
University of Florida

Computer and Information Sciences

A New Perspective on Rule Support
for Object�Oriented Databases

E� Anwar L� Maugis S� Chakravarthy

email� sharma�snapper�cis�ufl�edu

UF�CIS�TR�������
�Submited for publication�

�This work was supported in part by the NSF Research Initiation Grant

�IRI���������	 by the O
ce of Naval Technology and the Navy Command	 Control

and Ocean Surveillance Center RDT�E Division and by Sofreavia Services	 France��

Department of Computer and Information Sciences
Computer Science Engineering Building
University of Florida

Gainesville� Florida �����

Abstract

This paper proposes a new approach for supporting reactive capability in an object�
oriented database� We introduce an event interface� which extends the conventional
object semantics to include the role of an event generator� The proposed design of
this interface enables objects to propagate events relevant to that class asynchronously�
This interface provides a basis for the speci�cation of events spanning sets of objects�
possibly from di�erent classes� and detection of primitive and complex events� This
approach clearly separates event detection from rules� New rules can be added and use
existing objects� enabling objects to react to their own changes as well as to the changes
of other objects�

We use a runtime subscription mechanism� between rules and objects to selectively
monitor particular objects dynamically� This elegantly supports class level as well as
instance level rules� Moreover� we propose a design for the speci�cation and detection of
simple as well as complex events� Both events and rules are treated as �rst class objects�
Finally� treatment of events and rules as objects and the general event interface permit
speci�cation of rules on any set of objects� including rules themselves�

� Introduction

The need and the relevance of reactive capability as a unifying paradigm for handling a number

of database features are well�established� Most of the earlier research on active databases and

commercial implementations have concentrated on the support for active capability in the context

of relational database systems �C��	� SHP��� WF	
� DB��� Int	
�� Recently� there have been a

number of attempts �GJS	
� GJ	�� DPG	�� MP	
� SKL�	� CHS	�� Anw	
� CN	
� at incorporating

event and rule support into an object�oriented database management system �OODBMS��

Clearly� there is a paradigm shift when we move from the relational model to an object�oriented

one� This warrants re�examination of the functionality as well as the mechanism by which reactive

capability is incorporated into the object�oriented data model �BM	��� Furthermore� the di�erences

between the two data models have an in�uence on how the concepts are carried over� Below� we

enumerate some of the di�erences between the data models that led to the design choices presented

in this paper�

�� In contrast to a �xed number of pre�de�ned primitive events in the relational model� every

method�message is a potential event�

� The principle of encapsulation and further the distinctions between features supported �e�g��

private� protected� and public in C��� need to be accounted for� this is orthogonal to both

the access control issue and global nature of rules in the relational database context�

�� The principle of inheritance �both single and multiple� and its e�ect on rule incorporation�

and

�� Scope� accessibility� and visibility of object states for rules�

Furthermore� the following performance issues were considered�

�� E�ect of rule speci�cation only at class de�nition time and its activation and deactivation at

runtime� This entails changing the class de�nition every time rules are added or deleted�

� Rule management� For example� cost incurred in associating class level rules �rules that are

applicable to every instance of a class� and other types of rules� and

�� Event management� For example� cost incurred for event detection �both primitive and com�

plex� as the number of events can be very large in contrast to the relational case�

The approaches taken so far for incorporating rules into an OODBMS can be broadly classi�ed

into� i� speci�cation of �parameterized� rules only at the class de�nition time �allowing binding of

a rule to an instance� its activation� and deactivation at runtime� and ii� rule creation� activation�

deactivation� and binding at runtime� The �rst approach is motivated by e�ciency considerations

and keeps the runtime processing �not necessarily the overhead for rule processing depending on the

implementation� low and does not require any new classes for supporting rules� All speci�cations

are pre�processed into the code of the host language� The primary drawback of this approach is that

the integration is somewhat ad hoc and provides little or no support for the runtime speci�cation of

rules� On the other hand� the second approach tries to accomplish everything at runtime thereby

incurring a reasonable amount of overhead� In this approach� it is cumbersome to make a rule

applicable to only a small number of instances� To the best of our understanding� Ode �GJ	�� GJS	
�

has taken the �rst approach and ADAM �DPG	�� the second one� It is likely that the environments

used by these two systems �C�� and PROLOG� respectively� have been a factor for the approaches�

��� Contributions

In this paper� we take the view that the two approaches outlined above represent two end points of a

spectrum� individually� neither approach fully meets the functionality and seamless � requirements

of rule support for an object�oriented database� Our approach clearly separates the modeling

issues from the implementation choices� As a result� the functionality of our system is not dictated

by the environment although the implementation choices are to a large extent in�uenced by the

environment chosen �C�� in our case��

In this paper� we present both the design and implementation of ECA rules into an object�

oriented DBMS which take into account the di�erences between the relational and the object�

�By seamless approach we mean that the concepts proposed blend homogeneously into the paradigm into which
they are introduced without circumventing the tenets of the paradigm�

�

oriented models enumerated earlier� Our approach synthesizes the advantages of both the ap�

proaches outlined and further extends them in several signi�cant ways� Brie�y� we support rules

that are speci�ed at class de�nition time �Ode style� and rules that can be constructed at runtime

�ADAM style� and compile both using a uniform framework� In addition� we support primitive

events and event operators for constructing complex events as �rst class objects� We also support

rules as �rst class objects�

Most importantly� we introduce a monitoring viewpoint �termed external monitoring viewpoint �

that is not present in either Ode or ADAM� This viewpoint permits� i� rule de�nition to be

independent from the objects which they monitor� ii� rules to be triggered by events spanning sets

of objects �inter�object rules�� possibly from di�erent classes� and iii� any object to dynamically

determine which objects� state changes it should react to and associate a rule object for reacting to

those changes� We present an implementation of this external monitoring viewpoint in the object�

oriented framework� We consider this generalization extremely important as the expressiveness

and the extensibility of the resulting system is signi�cantly enhanced �Ode has tried to implement

the functionality of inter�object rules in a straightforward manner by making the same set of rules

applicable to more than one object class �JQ	
��� This feature enables the seamless integration of

rules as well�

The remainder of this paper is structured as follows� Section
 provides the motivation for

our approach� In section � we provide the design overview and the rationale behind it� Section �

provides implementation details� In section � we contrast the functionality of our system� Sentinel�

with Ode and ADAM through illustrative examples� Section � brie�y describes Ode and Adam

leading to a back�of�the�envelope comparison and future research directions in section ��

� Motivation

The design and implementation of rules in Sentinel was primarily motivated by the following limi�

tations of the extant systems�

� Although current approaches allow a rule to monitor one or more instances of the same object

class� a rule is triggered by changes occurring to only one of the instances it monitors� To

enhance expressiveness� support for rules which are triggered by changes occurring to one or

more instances� possibly from di�erent classes� is necessary�

� Some systems permit rule speci�cation only within class de�nitions� This will lead to di�cul�

ties when rules are added� deleted� or modi�ed� since instances of these changed classes may

be previously stored in the database� This compromises the extensibility of the system since

�

the addition of rules is not divorced from the behavior of pre�existing objects and methods in

the system�

� Rules and events are not always treated as �rst class objects� thereby resulting in a dichotomy

between them and other objects� Rules and events cannot be added� deleted� and modi�ed in

the same manner as other objects� Furthermore� they are not subject to the same transaction

semantics� Finally� their persistence is dependent on the existence of other objects� and

� Speci�cation of events and the mechanism by which they are detected� Although Ode �GJ	��

supports the speci�cation and detection of complex events� the manner in which they are

supported prevents expressing events spanning instances of the same as well as di�erent classes�

Furthermore� events can only be de�ned within a class thus perpetuating the problems outlined

above�

��� Need for an External Monitoring Viewpoint

In a number of applications� such as patient databases� portfolio management� and network manage�

ment� monitored and monitoring objects are often de�ned not only independently but at di�erent

points in time� For example� when a patient class is de�ned �and instances are created�� it is not

known who may be interested in monitoring that patient� depending upon the diagnosis� additional

groups or physicians may have to track the patient�s progress� Similarly� stock objects may have

to accommodate a varying number of objects �e�g�� portfolio� that may be interested in their state

�e�g�� price� for buying and selling purposes� That is� there is a need to monitor pre�de�ned objects�

preferably� without having to change their class de�nitions for that purpose� For example� there

should not be a requirement that the stock object itself modi�es its attributes or behavior for a

new portfolio object to monitor it�

If one has to declare all the rules that are likely to be associated with an object at the class

de�nition time� clearly� the above application requirements cannot be supported �as that informa�

tion is mostly not available at the object de�nition time�� Even if one were to allow rule de�nition

at runtime on a class� if the rule �ring is restricted to only events of the same class� then also the

above application requirements cannot be adequately supported�

Consistent with the notion of encapsulation� it is imperative to support the above requirement

through an interface �analogous to the traditional interface for objects�� We introduce an event

interface for this purpose� It is equally important to separate the �visible� event interface from�

i� its implementation and ii� the use �or invocation� of that interface by other objects� The event

interface needs to be de�ned �or revealed� at the class de�nition time whereas its use needs to be

supported at runtime�

�

Below� we give an example of how the external monitoring viewpoint also supports one or more

objects to be monitored by a rule preserving both encapsulation and independent persistence�

Stock IBM�
Portfolio Parker�
FinancialInfo DowJones�

RULE Purchase �
WHEN IBM�SetPrice And DowJones�SetValue �� Event ��
IF IBM�GetPrice � ��
 and DowJones�Change � ���� �� Condition ��
THEN Parker�PurchaseIBMStock �� Action ��

In the above example� three classes are de�ned� namely� the Stock� Portfolio and FinancialInfo

classes� A rule� Purchase� is de�ned independently of these three classes and monitors two objects�

viz� the IBM Stock object and the DowJones FinancialInfo object� The rule is triggered when events

spanning these two objects are generated� speci�cally� when the IBM object invokes the method

SetPrice and the DowJones object invokes the method SetValue� The condition then checks the

IBM stock price and the percentage change in the DowJones value� If the condition is satis�ed�

the Parker Portfolio object purchases IBM stock� We discuss how the above rule is speci�ed and

executed in a later section�

� Design Rationale

Our design choices� substantiated in the remainder of this section� can be summarized as follows�

�� Augment the interface of conventional C�� objects with an event interface which has the

ability to raise and propagate events occurring on their state� providing encapsulation�

� Support primitive events� event operators� and rules as �rst class objects ��

�� Allow rules to be triggered by events spanning several objects�

�� Allow an object to dynamically specify which objects to react to in response to their state

changes� and

�� Provide an e�cient mechanism for associating rules to all instances of a class as well as to a

subset of instances� possibly from di�erent classes�

To elaborate � ��� and ��� substantially extend the expressive power of the resulting system� pre�

serve encapsulation� support monitoring of multiple objects possibly from di�erent classes� thereby

reducing the number of rules� �
� supports an incremental design capability for user applications�

�Even rules that are declared as part of the class de
nition are translated into instances of rule objects� of course	
there existence is dependent on the existence of the object class�

�

At design time� while de�ning a class� the user is not required to explicitly list all the rules appli�

cable to that class� At runtime� new rules can be added and associated�applied with�to existing

objects in the database� i�e�� the addition of rules does not a�ect the de�nition of objects currently

existing in the system� Consequently� the extensibility and modularity of the resulting system is

not compromised� ��� facilitates binding of rules to event� condition� and action at runtime by

choosing an appropriate implementation for ����

Also� our design allows incorporation of new features �for example� providing a new con�ict

resolution strategy� without modi�cations to application code�

��� External Monitoring Viewpoint

(asynchronus)

Event Interface
Interface

Conventional

(synchronus)

Figure �� Behavior of a reactive class�

To treat rules independently from the objects they monitor� objects must be capable of� i� gener�

ating events when their methods are invoked and ii� propagating these events to other objects� In

order to achieve these capabilities we extend conventional C�� objects with an event interface�

This interface enables objects to designate some� possibly all� of their methods as primitive event

generators� The implementation of the interface speci�cation is through primitive event generators

that raise an event when a method is invoked� The augmented C�� object is depicted in Figure

�� Traditionally� objects receive messages de�ned using the conventional interface� perform some

operations and then return results� Now� in addition� they generate events for the methods �de�

�ned using the event interface� when they are invoked and propagate these events to other objects

asynchronously� Events are generated either before or after the execution of a method� A class that

supports the external monitoring viewpoint is termed as a reactive class and is de�ned as �

Reactive class definition � Traditional class definition �

Event interface specification

Using the event interface� events are speci�ed as part of the class de�nition by the user� The

event interface only speci�es the events that are to be produced by that reactive object class� The

semantics of the event interface is that every instance of the Reactive class will generate and signal

an event for methods speci�ed in the event interface� Although every method of a class corresponds

�

to two � potential primitive events� the designer may want to specify a meaningful subset as part

of the event interface speci�cation� Hence� only objects that are likely to be monitored need to be

made instances of the Reactive class and further only those methods that change the state that one

is interested in monitoring� need to be de�ned in the event interface� In contrast to the conventional

interface which is speci�ed and implemented by the user� only the event interface is speci�ed by the

user� its implementation is provided by the system� The event message generated by the Reactive

class consists of the following parameters �

Generated primitive event � Oid � Class � Method �

Actual parameters � Time stamp

Since instances of the Reactive class are producers of events� they need to know the consumers

of those events� This leads us to the introduction of the Noti�able object class� An instance of

a noti�able class is a consumer of an event that is of interest to that class� An association is

established between an event and a noti�able object using the subscription mechanism�

In contrast to Ode� only primitive event speci�cations are part of the reactive object�s class

de�nition� The rule itself� which monitor objects� is not required to be part of the class� Rules

and event operators are the consumers of primitive events generated by instances of the Reactive

object class� and use these events to detect primitive and composite events�

��� Object Classi�cation

In Sentinel� objects are classi�ed into three categories � passive� reactive and noti	able� As

with other object�oriented databases� a designer creates a schema which de�nes classes for an

application� However� he�she needs to also de�ne which object classes are reactive� to produce

appropriate events� and which object classes are noti�able� to make them consume and detect

events�

Passive objects
 These are regular C�� objects� They can perform some operations but do

not generate events� An object that needs to be monitored and inform other objects of its state

changes cannot be passive� No overhead is incurred in the de�nition and use of such objects�

Reactive objects
 Objects that need to be monitored� or on which rules will be de�ned� need to

be made reactive� The event interface of objects enables them to declare any� possibly all� of their

methods as event generators� Once a method is declared as an event generator �through the event

interface�� its invocation will be propagated to other objects� Thus� reactive objects communicate

with other objects via event generators�

�Generation of primitive events before and after corresponds to the invocation and return of methods� Although
a method	 if de
ned in the event interface	 can generate automatically two primitive events �before and after� the
class designer can also explicitly generate other primitive events	 within the body of the method�

�

Noti	able objects
 Noti�able objects� on the other hand� are those objects capable of being

informed of the events generated by reactive objects� Therefore� noti�able objects become aware

of a reactive object�s state changes and can perform some operations as a result of these changes�

e1

e1

Rule R1

E C A

Event consumers
e2

And

(reactive)

Event Detector
(notifiable)

(notifiable)

{ Code } { Code }

(reactive) Event producers

e2

DowJones

Object1 Object2

IBM

Figure
� An Event Producer�Consumer Analogy�

Figure
 illustrates the producer�consumer behavior of object types� Two independent objects

object� and object� generate primitive events e� and e�� sending them to a rule R�� The rule

passes the events to the event detector for storage and event detection� and if the event is detected�

the rule checks the condition and takes appropriate actions�

Noti�able objects subscribe to the primitive events generated by reactive objects� After the

subscription� the reactive objects propagate their generated primitive events to the noti�able ob�

jects� Lastly� the noti�able objects perform some operations as a result of these propagated events�

The operations can a�ect passive� reactive� and noti�able objects� There is a m�n relationship

between noti�able and reactive objects� that is a reactive object instance can propagate events to

several noti�able object instances and a noti�able object instance can receive events from several

reactive object instances� Events and rules are examples of noti�able objects� Rules receive events

from reactive objects� send them to their local event detector� and take appropriate actions� Event

detectors receive events from reactive objects� store them along with their parameters� and use

them to detect primitive and complex events�

	

��� Events

Several approaches are possible for event speci�cation in an object�oriented context� Currently�

three approaches are used� i� events as expressions declared within class de�nitions� e�g�� Ode

�GJ	�� GJS	
�� ii� events as rule attributes� e�g�� Bauz �MP	
�� and iii� events as �rst class objects�

e�g�� ADAM �DPG	��� Below� we discuss the advantages and disadvantages of each approach�

Events as Expressions
 This approach is motivated by runtime processing gains� since processing

of event speci�cation is performed primarily at compile time and little or none at runtime� The main

disadvantage is that events cannot be added� deleted or modi�ed at runtime� thereby resulting in a

dichotomy between events and other types of objects� Further� persistence of events is dependent

on the existence of other objects� More importantly� events spanning distinct classes cannot be

expressed in this approach� In addition� events cannot have attributes or methods of their own and

hence cannot store and access the parameters computed when the event is raised� Lastly� new event

types or event attributes cannot be easily incorporated� thereby compromising the extensibility�

Events as Rule Attributes
 Treating events as rule attributes improves upon the former

approach by allowing events to be added� deleted and modi�ed dynamically� Another advantage

is that event and rule association is achieved since events are part of a rule�s structure� However�

this approach su�ers from the same disadvantages as those of the �rst approach�

Events as Objects
 The last alternative for event speci�cation has several advantages and is

superior to the other two alternatives� First� this approach models the properties of events� Events

have a state� structure� and behavior� i�e�� events exhibit the properties of objects� The state

information associated with each event includes the occurrence of the event and the parameters

computed when an event is raised� The structure of an event consists of the event�s� it represents

while the behavior consists of specifying when to signal the event� Second� events can be created�

deleted� modi�ed� and designated as persistent as other types of objects� i�e�� events are treated in

a uniform manner as other objects� Furthermore� the introduction of new event types�attributes

can be easily incorporated by modifying�augmenting class de�nitions without compromising the

extensibility and modularity of the system� Moreover� events spanning distinct classes can be

expressed� However� with this approach� runtime overhead is incurred when events are created�

deleted and modi�ed dynamically�

In Sentinel� we adopt the third alternative and treat events as �rst class objects� Furthermore�

we construct complex events using a hierarchy of event operators� Event objects are consumers of

events generated by reactive objects�

�

��	 Rules

The object�oriented environment o�ers numerous design alternatives for the incorporation of rules�

Rules can be speci�ed declaratively� embedded inside other objects as attributes or data members�

or as objects� Undoubtedly� the mechanism by which rules are speci�ed in an OODBMS has

a profound impact on the active functionality provided� Below� we discuss the advantages and

disadvantages of each alternative�

Rules as declarations only inside classes
 The �rst design alternative for specifying rules

is the declarative approach� Rules are declared by the user and then inserted by the system into

each place in the code where they might be triggered� It is necessary to �rst determine where and

how rules should be declared� Rules are associated with objects and contribute to their behavior�

Thus the natural place for declaring rules is within class de�nitions� We shall not discuss rule

declaration syntax since it does not a�ect the active functionality provided� The primary advantage

of this approach is that rule processing is performed primarily at compile time� and hence little

or no rule processing is performed at runtime� Furthermore� the declaration of rules within class

de�nitions o�ers an easy mechanism for determining the rules applicable to objects� this information

is easily obtained from the class de�nitions themselves� In addition� the inheritance of rules is easily

supported�

This approach does not treat rules as objects and their existence is dependent on the existence

of other objects� Furthermore� the system is not extensible since the introduction of new rule com�

ponents� e�g�� rule priority levels� requires modifying class de�nitions containing rule declarations�

The main disadvantage of this approach lies in its ine�ciency in handling the addition� deletion

and modi�cation of rules� This is because changing the rules de�ned for objects requires the

modi�cation of class de�nitions and thus recompiling the system� This presents a major problem

for interpretive object�oriented environments� Furthermore� modi�cation of a class de�nition may

present some di�culties to already existing and stored instances of the class� thereby compromis�

ing the extensibility of the system since addition of rules should be allowed irrespective of already

existing objects in the system� In addition� rules cannot be reused or shared� For example� a rule

that ensures an employer�s salary is always less than his�her manager�s salary need to be declared

twice � once within the employee class and once within the manager class�

Rules as Data Members
 By treating rules as data members we must �rst �nd a convenient

type to model them� Let us assume that an appropriate type has been determined�� The advantage

of this approach is its reusability and extensibility� once a type has been de�ned it can be used

throughout an application as well as in other applications� Furthermore� the introduction of new

�This excludes the possibility of a class� This possibility is also examined�

��

rule components only requires rede�ning the type de�nition� Moreover� rules are easily associated

with objects since they are part of an object�s structure� In addition� rules can be easily added�

deleted and modi�ed dynamically� However� the main disadvantage is that it does not support

inheritance� This is because the value of a data member cannot be inherited� Secondly� a rule�s

existence is dependent on the existence of other objects�

Rules as Objects
 There are numerous advantages to treating rules as objects� First� rules

can created� modi�ed and deleted in the same manner as other objects� thus providing a uniform

view of rules in an object�oriented context� Secondly� rules are now separate entities that exist

independently of other objects in the system� Rules can be designated as transient or as persistent

objects� In addition� they are also subject to the same transaction semantics as other objects�

Third� each rule will have an object identity� thereby allowing rules to be associated with other

objects� Fourth� the structure and behavior of rules can be tailored to model the requirements of

various applications� For example� it is possible to create subclasses of the rule class and de�ne

special attributes or operations on those subclasses� As an example� hard and soft constraints of

Ode �GJ	�� GJS	
� can be modeled as subclasses of the rule class� Lastly� by treating rules as

�rst class objects an extensible system is provided� This is due to the ease of introducing new rule

attributes or operations on rules� this requires the modi�cation of the rule class de�nition only�

In Sentinel� we adopt the latter alternative and chose to treat rules not only as �rst class� but

also as noti�able objects�

��
 Rule Association

Rules in active relational databases have been treated as global constraints which must be satis�ed

by all relations in the database� This global treatment of rules is no longer meaningful in the context

of an active OODBMS due to a fundamental feature of the OO paradigm� viz� abstraction� An

abstraction denotes the essential characteristics of an object that distinguish it from all other kinds

of objects and thus provide crisply de�ned conceptual boundaries� relative to the perspective of the

viewer �Boo	��� Rules de�ned on an object undoubtedly contribute to the essential characteristics�

especially behavior of an object� In many applications� objects di�er considerably in both structure

and behavior from one another� Therefore� it is realistic to assume that di�erent kinds of objects

may have di�erent rules applicable to them�

In order to accommodate rules in an object�oriented environment� we classify rules into two

main categories� namely� class level rules and instance level rules� Class level rules are applicable

to all instances of a class while instance level rules are applicable to speci�c instances� possibly

from di�erent classes� Rules� regardless of their classi�cation� are treated as �rst class noti�able

�

objects� In order to associate rules with objects� we introduce a subscription� This mechanism

allows noti�able objects �rules in this case� to dynamically subscribe to the events generated by

reactive objects� After the subscription takes place� a noti�able object will be informed or noti�ed

of the events generated by reactive objects and react to those events�

The subscription mechanism introduced in this paper has three main advantages� First� runtime

rule checking overhead is reduced since only those rules which have subscribed to a reactive object

are checked when the reactive object generates events� This is in contrast to adopting a centralized

approach where all rules de�ned in the system are checked when events are generated� Second�

a rule can now be applied to di�erent types of objects in an e�cient manner� the rule is de�ned

only once and then subscribes to the events generated by di�erent types of objects� This is more

e�cient than de�ning the same rule multiple times and applying each rule to one type of object�

Lastly and more importantly� rules triggered by events spanning distinct classes can be expressed�

This is accomplished by a rule subscribing to the events generated by instances of di�erent classes�

� Implementation Details

zg-pos

Reactive

Primitive Conjunction Disjunction Sequence

Event Rule

Notifiable

Figure �� Sentinel Class Hierarchy for Rule Support�

The Sentinel system is being developed using Zeitgeist� an OODBMS developed at Texas Instru�

ments� Dallas�PP	��� Zeitgeist is an open� modular� extensible architecture for object oriented

database systems� implemented in C�� on Sun� Unix platforms� In order to incorporate rules in

Zeitgeist we modi�ed the class hierarchy to include newly de�ned classes� namely� the Reactive�

Notifiable� Event and Rule classes� The class hierarchy introduced for rule support is illustrated

in Figure �� In Zeitgeist persistence is provided by the zg�pos class for all objects that are derived

from that class� Therefore� by deriving the Rule and Event classes from the zg�pos class� rule and

��

event objects can be designated as persistent� �� The Rule and Event classes are derived from the

Noti�able class in order for rule and event objects to act as consumers� i�e�� be capable of receiving

and recording the events propagated by reactive objects�

In the following subsections we brie�y outline the implementation of the Reactive� Noti�able�

Event and Rule classes�

	�� The Reactive Class

class Reactive

{

 public :

 Subscribe (Notifiable *obj);

 Unsubscribe (Notifiable *obj);

};

 list-of-notifiable-subscribers *consumers;

 Reactive() {consumers = Null; };

 Notify (int *obj, char *event-name, time timestamp, int argc ...);

/* notifiable objects that consume events */

Figure �� The Reactive Class�

The public interface of the Reactive class consists of methods by which objects acquire reactive

capabilities� Each class derived from the Reactive class inherits the private data member consumers

and the four methods Reactive� Subscribe� Unsubscribe and Notify�

Each reactive object�s de�nition is enlarged with the private data member consumers� This

data member stores as its value the set of noti�able objects associated with events generated by

a reactive object� When a reactive object generates events� they will be consumed by the set of

noti�able objects listed in the attribute consumers� The Subscribe method manages the set of

noti�able objects associated with each reactive object� The parameter of the Subscribe method�

obj� is the identity of a noti�able object wishing to be noti�ed of generated primitive events�

The Subscribe method appends the noti�able object to the consumers attribute� The Unsubscribe

method reverses the e�ect produced by the Subscribe method� It takes as its parameter the identity

of a noti�able object and removes it from the set of noti�able objects associated with a reactive

object� The set of objects in the consumers attribute are noti�ed of the generated primitive events

via the Notify method� The Notify method informs the consumers of � i� the identity of the reactive

object generating the primitive event� ii� a unique string identi�er that indicates the event generated

along with whether it was generated before or after execution of the method� iii� a time�stamp

�
Reactive and Notifiable are designated for persistence	 their instances can be made persistent �or transient��

��

Event

Primitive Conjunction Disjunction Sequence

Figure �� The Event Hierarchy�

indicating the time when the event was generated� and iv� the number and actual values of the

parameters of the message invoked by the reactive object�

	�� The Noti�able Class

The primary objective for de�ning the Noti�able class is for allowing objects to receive and record

primitive events generated by reactive objects� Both the Event and Rule classes are subclasses of

the Noti�able class� they receive and record primitive events generated by reactive objects� The

Record method de�ned in the Noti�able class documents the parameters computed when an event

is raised� It takes as its parameters the identity of the reactive object which generated a primitive

event� the primitive event generated� the time�stamp indicating when the event was raised� and

the number and actual values of the parameters sent to the reactive object� It then records these

parameters if the event is raised�

	�� The Event Hierarchy

Event speci�cations are translated into �rst class objects which are created� deleted� modi�ed and

designated as persistent as other types of objects� We support both primitive and complex events�

Primitive events are in the form of messages sent to objects and are of two shades� begin of

method �bom� and end of method �eom� events� bom and eom events are signaled before an object

starts executing a method and immediately after an object returns from a method� respectively�

Composite events are constructed by applying event operators to primitive events� Currently� the

operators disjunction� conjunction and sequence are supported�

An event E constructed by applying the conjunction operator to two events E� and E
� is

signaled when both E� and E
 occur� regardless of the order of their occurrence� E� and E

may potentially be composite events and in that case E is also signaled regardless of the order of

occurrence of the components of E� and E
� An event E constructed by applying the disjunction

operator to two events E� and E
� is used to signal an event when either E� or E
 occurs� An

event E constructed by applying the sequence operator to the events E� and E
� is signaled when

��

{

class Conjunction : Event

 Event* EventTwo;

 Event* EventOne;

 int Raised;

 public :

 Conjunction(Event* FirstEvent, Event* SecondEvent);

};

 Notify(int obj, char* event, time timestamp, int argc ...);

Figure �� The Conjunction Subclass�

the event E
 occurs� provided E� has occurred earlier� In the case where E� and E
 are composite

events� E is signaled when the last component of E
 occurs provided all the components of E� have

occurred�

The de�nition of events involves the description of their structure and behavior� An Event

superclass was de�ned to provide the common structure and behavior shared by all event types�

By creating an event class hierarchy� primitive and complex events� structure and behavior were

de�ned using inheritance� The primitive� conjunction� disjunction� and sequence events are de�ned

as subclasses of the Event class� Each subclass de�nition is augmented with the necessary attributes

and operations required for modeling the event type it represents� Figure � illustrates the event

hierarchy created�

To illustrate the structure and behavior of one of the event types� consider the de�nition of the

Conjunction subclass shown in Figure �� It consists of the data members EventOne� EventTwo and

Raised� The EventOne and EventTwo data members are pointers to event objects and represent

the two events upon which the conjunction operator is applied� The attribute Raised indicates

whether the event has been raised or not� The method Conjunction is the constructor of the class

and takes as its parameters the object identities of the event objects upon which the conjunction

operator is to be applied� The last method Notify determines whether the events propagated raise

the event or not and inform the rule object of the result�

	�	 The Rule Class

The primary structure de�ning a rule is the event which triggers the rule� the condition which is

evaluated when the rule is triggered� and the action which is executed if the condition is satis�ed� In

order to model the structure of rules� a Rule class is de�ned� Rules are noti�able objects having an

��

class Rule : Notifiable

{

 char* name;

 Event* event-id;

 int enabled;

 public:

 virtual int Enable();

 virtual int Disable();

 virtual Update(Event* eventid);

 virtual int Condition();

 virtual int Action();

 ~Rule();
};

 Rule(Event* eventid, PMF condition, PMF action, Coupling mode);

 PMF *condition, *action;

 Coupling mode;

/* PMF is a pointer to a member function */

/* Rule name */
/* Event*/

/* Coupling mode */
/* Rule enabled or not */

/* Rule class made notifiable */

Figure �� The Rule Class�

event object as an attribute� and the condition and action as public member functions�� In addition�

the rule operations create� delete� update� enable and disable are implemented as methods� The

de�nition of the class rule is as illustrated in Figure ��

Each noti�able rule object consists of data members name� event�id� condition� action� mode

and enabled� The rule attribute name takes as its value the name of the rule and can be used by

the user to access the attributes and methods of the rule� The rule attribute event�id denotes the

identity of the event object associated with the rule� The data members condition and action are

pointers to the condition and action member functions� respectively� The attribute mode denotes

the coupling mode while the last attribute enabled denotes whether the rule is enabled or not�

When a rule is enabled it receives and records propagated primitive events� The condition method

is executed when the corresponding event occurs� and if satis�ed� the action method is executed�

	�
 Usage of Reactive Class

Primitive events are generated by an object when it invokes a method� In the interest of reducing

the amount of overhead� we require� the user to specify which member functions should generate

�In the current implementation	 each rule de
ned has its own condition and action implemented as methods
de
ned in the Rule class�

�An alternative is to assume that all member functions are potential events	 in which case the user does not have
to specify the event interface� This means that for each reactive class the number of events generated will be twice

��

{

 int age;

 float salary;

 char *name;

class Employee : Reactive

 public:

 event end Get-Salary();

 event begin && end Get-Age();

 char* Get-Name();

};

/* make Employee class reactive */

 event begin Change-Salary(float x); /* event interface */

/* event interface */

/* event interface */

Figure �� A Reactive Subclass�

events upon their invocation� i�e�� which methods are to be treated as primitive event generators�

Using this information� event generation �and hence rule checking� is limited to only those methods

designated as potential primitive events� When the event should be raised is speci�ed by the before

or after pre�xes� Potential primitive events are speci�ed using the event interface in the public�

private and protected sections of a subclass of the Reactive class as shown in Figure ��

In the employee class de�nition shown in Figure � begin of message events �bom� will be

generated when an employee object receives the private Change�Salary and the public Get�Age

messages� End of message events �eom� will be generated as a result of executing the methods

Get�Salary and Get�Age� Notice that a method may generate both bom and eom events� this is

the case for the member function Get�Age� The method Get�Name does not generate any events�

and hence its invocation does not cause any rule evaluation�

After specifying the event interface� the application�user needs to create the appropriate event

and rule objects which are informed of the generated primitive events� This is the mechanism by

which primitive and complex events are detected and their parameters recorded�

	�� Event Creation

Events are created� modi�ed and deleted in the same manner as other objects� Creation of primitive

event objects requires indicating the method which raises the event and when the event should be

raised� For instance� a primitive event object that detects the end of the execution of the method

the number of member functions de
ned on that class�

��

Set�Salary by and employee object can be created by�

Event� empsal � new Primitive �		end Employee

Set�Salary�float x��� �

The parameter of the Primitive constructor is the signature of the event which uniquely identi�es

the method that raises the event in addition to specifying when the event is raised� Therefore� the

event is raised after the execution of the method Set�Sal de�ned in the Employee class�

Composite events are instances of one of the Event subclasses representing complex events�

Composite events are objects which are created� modi�ed� deleted and designated as persistent in

the same fashion as other objects� For instance� a complex event raised after depositing money into

a bank account followed by an attempt to withdraw money is created by�

Event� deposit � new Primitive �		end Account

Deposit�float x��� �

Event� withdraw � new Primitive �		before Account

Withdraw�float x��� �

Event� DepWit � new Sequence �deposit� withdraw�

This event is raised when the method Deposit is executed followed by an attempt to execute

the method Withdraw�

	�� Creating Class and Instance Rules

Rules can be classi�ed into class level and instance level rules depending on their applicability�

Class level rules are applicable to all instances of a class whereas instance level rules are applicable

to particular instances� possibly from di�erent classes� Since class level rules model the behavior of

a particular class� they are declared within the class de�nition itself� On the other hand� instance

level rules are declared in the application code� Rules� regardless of where they are declared� are

translated into noti�able rule objects�

The declaration of a class level rule entails specifying a rule name� an event� a condition and

an action� Class level rules are declared in the rule section of a class as shown in Figure 	� In the

above example the rule name is Marriage� the event is a person object receiving the messageMarry�

the condition checks whether the person objects getting married are of the same sex� and the action

aborts the triggering transaction� Notice that the method Marry is declared as a primitive event

generator inside the person class de�nition� This rule� when enabled� is applicable to all person

objects� The rule is executed using the coupling mode speci�ed�

Instance level rules� on the other hand� are applicable to only those instances explicitly speci�ed

�	

class Person : Reactive {

 public :

 event begin Marry (Person* spouse); /* event interface */

/* class level rule specification */

/* make person class reactive */

 E : Event* marry = new Primitive ("begin Person::Marry (Person* spouse)");
 C : if sex == spouse.sex

 R : Marriage;

 A : abort

};

 M: Immediate

 Rules :

/* coupling mode */

Figure 	� A Class Level Rule�

Employee Fred;

Manager Mike;

Event* emp = new Primitive ("end Employee::Change-Income(float amount)");

Event* mang = new Primitive ("end Manager::Change-Income (float amount) ");

Event* equal = new Disjunction (emp, mang);

Fred.Subscribe(IncomeLevel);

Rule IncomeLevel (equal, CheckEqual(), MakeEqual());

Mike.Subscribe(IncomeLevel);

/* IncomeLevel rule subscribes to events generated by Fred */

/* IncomeLevel rule subscribes to events generated by Mike */

/* Rule creation */

Figure �
� An Instance Level Rule�

by the user� Let us assume that a speci�c employee� Fred� and his managerMike� should always have

the same yearly income� Therefore� whenever Fred or Mike update their income this rule should

be checked� Notice that this rule is applicable to instances from di�erent classes� speci�cally� the

employee and the manager classes�

The instance level rule is then created as illustrated in Figure �
� This rule has as its event

a complex event that is raised when an employee object executes the method Change�Income or

a manager object executes the method Change�Income� Both these methods must be declared as

primitive event generators in their respective class de�nitions� The condition part of the rule checks

whether the incomes are equal and the action sets the incomes to the same amount� In order for

the IncomeLevel rule object to be noti�ed of the events generated by the employee object Fred and

the manager object Mike� the rule must subscribe to those objects�

Once the rule IncomeLevel subscribes to the objects Fred and Mike� all primitive events gener�

ated by Fred and Mike are propagated to the rule object� Therefore� the IncomeLevel rule object

is monitoring the Employee object Fred and the Manager object Mike simultaneously�

 constraint :

 sal_greater_than_all_employees();

};

class manager : public employee

{

 employee *emp<MAX>;

 int sal_greater_than_all_employees();

 public :

class employee

{

 manager *mgr;

 float sal;

 public :

 float salary();

};

 constraint :

 sal < mgr->salary();

/* Rule Specification */

/* Rule Specification */

Figure ��� Salary check rule speci�cation in Ode�

� Examples

In this section we provide two examples to highlight the features of the design and implementation

presented in this paper and compare our approach with Ode and ADAM� This comparison will

highlight rule speci�cation and expressiveness of our approach�

�� Example One

Consider a rule Salary check which is applicable to all employees and their respective managers�

The rule states that an employee�s salary must always be less than the manager�s salary�

Salary check
 employee�s salary is always less than his�her manager�s salary

As this rule is activated by events �Set salary� from two distinct classes� it translates into two

complementary hard constraints in Ode� The �rst hard constraint is declared within the employee

class and is violated if the salary is modi�ed to a value which is greater than the manager�s salary�

The second constraint is declared inside the manager class and is violated if the salary is less than

all the employees� salaries� The code in Figure �� shows how these constraints are speci�ed in

Ode�

For the same rule� in ADAM� two events must be detected and they are the execution of the

method Set Salary by an employee object and the execution of the method Set Salary by a manager

object� Since the method which raises the event in both cases has the same name� only one event

object needs to be created� The event object is created as shown in Figure �
�

This rule is applicable to both the employee and manager classes� Inheritance of rules is sup�

ported in ADAM� i�e�� rules attached to a superclass are inherited by all subclasses� Although the

manager class is a subclass of the employee class� inheritance cannot be utilized in this particular

example� This is because the condition to be evaluated when an employee object executes the

method Set Salary is di�erent from the condition to be evaluated when a manager object executes

�

new ([OID, [

 when ([after])

]]) => db-event

 active-method ([Set-Salary]),

/* Creates 1@db-event */

Figure �
� Event speci�cation and creation in ADAM�

 current-arguments ([sal]),

 sal > mgr->salary(),

new ([OID, [

 is-it-enabled ([true]),

 disabled-for ([]),

 condition ([(

)]),

 action ([(

)])

]) => integrity-rule

 fail

 active-class ([employee]),

 current-object(Theemployee),

 current-arguments ([sal]),

 writeln ([’Invalid Salary’]),

 event ([1@db-event]),

new ([OID, [

 is-it-enabled ([true]),

 disabled-for ([]),

 condition ([(

)]),

 action ([(

)])

]) => integrity-rule

 fail

 current-arguments ([sal]),

 writeln ([’Invalid Salary’]),

 active-class ([manager]),

 event ([1@db-event]),

 current-object(Themanager),

 current-arguments ([sal]),

 sal < sal_greater_all_employees(),

/* Rule object for manager class *//* Rule object for employee class */

Figure ��� Salary check rule speci�cation in ADAM�

the method Set Salary� Therefore� it is necessary to create two di�erent rule objects� The �rst rule

object should have the active�class attribute as employee while the second rule object should have

the value of the active�class attribute as manager� Both rule objects are applicable to all instances

of their respective active�classes hence� the disabled for attribute is left empty� Furthermore� both

rules have the same event attribute value which is assumed to be ��db�event� The rule objects are

created by the code fragment given in Figure ���

This example illustrates how Sentinel provides an elegant means for monitoring events spanning

several objects from di�erent classes� The rule is triggered when either an employee or manager

object executes the method Set Salary� This rule can be easily modeled by creating a complex

event object which consists of applying the disjunction operator �or� to two primitive EOM events�

The next step involves specifying the event generators of the classes employee and manager� In

the employee class the method generating an event is Set Salary� Hence� execution of this method

by an employee object generates the primitive EOM event end employee��Set Salary�	oat amount��

Similarly� in the manager class the method generating an event is Set Salary� Hence� execution of

this method by a manager object generates the primitive EOM event end manager��Set Salary�	oat

amount�� Therefore� the employee and manager classes are de�ned by the user as shown in Figure

���

In this particular example� the rule should be applied to all employee and manager instances�

i�e�� the rule is a class level rule� However� this rule does not need to be de�ned in both the employee

and manager classes� It is su�cient to de�ne it in the employee class and then it will be inherited

by the manager class�

The condition part of the ValidSalary rule �rst determines the type of the object generating

the event� This is checked dynamically by examining the event name� If the event name is end

employee��Set Salary�	oat amount�� then the object is an instance of the class employee� However�

if the event name is not end employee��Set Salary�	oat amount�� i�e�� end manager��Set Salary�	oat

amount�� then the object is an instance of the manager class� If an employee object generates the

event� then the employee�s salary is compared to the manager�s salary� On the other hand� if a

manager object generates the event� then the manager�s salary is compared to the salaries of all

employees� The third parameter of the rule� the action� aborts the triggering transaction when the

condition is satis�ed�

This example illustrates how our approach provides a more succinct solution to implementing

this rule when compared to Ode and ADAM� In Ode it was necessary to de�ne two complemen�

tary constraints� although both constraints are used for the same purpose� viz� checking that an

employee�s salary is always less than the manager�s salary� In ADAM although only one event

object was created� it was also necessary to create two rule objects� We de�ned only one rule

and capitalized on the facility provided by any object�oriented programming language� namely�

inheritance�

�� Example Two

Consider another rule that requires the monitoring of events spanning several objects from di�erent

classes and further the rule can be meaningfully speci�ed only at run time� A portfolio Parker is

interested in purchasing IBM stock if its price is less than ��
 and the percentage change in the

DowJones Industrial average is less than ����� Therefore� the rule needs to monitor IBM price

changes and DowJones value changes and is triggered when both these changes occur� Hence� this

rule can be modeled by constructing a complex event created by using the conjunction operator�

Although Ode supports the complex events� this event cannot be expressed in Ode� This is because

the event spans two classes� ADAM cannot express this event since it does not support complex

�

class manager : public employee

{

 employee *emp<MAX>;

 int sal_greater_than_all_employees();

 public :

 sal_greater_than_all_employees();

 event end Set-Salary(float amount);

};

/* manager class is reactive by inheritance */

/* event interface */

class manager;

/* make employee class reactive */class employee : Reactive {

 manager *mgr;

 float sal;

 public :

 float salary();

 event end Set-Salary(float amount);

 int CheckSal();

/* class level rule specification */

/* event interface */

 new Primitive ("end manager::Set-Salary(float amount)"))

 CheckSal();

 sal_greater_than_all_employees();

 else if(strcmp(event-name, "end manager::Set-Salary(float amount)") == 0)

R: ValidSalary

E: new Or (new Primitive ("end employee::Set-Salary(float amount)"),

C: if (strcmp(event-name, "end employee::Set-Salary(float amount)") ==0)

A: abort;

M: Immediate;

};

/* coupling mode */

Figure ��� Salary check rule speci�cation in Sentinel�

class stock : Reactive

{

 char* name;

 float price;

 holders shareholders;

 public :

 event end SetPrice(float amount);

 float GetPrice();

};

{

 char* name;

 public :

};

class FinancialInfo : Reactive

 float value;

 float percentagechange;

 event end SetValue(float amount);

 float Change();

 ComputeValue()

/* event interface for stock class */ /* event interface for FinancialInfo class */

Figure ��� Event interface for the stock and FinancialInfo classes�

�

FinancialInfo DowJones;
Portfolio Parker;
Stock IBM;

/* code in application program */

Rule* Purchase(pricevalue, PurchaseCondition(), PurcahseAction(), Immediate);

Event* pricevalue = new Conjunction (stockprice, newvalue);

Event* newvalue = new Primitive ("end FinancialInfo::SetValue(float amount)");

Event* stockprice = new Primitive ("end Stock::SetPrice(float amount)");

IBM.Subscribe(Purchase);

DowJones.Subscribe(Purchase);

/* Rule creation */

/* Purchase rule subscribes to events generated by IBM object */

/* Purchase rule subscribes to events generated by DowJones object */

Figure ��� Instance level rule �with a complex event� spanning two classes�

events� Therefore� we consider the Sentinel approach only�

First� the event interfaces of the Stock� Portfolio and FinancialInfo classes need to speci�ed when

de�ning the classes� Invocation of the method SetPrice in the Stock class the method SetValue

in the FinancialInfo class need to generate events and thus are part of the event interface of their

classes� Figure �� shows how these two methods are declared as event generators in the Stock

and FinancialInfo classes� No methods in the Portfolio class are declared as event generators� The

next step entails creating the event object which monitors these two events� This event object

is an instance of the Conjunction class and is created as shown in Figure �� The rule object

Purchase is then created� Its event is the pricevalue event object and its condition is the method

PurchaseCondition which checks whether the IBM price is less than ��
 and whether the DowJones

percentage change is less than ����� If the condition evaluates to true� the method PurchaseAction

will be invoked and it will purchase IBM stock for the Parker portfolio� After creating the rule�

it subscribes to the events generated by the IBM stock instance and the DowJones FinancialInfo

instance�

� Related Work

Although a number of e�orts have addressed incorporating active capability in the context of an

OODBMS �SKL�	� MP	
� C��	�� mostly Ode �GJ	�� GJS	
� and ADAM �DPG	�� are pertinent

to the material presented in this paper� Below� we brie�y summarize them�

�

Coupling

Modes

I

I

I,

Df,

Det

I,

Df

Inheritance

of Rules

Yes

Yes

Yes

Rules as

Objects

No

Yes

Yes

Events as

Objects

No

Yes

Yes

Complex

Events

No

Relative,

Prior,

Sequence

Conjunction,

Disjunction,

Sequence

Rule

Scope

Intra-obj

Intra-obj

Intra-,
Inter-obj

Event

Scope

System Monitoring

Ode Internal

ADAM Internal

 Sentinel
External
Internal,

on Rules

No

Yes

Yes

Rules

C++

PROLOG

Environ-

ment

Zeitgeist
C++,

Class,

Class

Class,

Instance

Instance

Viewpoint

Figure ��� Comparison of Object�Oriented Active Databases Features�

Ode provides active behavior by the incorporation of rules� in the form of constraints and

triggers� Both constraints and triggers consist of a condition and an action and are de�ned within

class de�nitions� Events in Ode are implicit and are considered as the disjunction of all non�constant

public methods� Constraints are used to maintain the notion of object consistency and hence are

applicable to all instances of the class in which they are declared� Triggers� on the other hand� are

used for monitoring database conditions other than those representing consistency violations and

are applicable only to those instances speci�ed explicitly by the user at run time� Constraints are

further classi�ed into soft and hard constraints� Soft constraints allow temporal inconsistencies to

exist within a transaction and thus are checked at the end �before commit� of a transaction� i�e�� in

deferred coupling mode of HiPAC �HLM���� In contrast� hard constraints are checked at the end

of each non�constant public method� i�e�� the immediate coupling mode�

Triggers in Ode are parameterized and are of two types� perpetual and once�only� A perpetual

trigger is automatically reactivated after its execution whereas a once�only trigger is deactivated

after its �rst execution� The activation of all types of triggers occurs explicitly by the user� Triggers

are checked at the end of each non�constant public method and if they evaluate to true are appended

to a to�be�executed list� Trigger bodies are executed in separate transactions after the commit �not

necessarily immediately after� of the transaction �ring them� More recently Ode �GJS	
� has

proposed a language for specifying composite events� They specify complex events using a set of

operators similar to Snoop �CM	��� events are declared within a class at class de�nition time� Basic

�primitive� events are de�ned and composite events are constructed by applying operators to basic

events� The basic events supported are object state events
 method execution events
 timed events

and transaction events� The event operators supported are relative
 prior
 sequence
 choose
 every

fa and faAbs� Detection of events is accomplished by using a �nite automata� Each event expression

�

maps an event history to another event history that contains only those events at which the event

expression is satis�ed and the trigger should �re�

ADAM �DPG	�� is an active OODB implemented in PROLOG� It focuses on providing a uniform

approach to the treatment of rules in an object�oriented environment� Both events and rules are

treated as �rst class objects which are created� deleted and modi�ed in the same fashion as other

objects� The ECA rule format is adopted and rules are incorporated by using an object based

mechanism� i�e�� an object�s de�nition is enlarged to indicate which rules to check when the object

raises an event� Thus each class structure is augmented with a class�rules attribute� this attribute

has as its value the set of rules that are to be checked when the class raises an event� A Rule�class is

de�ned where each rule is an instance of that class� The structure of the Rule�class consists of the

attributes event
 active�class
 is�it�enabled
 disabled�for
 condition and action� The event attribute

indicates the event which triggers the rule� the active�class attribute indicates the class name on

which the rule is applicable� the is�it�enabled attribute speci�es whether the rule is enabled or

not� the disabled�for attribute has as its value the set of instances for which the rule is disabled

while the condition and action attributes specify the rule�s condition and action respectively� Rule

operations are implemented as class methods� Events are classi�ed into DB events� clock events

and application events� An event class hierarchy is created to support these events� an event�class

is de�ned which has three subclasses� viz� db�event� clock�event and application�event� Each event

is an instance of one of these subclasses� Events are generated either before or after the execution

of a method� When an event in raised� all the methods� arguments are passed by the system to the

condition and action part of the rule�

� Summary and Future Research

In this paper we have presented a seamless approach for the integration of ECA rules into an

OODBMS� We have described a new monitoring viewpoint� termed external monitoring viewpoint

that separates object and rule de�nitions from the event speci�cation and detection process� This

results in a modular and extensible system� Event detection and rule processing mechanisms can be

easily changed�replaced without changing the object de�nitions� Furthermore� this monitoring view

point allows objects to monitor and react to their own state changes as well as the state changes

of other objects� We have supported the speci�cation and detection of simple as well as complex

events� and compile time as well as run�time rules� We have signi�cantly reduced rule checking

overhead by introducing the demand�based subscription mechanism� Finally� we have shown an

implementation for the proposed approach� Currently we support immediate and deferred coupling

modes�

�

Our approach preserves the applicability of rules to pre�existing objects� i�e�� one is able to add

new rules in the system without changing existing object de�nitions� Our framework easily supports

class level rules �applicable to all instances of an object class�� instance level rules �applicable to

particular instances�� intra object rules� and inter object rules �applicable to instances from di�erent

classes��

Our design easily supports customizing the behavior of event and rule objects� For example�

various con�ict resolution strategies can be implemented by de�ning methods within the rule class�

Also� methods de�ned on the rule class can be designated as event generators to de�ne rules on

the rule object class itself� Although the before and after events are supported as part of the event

interface� users� can use the notify mechanism to generate �or signal� events at arbitrary points in

their methods�

��� Future Research

We view our approach presented in this paper as a starting point for addressing a number of issues

related to supporting reactive capability in an object�oriented environment�

� Our approach can be viewed as a programmatic approach perhaps better suited for program�

mers or database customizers� We intend to transform a higher�level user speci�cation of an

active database to Sentinel�

� Our work supports the speci�cation and detection of complex events� However� we have only

supported a subset of the events speci�ed in Snoop �Mis	�� and the most recent context for

parameter computation� E�orts are underway to support chronicle and cumulative contexts

for parameter computation as well as support for temporal� periodic and aperiodic events�

� Performance evaluation of our design choices�

� Currently� the condition and action components of ECA rules are required to be known at

compile time �as they are methods�� Translation of object�oriented extensions of SQL to host

programs need to be pursued� and

� Currently� database applications are limited to sharing data objects only and cannot com�

municate with one another� We feel that the event subscription and noti�cation mechanism

should be expanded� providing a basis for communication among user applications� including

transactions� on a shared database�

�

References

�Anw��� E� Anwar� Supporting complex events and rules in an oodbms� A seamless approach� Mas�
ter�s thesis	 Database Systems R
D Center	 CIS Department	 University of Florida	 E��
�CSE	
Gainesville	 FL �����	 November �����

�BM��� C� Beeri and T� Millo� A model for active object�oriented databases� In Proceedings ��th Interna�
tional Conference on Very Large Data Bases	 pages �������	 Barcelona �Catalonia	 Spain�	 Sept�
�����

�Boo��� Grady Booch� Object Oriented Design with Applications� The Benjamin�Cummings Publishing
Company	 Inc�	 Redwood City	 California	 �����

�BTA�
a� J� A� Blakeley	 C� W� Thompson	 and A� M� Alashqur� Oql�x� � Extending a programming
language x with a query capability� Technical Report TR �
�
��
�	 Texas Instruments	 July ���
�

�BTA�
b� J� A� Blakeley	 C� W� Thompson	 and A� M� Alashqur� Strawman reference for object query
languages� Proceedings of the First OODB Standardization Workshop	 May ���
�

�BTA�
c� J� A� Blakeley	 C� W� Thompson	 and A� M� Alashqur� Zeitgest query language �zql�� Technical
Report TR��
�
��
�	 Texas Instruments	 March ���
�

�C���� S� Chakravarthy et al� HiPAC� A Research Project in Active	 Time�Constrained Database Man�
agement	 Final Report� Technical Report XAIT����
�	 Xerox Advanced Information Technology	
Cambridge	 MA	 Aug� �����

�CHS��� S� Chakravarthy	 E� Hanson	 and S�Y�W� Su� Active Database Research at the University of
Florida� To appear in IEEE Quarterly Bulletin on Data Engineering	 January �����

�CM��� S� Chakravathy and D� Mishra� An event speci�cation language �snoop� for active databases
and its detection� Technical Report UF�CIS TR������	 Database Systems R
D Center	 CIS
Department	 University of Florida	 E��
�CSE	 Gainesville	 FL �����	 Sep� �����

�CN�
� U� S� Chakravarthy and S� Nesson� Making an Object�Oriented DBMS Active� Design	 Implemen�
tation and Evaluation of a Prototype� In Proc� of Int�l Conf� on Extended Database Technology
�EDBT�	 Kobe	 Japan	 pages ������
	 Apr� ���
�

�DB��� M� Darnovsky and J� Bowman� TRANSACT�SQL USER�S GUIDE� Document ��������	 Sybase
Inc�	 �����

�DPG��� O� Diaz	 N� Paton	 and P� Gray� Rule Management in Object�Oriented Databases� A Uni�ed
Approach� In Proceedings ��th International Conference on Very Large Data Bases	 Barcelona
�Catalonia	 Spain�	 Sept� �����

�GJ��� N� H� Gehani and H� V� Jagadish� Ode as an Active Database� Constraints and Triggers� In
Proceedings ��th International Conference on Very Large Data Bases	 pages �������	 Barcelona
�Catalonia	 Spain�	 Sep� �����

�GJS��� N� H� Gehani	 H� V� Jagadish	 and O� Shmueli� Event Speci�cation in an Object�Oriented
Database� In Proceedings International Conference on Management of Data	 pages ����
	 San
Diego	 CA	 June �����

�HLM��� M� Hsu	 R� Ladin	 and D� McCarthy� An Execution Model for Active Data Base Management
Systems� In Proceedings
rd International Conference on Data and Knowledge Bases	 Jun� �����

�Int�
� InterBase Software Corporation	 Bedford	 MA� InterBase DDL Reference Manual	 InterBase
Version
��	 ���
�

�JQ��� H� V� Jagadish and X� Qian� Integrity Maintenance in an Object�Oriented Database� In Proceed�
ings International Conference on Very Large Data Bases	 Vancouver	 BC	 Canada	 Aug� �����

�Mau��� L� Maugis� Adequacy of active oodbms to �ight data processing servers� Master�s thesis	 National
School of Civil Aviation � University of Florida	 E��
�CSE	 Gainesville	 FL �����	 August �����

�Mis��� D� Mishra� Snoop� An event speci�cation language for active databases� Master�s thesis	 Database
Systems R
D Center	 CIS Department	 University of Florida	 E��
�CSE	 Gainesville	 FL �����	
Aug� �����

	

�MP�
� C� B� Medeiros and P� Pfe�er� A Mechanism for Managing Rules in an Object�oriented Database�
Technical report	 GIP Altair	 Sept� ���
�

�PP��� Edward Perez and Robert W� Peterson� Zeitgeist Persistent C�� User Manual� Information
Technologies Laboratory Technical Report �
�
��
�	 �����

�SHP��� M� Stonebraker	 M� Hanson	 and S� Potamianos� The POSTGRES rule manager� IEEE Trans�
actions on Software Engineering	 �����������
�	 Jul� �����

�SKL��� S� Y� W� Su	 V� Krishnamurthy	 and H� Lam� �An Object�Oriented Semantic Association Model
�OSAM���� Theoretical Issues and Applications in Industrial Engineering and Manufacturing	
pages �������	 �����

�WF�
� J� Widom and S� Finkelstein� Set�Oriented Production Rules in Relational Database Systems� In
Proc� of ACM�SIGMOD	 pages ������
	 May ���
�

�

