2 dy =
(

1

x
− 1

x3

)
e−x2/2 +

∫ ∞
x

3e−y2/2

y4 dy.
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For the second assertion, note that

E
(|V |; |V | > x

)= 2
∫ ∞
x

ye−y2/2
√

2π
dy = 2e−x2/2

√
2π

.

Finally, for the third claim, note that

E
(
V 2; |V | > x

)= 2
∫ ∞
x

y2e−y2/2
√

2π
= 2xe−x2/2

√
2π

+ 2
∫ ∞
x

e−y2/2
√

2π
dy

and apply the first inequality to bound the second term on the right-hand side. �

LEMMA 4.10 (Size of Gaussian maxima). Let V1, . . . , Vn be standard Gaus-
sian random variables, not necessarily independent. Then

E

(
max

1≤i≤n
|Vi |

)
≤
√

2 log(2n).

PROOF. Take any β > 0. Then by Jensen’s inequality,

E

(
max

1≤i≤n
|Vi |

)
= 1

β
E
(
log eβ max1≤i≤n |Vi |)

≤ 1

β
E

(
log

n∑
i=1

eβ|Vi |
)

≤ 1

β
log

n∑
i=1

E
(
eβ|Vi |)

≤ 1

β
log

n∑
i=1

(
E
(
eβVi

)+E
(
e−βVi

))= log(2n)

β
+ β

2
.

The proof is completed by taking β = √
2 log(2n). �

For any n and r , let Cr(Rn) be the set of r-times continuously differentiable
functions from R

n into R, and let Cr
b(R

n) be the set of all g ∈ Cr(Rn) such that g

and all its derivatives up to order r are bounded. For any g ∈ C1
b(R), let Ug be the

solution to the differential equation

f ′(x) − xf (x) = g(x) −E
(
g(V )

)
,

where V ∼ N(0,1). Explicitly, we have

Ug(x) = ex2/2
∫ x

−∞
e−u2/2(g(u) −E

(
g(V )

))
du.

It is not difficult to prove that Ug maps C1
b(R) into C2

b(R). The following lemma
is well known, and follows directly from integration by parts:

LEMMA 4.11. Let V = (V1, . . . , Vn) be a Gaussian random vector with zero
mean and arbitrary covariance matrix. Then for any g ∈ C1

b(Rn) and any i, we
have

E
(
Vig(V )

)=
n∑

j=1

E(ViVj )E

(
∂g

∂xj

(V )

)
.
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Using this, we easily get the following lemma.

LEMMA 4.12. Take any g1, g2 ∈ C2
b(R), and let f1 = Ug1, f2 = Ug2. Sup-

pose V1 and V2 are jointly Gaussian random variables with E(V1) = E(V2) = 0,
E(V 2

1 ) = E(V 2
2 ) = 1 and E(V1V2) = ρ. Then

Cov
(
g1(V1), g2(V2)

)= ρE
(
f1(V1)f2(V2)

)+ ρ2
E
(
f ′

1(V1)f
′
2(V2)

)
.

PROOF. Using Lemma 4.11 in two steps, we have

Cov
(
g1(V1), g2(V2)

)= E
((

f ′
1(V1) − V1f1(V1)

)(
f ′

2(V2) − V2f2(V2)
))

= −ρE
(
f1(V1)

(
f ′′

2 (V2) − f2(V2) − V2f
′
2(V2)

))
= −ρE

(
f1(V1)

(
f ′′

2 (V2) − f2(V2)
))

+ ρE
(
f1(V1)f

′′
2 (V2)

)+ ρ2
E
(
f ′

1(V1)f
′
2(V2)

)
= ρE

(
f1(V1)f2(V2)

)+ ρ2
E
(
f ′

1(V1)f
′
2(V2)

)
.

This completes the proof of the lemma. �

Using Lemma 4.12, we now prove the following set of inequalities for additive
functions of Gaussian random variables. This is probably a new result.

LEMMA 4.13. Let V = (V1, . . . , Vn) be a Gaussian random vector with mean
zero and covariance matrix �. Let λmax and λmin be the largest and smallest eigen-
values of �. Assume that E(V 2

i ) = 1 for each i. Let g1, . . . , gn be functions such
that E(gi(Vi)

2) < ∞ for each i. Then

λmin

n∑
i=1

Var
(
gi(Vi)

)≤ Var

(
n∑

i=1

gi(Vi)

)
≤ λmax

n∑
i=1

Var
(
gi(Vi)

)
.

PROOF. First, let us make some reductions. Recall that we have assumed that
E(V 2

i ) = 1 for each i. Next, note that if g is a function such that E(g(Z)2) < ∞,
where Z ∼ N(0,1), then there is a sequence of step functions {gn} such that gn(Z)

converges to g(Z) in L2. Again, if g is a step function, then there is a sequence
{gn} of C1

b functions such that gn(Z) converges to g(Z) in L2. Hence, assume
without loss of generality that gi ’s are elements of C1

b(R).
Now let fi := Ugi and σij := E(ViVj ). Let (Y1, . . . , Yn) be an independent copy

of (V1, . . . , Vn). Then by Lemma 4.12, we have

Var

(
n∑

i=1

gi(Vi)

)
=∑

i,j

(
σijE

(
fi(Vi)fj (Vj )

)+ σ 2
ijE

(
f ′

i (Vi)f
′
i (Vj )

))

= E

(∑
i,j

σij

(
fi(Vi)fj (Vj ) + Yif

′
i (Vi)Yjf

′
j (Vj )

))
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≤ λmaxE

(
n∑

i=1

(
fi(Vi)

2 + Y 2
i f ′

i (Vi)
2))

= λmax

n∑
i=1

E
(
fi(Vi)

2 + f ′
i (Vi)

2).
But by Lemma 4.12, Var(gi(Vi)) = E(f (Vi)

2) +E(f ′
i (Vi)

2). This gives the upper
bound. The lower bound follows similarly. �

We need a few more lemmas before proving Theorem 2.1. Let all notation be
as in the statement of the theorem. Additionally, let S := {i :βi = 0}, and let V :=
n−1/2XT Z. Then V is a Gaussian random vector with mean zero and covariance
matrix �.

LEMMA 4.14. Suppose that δ > 0. Take any α > 0. Then there is a constant
c3 depending only on α, δ, a, b, s, r and L such that

fμ

(
nα)≤ c3

√
n(logn)1/4 + c3n

α
√

logn + 2δ
√

αn logn − n2α

2
.

PROOF. Throughout this proof, we will use C1,C2, . . . to denote constants
that may depend only on α, δ, a, b, s, r and L. Let K ′

0 be the set of all γ ∈ K0
such that ‖Xγ − Xβ‖ ≤ nα . Let

M := sup
γ∈K ′

0

Z · (Xγ − Xβ) = √
n sup

γ∈K ′
0

V · (γ − β).

Note that for any γ ∈ K ′
0,

na‖γ − β‖2 ≤ ‖Xγ − Xβ‖2 ≤ n2α.(37)

Next, note that

V · (γ − β) ≤∑
i∈S

|Vi ||γi − βi | +
∑
i /∈S

|Vi ||γi |.(38)

Now, by (37),

∑
i∈S

|Vi ||γi − βi | ≤
(∑

i∈S

V 2
i

∑
i∈S

(γi − βi)
2
)1/2

≤
(∑

i∈S

V 2
i

)1/2

‖γ − β‖

≤ nα

√
na

(∑
i∈S

V 2
i

)1/2

.
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Since E(V 2
i ) = 1 for each i, this shows that

E

(
sup

γ∈K ′
0

∑
i∈S

|Vi ||γi − βi |
)

≤ nα

√
s

na
.(39)

Define the random set

T := {
i /∈ S : |Vi | ≥ 2

√
α logn

}
.

Then by (37) and the fact that |γ |1 ≤ L,∑
i /∈S

|Vi ||γi | ≤ ∑
i∈T

|Vi ||γi | + 2
√

α logn
∑

i /∈S∪T

|γi |

≤
(∑

i∈T

V 2
i

)1/2

‖γ − β‖ + 2
√

α logn

(
L −∑

i∈S

|γi |
)

≤
(∑

i∈T

V 2
i

)1/2 nα

√
na

+ 2
√

α logn

(
δ +∑

i∈S

|γi − βi |
)
.

Again, by the Cauchy–Schwarz inequality and (37),∑
i∈S

|γi − βi | ≤ √
s‖γ − β‖ ≤ nα

√
s

na
.

From the last two displays, we get

∑
i /∈S

|Vi ||γi | ≤
[(∑

i∈T

V 2
i

)1/2

+ 2
√

sα logn

]
nα

√
na

+ 2δ
√

α logn.

Therefore, by Lemma 4.9,

E

(
sup

γ∈K ′
0

∑
i /∈S

|Vi ||γi |
)

≤
[( p∑

i=1

E
(
V 2

i ; |Vi | ≥ 2
√

α logn
))1/2

+ 2
√

sα logn

]
nα

√
na

+ 2δ
√

α logn

≤ [
C1n

(1−2α)/2(logn)1/4 + 2
√

sα logn
] nα

√
na

+ 2δ
√

α logn

≤ C2(logn)1/4 + C3n
α

√
logn

n
+ 2δ

√
α logn.

From the above display, and the inequalities (38) and (39), we get

fμ

(
nα)= E(M) − n2α

2
= √

nE
(

sup
γ∈K ′

0

V · (γ − β)
)

− n2α

2

≤ C2
√

n(logn)1/4 + C3n
α
√

logn + 2δ
√

αn logn − n2α

2
.
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This completes the proof of the lemma. �

LEMMA 4.15. Suppose that δ > 0. Take any 0 < α1 < α2 < 1/2. Then there
is a constant c4 depending only on α1, α2, δ, a, b, s, r and L such that if n > c4,
then

fμ

(
nα2

)≥ 2δ
√

α1n logn − 2nα2 − n2α2

2
.

PROOF. Choose some α ∈ (α1, α2). Throughout this proof, we will use
C1,C2, . . . to denote constants that may depend only on α,α1, α2, δ, a, b, s, r

and L.
Let V and T be as in the proof of Lemma 4.14. Let K ′

0 and M be as in the proof
of Lemma 4.14, with α replaced by α2. Let us make the following specific choice
of γ :

γi :=
⎧⎨
⎩

sign(Vi)δ/|T |, if i ∈ T ,

βi, if i ∈ S,

0, in all other cases.

Then note that

|γ |1 ≤ |β|1 + δ = L.(40)

(The above inequality is an equality if T is nonempty, but we are allowing for the
possibility that T may be empty.) Next, note that if T is nonempty, then

‖Xβ − Xγ ‖ ≤ √
bn‖β − γ ‖ ≤ δ

√
bn

|T |(41)

and

V · (γ − β) = δ

|T |
∑
i∈T

|Vi |.(42)

By Lemma 4.9,(
1 − 1

4α logn

)
(p − s)n−2α

√
2πα logn

≤ E|T | ≤ pn−2α

√
2πα logn

(43)

and

E

(∑
i∈T

|Vi |
)

=∑
i /∈S

E
(|Vi |; |Vi | ≥ 2

√
α logn

)= 2(p − s)n−2α

√
2π

.(44)

On the other hand, by Lemma 4.13,

Var
(|T |)≤ b

∑
i /∈S

P
(|Vi | ≥ 2

√
α logn

)≤ C1pn−2α

√
logn

(45)
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and

Var
(∑

i∈T

|Vi |
)

= b
∑
i /∈S

E
(
V 2

i ; |Vi | ≥ 2
√

α logn
)≤ C2pn−2α

√
logn.(46)

Let ε′ be a positive constant depending only on α, α1, α2, δ, a, b, s, r and L.
The value of ε′ will be determined later. As a consequence of (41), (43), (44), (45),
(46), the fact that α2 < 1/2, and Chebychev’s inequality, it follows that there exists
C3 depending only on α, α1, α2, δ, a, b, s, r and L and our choice of ε′, such that
if n > C3, then

P

((
1 − ε′)(1 − 1

4α logn

)
(p − s)n−2α

√
2πα logn

≤ |T | ≤ (
1 + ε′) pn−2α

√
2πα logn

and
∑
i∈T

|Vi | ≥ (
1 − ε′2)2(p − s)n−2α

√
2π

)
≥ 1

2
.

Note that if C3 is chosen large enough, and |T | indeed turns out to be bigger
than the lower bound on |T | in the above expression, then |T | ≥ δ2bn1−2α2 since
α2 > α. Thus, under this circumstance (40) and (41) imply that γ ∈ K ′

0. Combined
with (42) and the lower bound on the probability displayed above, this gives

P

(
M ≥ (1 − ε′)(p − s)

p
2δ
√

αn logn

)
≥ 1

2
.

By the concentration of Gaussian maxima (Lemma 4.1) and the above inequality,
it follows that

E(M) ≥ (1 − ε′)(p − s)

p
2δ
√

αn logn − 2nα2 .

The proof is now completed by taking ε′ small enough and C3 large enough to
satisfy the required inequality. �

LEMMA 4.16. Suppose that δ = 0. Then there is a constant c5 depending only
on a, b, s, r and L such that for any u > 0,

fμ(u
√

logn) ≤ c5u logn − u2 logn

2
.

PROOF. Throughout this proof, we will use C1,C2, . . . to denote constants
that may depend only on δ, a, b, s, r and L. Fix u > 0 and let K ′

0 be the set of
all γ ∈ K0 such that ‖Xγ − Xβ‖ ≤ u

√
logn. Let M and V be as in the proof of

Lemma 4.14. Additionally, let G := max1≤i≤p |Vi |.
Take any γ ∈ K ′

0. Note that the inequality (38) from the proof of Lemma 4.14
is still valid, and that (37) and (39) are also valid, after replacing nα with u

√
logn.
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In addition to that, note that by Lemma 4.10,

E

(∑
i /∈S

|Vi ||γi |
)

≤ E(G)
∑
i /∈S

|γi |

≤
√

2 log(2p)

(
L −∑

i∈S

|γi |
)

=
√

2 log(2p)
∑
i∈S

(|βi | − |γi |)≤
√

2 log(2p)
∑
i∈S

|βi − γi |

≤
√

2s log(2p)‖β − γ ‖ ≤ C1u logn√
n

.

Combining the above observations, we get

E(M) ≤ C2u
√

logn + C1u logn − u2 logn

2
.

This completes the proof of the lemma. �

LEMMA 4.17. Suppose that δ < 0. Then there are positive constants c6 and
c7 depending only on δ, a, b, s, r and L such that c6

√
n ≤ tμ ≤ c7

√
n.

PROOF. Note that for any γ ∈ K0,

‖Xγ − Xβ‖2 ≥ na‖γ − β‖2 ≥ na
∑
i∈S

(γi − βi)
2

≥ na

s

(∑
i∈S

|γi − βi |
)2

≥ naδ2

s
.

This shows that there is a small enough C1 depending only on δ, a and s such that
fμ(t) = −∞ if t ≤ C1

√
n. By Proposition 1.3 and the fact that fμ(t) is finite for

at least one t (from Theorem 1.1), this implies the lower bound on tμ.
Next, note that since 0 ∈ K0,

‖μ − μ̂‖ ≤ ‖μ − Y‖ + ‖Y − μ̂‖
≤ ‖μ − Y‖ + ‖Y‖
≤ 2‖μ − Y‖ + ‖μ‖.

But E‖μ − Y‖2 = n and

‖μ‖ = ‖Xβ‖ ≤ √
nb‖β‖ ≤ √

nb|β|1 ≤ √
nbL.

Thus, E‖μ − μ̂‖2 ≤ (8 + 2bL2)n. By Corollary 1.2, this shows that tμ ≤ C2
√

n

for some constant C2 depending only on b and L. This completes the proof of the
lemma. �
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We are now ready to prove Theorem 2.1.

PROOF OF THEOREM 2.1. First, suppose that δ > 0. Take any 0 < α < α1 <

α2 < 1/4. By Lemmas 4.14 and 4.15, it follows that if n is large enough (depending
only on α, α1, α2, δ, a, b, s, r and L), then fμ(nα) ≤ fμ(nα2) and, therefore, by
Proposition 1.3, tμ ≥ nα . Next, take any α > 1/4. Lemma 4.14 implies that if n is
large enough, then fμ(nα) ≤ 0 and, therefore, by Proposition 1.3, t ≤ nα .

If δ = 0, the conclusion follows directly from a combination of Lemma 4.16
and Proposition 1.3. If δ < 0, simply invoke Lemma 4.17. �

Our final task is to prove Theorem 2.2. As before, we need some standard results
and notations from the literature.

If F is a subset of a normed space with norm ‖ · ‖ and ε is a positive real
number, the covering number N(ε,F,‖ · ‖) is defined as the minimum number of
open balls of radius ε (with respect to the norm ‖ · ‖) with centers in F that are
needed to cover F .

The following result, known as “Dudley’s entropy bound,” connects the cover-
ing numbers of F with the expected maximum of a certain Gaussian process.

LEMMA 4.18 (Dudley’s entropy bound [27]). Let F be as above. Suppose
that (Xf )f ∈F is a Gaussian process on F such that E(Xf ) = 0 for each f ∈ F ,
and E(Xf − Xg)

2 = ‖f − g‖2 for each f,g ∈ F . Then

E

(
sup
f ∈F

Xf

)
≤ C

∫ diam(F)

0

√
logN

(
ε,F,‖ · ‖)dε,

where C is a universal constant.

Suppose now that F is a set of functions from some set S into R, and ‖ · ‖
is a norm on a vector space of functions containing F . Suppose that l and u are
two elements of F such that l ≤ u everywhere on S. If ‖l − u‖ ≤ ε, then the set
of all f ∈ F such that l ≤ f ≤ u everywhere on S is called an ε-bracket, and is
denoted by [l, u]. The bracketing number N[ ](ε,F,‖ · ‖) is the minimum number
of ε-brackets needed to cover F . It is quite easy to see that

N
(
ε,F,‖ · ‖)≤ N[ ]

(
2ε,F,‖ · ‖).(47)

The following result is quoted from van der Vaart and Wellner [72], Theorem 2.7.5,
page 159.

LEMMA 4.19 (van der Vaart and Wellner [72]). Let P be any probability mea-
sure on R and let ‖ · ‖r denote the Lr(P ) norm. Let F be the set of all monotone
functions from R into [0,1]. Then for any ε > 0,

logN[ ]
(
ε,F,‖ · ‖r

)≤ Cε−1,

where C is a constant that depends on r only.
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The statement of Lemma 4.19 has to be modified in a certain way to suit our
purpose in the proof of Theorem 2.2. The following lemma gives the modified
statement.

LEMMA 4.20. Take any two real numbers a < b, and a positive integer n. Let
Q denote the set of all vectors μ ∈ R

n such that

a ≤ μ1 ≤ μ2 ≤ · · · ≤ μn ≤ b.

Let ‖ · ‖ denote the Euclidean norm on Q. Then for any t > 0,

logN
(
t,Q,‖ · ‖)≤ C

√
n(b − a)

t
,

where C is a universal constant.

PROOF. First, assume that a = 0 and b = 1. Let

ε := t

2
√

n
.

Let P be the uniform probability distribution on [0,1], and let ‖ · ‖L2(P ) denote
the L2 norm induced by P . Let F be the set of all monotone functions from R into
[0,1]. Let G be a finite subset of F such that for any f ∈ F there exists g ∈ G such
that ‖f − g‖L2(P ) ≤ ε. By Lemma 4.19 and the inequality (47), G can be chosen
such that log |G| ≤ Cε−1, where C is a universal constant.

Now take any μ ∈ Q. Define a function f μ :R → [0,1] as

f μ(x) =
⎧⎨
⎩

0, if x < 0,
μi, if (i − 1)/n ≤ x < i/n,
1, if x ≥ 1.

Then clearly f μ ∈ F . For each g ∈ G, inspect whether there exists some μ ∈ Q

such that ‖f μ − g‖L2(P ) < ε. If there exists such a μ, choose one according to
some pre-specified rule and call it μ(g). Let Q′ be the subset of Q consisting of
all such μ(g). Then clearly |Q′| ≤ |G|. On the other hand, for any μ ∈ Q, there
exists g ∈ G such that ‖f μ − g‖L2(P ) < ε. Consequently,∥∥f μ − f μ(g)

∥∥
L2(P ) < 2ε.

But

∥∥f μ − f μ(g)
∥∥2
L2(P ) =

∫ 1

0

(
f μ(x) − f μ(g)(x)

)2
dx = 1

n

n∑
i=1

(
μi − μi(g)

)2
.

Thus, ‖μ−μ(g)‖ = √
n‖f μ −f μ(g)‖L2(P ) < 2

√
nε = t . This completes the proof

of the lemma when a = 0 and b = 1.
For general a and b, let l be the unique linear map that takes a to 0 and b to 1.

Let L :Rn →R
n be the map that applies l to each coordinate. Given t > 0, we now
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know that there exists a set Q0 ⊆ L(Q) of size ≤ C
√

n(b − a)/t such that for any
μ ∈ Q, there exists ν ∈ Q0 satisfying

∥∥L(μ) − ν
∥∥≤ t

b − a
.

To complete the proof, note that L−1(Q0) ⊆ Q, and ‖μ − L−1(ν)‖ ≤ t . �

We are now ready to prove Theorem 2.2.

PROOF OF THEOREM 2.2. Fix μ ∈ K . Let l be a positive integer, to be chosen
later. Let K ′ be the subset of K consisting of all ν such that

ν1 ≥ μ1 − 2l , νn ≤ μn + 2l .

Fix t > 0. Let

K ′′ := {
ν ∈ K ′ :‖ν − μ‖ ≤ t

}
and

m := E

(
sup

ν∈K ′′
Z · (ν − μ)

)
.

Given any s > 0, Lemma 4.20 implies that there exists a set A ⊆ K ′ of size
≤ exp(C02lD

√
n/s) such that for any ν ∈ K ′ there exists γ ∈ A satisfying

‖ν − γ ‖ < s. Combined with Dudley’s entropy bound (Lemma 4.18), this gives

m ≤ C1

√
2lDn1/4

∫ t

0

ds√
s

= 2C1

√
2lDtn1/4.(48)

Now take any ν ∈ K such that ‖ν − μ‖ ≤ t . For any L > 0,

∣∣{i : |νi − μi | > L
}∣∣≤ 1

L2

n∑
i=1

(νi − μi)
2 ≤ t2

L2 .

Consequently, if r(L) is the largest i such that |νi − μi | ≤ L, then

r(L) ≥ n − t2

L2 .

Similarly, if s(L) is the smallest i such that |νi − μi | ≤ L, then

s(L) ≤ 1 + t2

L2 .

Define ν′ as

ν′
i :=

⎧⎪⎨
⎪⎩

μi + 2l , if i > r
(
2l
)
,

μi − 2l , if i < s
(
2l
)
,

νi, if s
(
2l
)≤ i ≤ r

(
2l
)
.
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Since νr(2l ) ≤ μr(2l ) + 2l and νs(2l ) ≥ μs(2l ) − 2l , we see that ν′ ∈ K . Again by
definition it is clear that ν′

n ≤ μn +2l and ν′
1 ≥ μ1 −2l . Therefore, ν′ ∈ K ′. Finally,

note that for any i, |μi − ν′
i | ≤ |μi − νi |, implying that ν′ ∈ K ′′. Thus,

Z · (ν′ − μ
)≤ sup

γ∈K ′′
Z · (γ − μ).(49)

Next, note that

Z · (ν − ν′)≤ ∑
i>r(2l )

|Zi |
∣∣νi − ν′

i

∣∣+ ∑
i<s(2l )

|Zi |
∣∣νi − ν′

i

∣∣

≤
∞∑
k=l

∑
r(2k)<i≤r(2k+1)

|Zi |
∣∣νi − ν′

i

∣∣+ ∞∑
k=l

∑
s(2k+1)≤i<s(2k)

|Zi |
∣∣νi − ν′

i

∣∣

≤
∞∑
k=l

∑
r(2k)<i≤r(2k+1)

|Zi |2k+2 +
∞∑
k=l

∑
s(2k+1)≤i<s(2k)

|Zi |2k+2

≤
∞∑
k=l

∑
i>n−t2/22k

|Zi |2k+2 +
∞∑
k=l

∑
i<1+t2/22k

|Zi |2k+2.

This shows that

E

(
sup

ν∈K : ‖ν−μ‖≤t

Z · (ν − ν′))≤
∞∑
k=l

C2t
2

2k
= C2t

2

2l−1 .(50)

Combining (48), (49) and (50) gives

E

(
sup

ν∈K : ‖ν−μ‖≤t

Z · (ν − μ)
)

≤ E

(
sup

ν∈K : ‖ν−μ‖≤t

Z · (ν′ − μ
))

+E

(
sup

ν∈K : ‖ν−μ‖≤t

Z · (ν − ν′))

≤ E

(
sup

γ∈K ′′
Z · (γ − μ)

)
+ C2t

2

2l−1

≤ 2C1

√
2lDtn1/4 + C2t

2

2l−1 .

Now choose l so large that C22−(l−1) ≤ 1/4. With this choice of l, the above
inequality implies that

fμ(t) ≤ C3
√

Dtn1/4 − t2

4
.(51)

In particular, fμ(r) ≤ 0, where r = (4C3
√

Dn1/4)2/3. By Proposition 1.3, this im-
plies that tμ ≤ r . This completes the proof of the upper bound for tμ in the state-
ment of the theorem.
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Next, fix t ∈ [Bn−1/2,
√

n]. Let k := �t√n/B� and m := �n/k�. For j =
1,2, . . . ,m, let

Sj := ∑
(j−1)k<i≤jk

Zi, aj := μ(j−1)k+1, bj := μjk

and if mk < n, let

Sm+1 := ∑
mk<i≤n

Zi, am+1 := μmk+1, bm+1 := μn.

For each i, let

νi := aj + bj

2
if (j − 1)k < i ≤ jk.

Additionally, define

γi :=
{

aj , if (j − 1)k < i ≤ jk and Sj < 0,
bj , if (j − 1)k < i ≤ jk and Sj > 0.

Notice that for each i,

|γi − μi | ≤ Bk

n
≤ t√

n
.

Consequently,

‖γ − μ‖ ≤ t.

Moreover, γ ∈ K . Next, note that

Z · (γ − ν) = 1

2

m+1∑
j=1

|Sj |(bj − aj ) ≥ Ak

2n

m∑
j=1

|Sj |.

Therefore,

E

(
sup

θ∈K : ‖θ−μ‖≤t

Z · (θ − μ)
)

= E

(
sup

θ∈K : ‖θ−μ‖≤t

Z · (θ − ν)
)

≥ E
(
Z · (γ − ν)

)
≥ Ak

2n

m∑
j=1

E|Sj | ≥ C4Akm
√

k

n

≥ C5A
√

k ≥ C5AB−1/2t1/2n1/4.

Thus,

fμ(t) ≥ C5AB−1/2t1/2n1/4 − t2

2
.(52)
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Let α and β be two positive constants, to be chosen later. Let

r1 := αA8/3B−4/3D−1n1/6, r2 := βA2/3B−1/3n1/6.

Then by (52),

fμ(r2) ≥ (
C5

√
β − β2/2

)
A4/3B−2/3n1/3,

and by (51),

fμ(r1) ≤ C3α
1/2A4/3B−2/3n1/3.

Suppose that A > 0. Choosing β sufficiently small, and then choosing α even
smaller (depending on β), it is now easy to arrange that r1 < r2 and fμ(r1) ≤
fμ(r2). By Proposition 1.3, this implies that tμ ≥ r1. If A = 0, the lower bound in
the statement of the theorem is automatically true. �
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