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ABSTRACT

Polarisation amplitude estimation is affected by a positive noise bias, particularly impor-
tant in regions with low signal-to-noise ratio (SNR). We present a new approach to correct for
this bias in the case there is additional information about the polarisation angle. We develop
the ‘known-angle estimator’ that works in the special case when there is an independent and
high signal-to-noise ratio (& 2σ) measurement of the polarisation angle. It is derived for the
general case where the uncertainties in the Q,U Stokes parameters are not symmetric. This
estimator completely corrects for the polarisation bias if the polarisation angle is perfectly
known. In the realistic case, where the angle template has uncertainties, a small residual bias
remains, but that is shown to be much smaller that the one left by other classical estimators.
We also test our method with more realistic data, using the noise properties of the three lower
frequency maps of WMAP. In this case, the known-angle estimator also produces better results
than methods that do not include the angle information. This estimator is therefore useful in
the case where the polarisation angle is expected to be constant over different data sets with
different SNR.

Key words: polarisation – techniques: polarimetric – methods: data analysis – methods:
statistical – radiation mechanisms: non-thermal

1 INTRODUCTION

It has long been noticed that observations of linear polarisation are

subject to a positive bias (Serkowski 1958). Given the positive na-

ture of the polarisation amplitude, P =
√

Q2 +U2, even if the true

Stokes parameters Q0,U0 are zero, P will yield a non-zero estimate

in the presence of noise. The effect is particularly important in the

low signal-to-noise ratio (SNR) regime. Ways to correct for the bias

have been studied in detail for the special case where the uncer-

tainties for (Q,U) are equal and normally distributed around their

true value (Q0,U0) (Wardle & Kronberg 1974; Simmons & Stew-

art 1985; Vaillancourt 2006; Quinn 2012). Montier et al. (2015a,b)

give a useful review comparing different bias reduction methods.

In this paper we propose a new approach, useful when there

is an independent measurement of the polarisation angle χ =
0.5arctan(U/Q). This situation occurs, for instance, in the polarisa-

tion datasets from WMAP (Bennett et al. 2013) and Planck (Planck

Collaboration et al. 2014), where over a range of frequency the po-

larisation angle is expected to be nearly constant (e.g. synchrotron

radiation will have the same polarisation angle at different frequen-

cies as this angle depends on the direction of the magnetic field of

⋆ E-mail: mvidal@das.uchile.cl
† E-mail: j.p.leahy@manchester.ac.uk
‡ E-mail: clive.dickinson@manchester.ac.uk

the emitting medium), and the variation of the polarised intensity

with frequency is of interest. Using simulations, we test the per-

formance of this estimator compared to previous methods from the

literature that do not include angle information. In Section 2 we

show the origin of the bias and we describe some methods used to

correct for it. In Section 3 we derive our new estimator, its uncer-

tainty and residual bias. In Section 4 we use simulations to test its

performance. Section 5 concludes.

2 BIAS CORRECTION METHODS

We will first review the simple case when the uncertainties in Q and

U are equal, and then study the more general case with asymmetric

uncertainties.

2.1 Symmetric uncertainties

Let us take (Q0,U0) as the true Stokes parameters from a source

and (Q′,U ′) the measured ones. We can write the joint probabil-

ity distribution function (p.d.f.) for (Q′,U ′) as the product of the

individual normal distributions

f (Q′,U ′) =
1

2πσ2
exp

[

− (Q′−Q0)
2 +(U ′−U0)

2

2σ2

]

, (1)

where σQ = σU = σ is the uncertainty in Q′ and U ′.
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2 Vidal, Leahy & Dickinson

Figure 1. Rice distribution (Eq. 3) plotted for different values of the true

SNR, P0/σ. The asymmetry and bias are clear in the low SNR level. At

high SNR, the distribution converges to a Gaussian with standard deviation

σ centred at
√

P0 +σ2.

Transforming into polar coordinates using the definitions for

the polarisation amplitude P =
√

Q2 +U2 and the polarisation an-

gle χ = 1
2 arctan(U/Q), we have:

f (P′,χ′) =
P′

πσ2
e−[P′2+P2

0 −2(P′ cos2χ′P0 cos2χ0+Psin2χ′P0 sin2χ0)]/2σ2

=
P′

πσ2
e−(P′2+P2

0 )/2σ2

e−P′P0 cos[2(χ′−χ0)]/σ2

. (2)

The marginal probability distribution for P′ is obtained by integrat-

ing f (P′,χ′) over χ′. This angular integral can be written as a func-

tion of the modified Bessel function of first type I0(z), yielding the

Rice distribution for polarisation (Rice 1945):

R(P′|P0) =
P′

σ2
I0

(

P′P0

σ2

)

e−(P′2+P2
0 )/2σ2

. (3)

It is important to note that the integral of R(P′|P0) represents

the probability of measuring P′ inside an interval for a given true

polarisation P0. Fig. 1 shows R(P′|P0) for different SNR. The bias,

defined as 〈P′〉−P0, arises because this probability distribution is

not symmetric, and becomes clear in Fig. 1 at low SNR. Even when

the true SNR is zero (black curve in the figure), the measured value

is close to 1. At large SNR, the distribution approaches a Gaussian

with mean close to P0 and standard deviation close to σ.

Simmons & Stewart (1985) compared five estimators for P0

(including the uncorrected P′), and concluded that the one with

smallest residual bias when P0/σ& 0.7 is that suggested by Wardle

& Kronberg (1974):

∂R

∂P′ (P
′,P0)

∣

∣

∣

∣

P0=p̂

= 0. (4)

(note that this is not the maximum likelihood estimator). Even at

moderate SNR, the rice distribution is not centred at the measured

SNR, this can be seen in Fig. 1, where the distributions have mean
√

P0+σ2. This motivated Wardle & Kronberg (1974) to propose a

very simple estimator

p̂AS =

{ √
P′2 −σ2 P′ > σ;

0 otherwise.
(5)

This approximates Eq. 4, and also has the virtue of giving lower

bias at very low SNR, albeit at the cost of a 1 per cent over-

correction near SNR = 2; this has been widely used in practice.

Montier et al. (2015b) compared various estimators of the polari-

sation angle in terms of the residual bias, risk, variance and Gaus-

sianity. An unwanted property of the asymptotic (AS, Eq. 5) esti-

mator is that the distribution of the estimator is discontinuous as it

yields zeroes below a particular SNR (see Eq. 5). It is illuminat-

ing to re-write Eq. 5 in terms of the error in the polarisation angle,

σχ = σ/2P′, so

p̂AS = P′
√

1−4σ2
χ . (6)

This emphasises that the source of the bias is the error in the angle

of the (Q,U) vector, which contributes a component of the error

vector orthogonal to the true polarisation with length P′ sin2∆χ ,

and is added in quadrature to the parallel component, hence always

contributing a positive bias.

For the polarisation angle, here we use the naive estimator,

χ = 1
2 arctan(U/Q), which is completely unbiased. The uncertainty

of this estimator, on the asymptotic case where P0 ≫ σ is (Vinokur

1965; Montier et al. 2015a)

σχ =
√

Q′2σ2
Q +U ′2σ2

U/2P2. (7)

2.2 Asymmetric uncertainties

The previous case in which the uncertainties in (Q′,U ′) are equal

and uncorrelated is well understood. The asymmetric case is in-

teresting as many polarisation data sets have this characteristic.

For example, the CMB experiments WMAP (Bennett et al. 2013)

and Planck (Planck Collaboration et al. 2014) have correlations be-

tween the (Q′,U ′) uncertainties due to non-uniform azimuthal cov-

erage for each pixel in the sky. This case has been recently studied

by Montier et al. (2015a,b); Plaszczynski et al. (2014). The error

distribution in these cases is an elliptical 2D Gaussian in (Q′,U ′),
characterised by a covariance matrix (e.g. Kendal, Stuart & Ord

1994)

C =

(

σ2
Q covQU

covQU σ2
U

)

(8)

Defining a (Q,U) error vector

δ =

(

Q′−Q0

U ′−U0

)

, (9)

we have

f (Q′,U ′) =
1

2π
√

det[C]
exp

[

−δTC−1δ

2

]

=
1

2πσQσU

√

1−ρ2
exp

[

− 1

2(1−ρ2)

(

(Q′−Q0)
2

σ2
Q

+
(U ′−U0)

2

σ2
U

− 2ρ(Q′−Q0)(U
′−U0)

σQσU

)]

,

(10)

where ρ is the correlation coefficient between (Q0,U0),

ρ=
E[(Q′−Q0)(U

′−U0)]

σQσU
=

covQU

σQσU
.

(11)

The error ellipse in the Q,U plane will be rotated an angle θ in the

c© 2015 RAS, MNRAS 000, 1–9
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Figure 2. Error ellipse in the (Q,U) plane showing how the polarisation

angle χ and the rotation angle θ are related.

case of a non-zero covQU (see Fig. 2). In terms of the components

of the covariance matrix,

θ=
1

2
arctan

2covQU

σ2
Q −σ2

U

. (12)

The error ellipse has axial ratio

r =
σmin

σmaj
, (13)

where

σ2
maj =

1

2

(

σ2
Q +σ2

U +
√

(σ2
Q −σ2

U )2 +4covQU
2
)

(14)

σ2
min =

1

2

(

σ2
Q +σ2

U −
√

(σ2
Q −σ2

U )2 +4covQU
2
)

. (15)

Allowing for correlated variables, the error in any f (Q′,U ′) is

to first order

σ2
f =

(

∂ f

∂Q′

)2

σ2
Q +2

∂ f

∂Q′
∂ f

∂U ′ covQU +

(

∂f

∂U′

)2

σ2
U. (16)

Hence (Montier et al. 2015a),

σ2
P =

Q′2σ2
Q +2Q′U ′covQU +U′2σ2

U

P′2

= cos2 2χ′ σ2
Q +2cos 2χ′ sin2χ′ covQU + sin2 2χ′ σ2

U (17)

σ2
χ =

sin2 2χ′ σ2
Q −2cos 2χ′ sin2χ′ covQU +cos2 2χ′ σ2

U

4P′2 , (18)

When r 6= 1, the polarisation bias depends on the polarisa-

tion angle χ0, more specifically on θ− 2χ0, as well as on p0. The

asymptotic estimator from Eq. 6, p̂AS = P′
√

1−4σ2
χ , still applies,

provided we use the generalised form of σχ derived above. We note

that Eq. 18 is derived in the small-error approximation and uses the

observed polarisation angle, χ′ as a surrogate for the true polarisa-

tion angle χ0, which is unobjectionable in the high SNR regime.

When SNR is low it is not so obvious that this is appropriate, but

we will verify by simulations that the estimator remains reasonably

effective.

The preferred estimator of Montier et al. (2015b), is the ‘mod-

ified asymptotic estimator’, MAS (Plaszczynski et al. 2014), which

using the above notation is given by:

p̂MAS = P′
[

1−2σ2
χ

(

1−e−P′2/b2
)]

, (19)

3 KNOWN-ANGLE ESTIMATOR

As we will see, all estimators based exclusively on one observed

(Q′,U ′) measurement give a significant positive bias at very low

SNR. However, this can be overcome if we have an independent

estimate of the polarisation angle χ. We will refer to this as the

‘template’ observation, in contrast to the ‘target’ observation to be

debiased.

We will build a new estimator, based on the maximum likeli-

hood estimator, assuming that the true angle χ0 is know. We will

later calculate the residual bias which emerges because of uncer-

tainty in our template angle, hereafter denoted χ, as distinct from

the true angle χ0 and the observed angle χ′ from the target obser-

vation.

To find our known-angle estimator, p̂χ, we take the joint p.d.f.

for the observed values (Q′,U ′) with asymmetric uncertainties

from Eq. 10. Since Q0 = P0 cos2χ0 and U0 = P0 sin2χ0,

f (Q′,U ′) =
1

2πσQσU

√

1−ρ2
exp

[

− 1

2(1−ρ2)

(

(Q′−P0 cos2χ0)
2

σ2
Q

+
(U ′−P0 sin2χ0)

2

σ2
U

− 2ρ(Q′−P0 cos2χ0)(U
′−P0 sin2χ0)

σQσU

)]

. (20)

The maximum likelihood estimator in this case, p̂χ, is defined

by the condition:

∂ f (Q′,U ′)
∂P0

∣

∣

∣

∣

P0=p̂χ

= 0. (21)

With the assumption that χ0 = χ, this leads to the expression for

the de-biased polarisation amplitude,

p̂χ =
σ2

U Q′ cos2χ−covQU(Q
′ sin2χ+U′ cos2χ)+σ2

QU′ sin2χ

σ2
U cos2 2χ−2covQU sin2χcos 2χ+σ2

Q sin2 2χ
.

(22)

We note that if the observed polarisation angle χ′ is used as a

surrogate for χ0, then p̂χ = p′ =
√

Q′2 +U ′2 and there is no cor-

rection whatsoever – we do need an independent constraint on χ to

benefit from this approach.

The error in p̂χ is given via Eq. 16:

σ2
p̂χ

=
σ2

Qσ2
U −σ2

QU

σ2
U cos2 2χ−2covQU sin2χcos 2χ+σ2

Q sin2 2χ

=
det[C]

4P′2 σ2
χ
. (23)

The known-angle estimator still contains a residual bias, due

to the uncertainty in the template angle χ. Specifically the expected

value of the fractional bias is

bχ ≡
〈 p̂χ〉−P0

P0
=

∫
χ

f (χ|χ0)
∫

Q′,U ′
f (Q′,U ′|P0,χ0)

p̂χ

P0
dχdQdU −1.

(24)

Since p̂χ is linear in Q′ = P0 cos2χ0 +δQ and in U ′ = P0 sin2χ0 +
δU , integrating over the Gaussian probability distribution of

(Q′,U ′) eliminates the dependence on the the deviations δQ, δU ,

and we have

c© 2015 RAS, MNRAS 000, 1–9



4 Vidal, Leahy & Dickinson

bχ =
∫

χ
f (χ|χ0)

σ2
U P0 cos2χ0 cos2χ−covQUP0(cos2χ0 sin2χ+ sin 2χ0 cos2χ)+σ2

QP0 sin2χ0 sin2χ

P0(σ2
U cos2 2χ−2covQU cos2χ sin2χ+σ2

Q sin2 2χ)
dχ−1, (25)

where f (χ|χ0) is the p.d.f. of the template angle.

The amplitude of the polarised signal, P0, cancels, so the resid-

ual bias just depends on the axial ratio of the (Q,U) error ellipse, r,

and the difference between the orientation of the ellipse, θ, and that

of the true (Q0,U0) vector, 2χ0 (see Fig. 2). If the angle is known

exactly so f (χ|χ0) = δ(χ−χ0), the residual bias vanishes.

In the special case where covQU = 0, so r = σU/σQ, we have

bχ =
∫

χ
f (χ|χ0)

r2 cos2χ0 cos2χ+ sin 2χ0 sin2χ
r2 cos2 2χ+ sin2 2χ

dχ−1. (26)

The top panel of Fig. 3 shows the bias for different axial ratios

of the error ellipse as function of the polarisation angle (see the

angle definitions in Fig. 2). Here the uncertainty in the template

angle is Gaussian (c.f. Eq. 7) and it is fixed at σχ = 5◦. If the error

distribution is symmetric (r = 1), the bias is constant (cf. Eq. 26).

The bottom panel of Fig. 3 shows the bias for different values of

the uncertainty in the template angle, for an error ellipse with axial

ratio r = 0.5. The bias is usually negative, i.e. the polarised intensity

is slightly underestimated.

When the template for the angle has an SNR at least 2 times

larger than the target, the known-angle estimator thus gives excel-

lent performance at very low signal-to-noise levels, where other

estimators have large residual biases. However, for a given uncer-

tainty in χ, the bias does not decrease as the signal in (Q′,U ′) rises,

unlike all the standard estimators. In practical use, the estimator

is only worthwhile when a template observation with substantially

higher SNR than the target observations is available; fortunately,

this situation is fairly common, as discussed in Section 4.3.

4 TESTS OF THE ESTIMATORS

Here we compare the effectiveness of three bias reduction meth-

ods using Monte Carlo simulations for a range of SNR. This is

to show what can be gained when including additional angle in-

formation from a higher signal-to-noise template. In section 4.2

we study the residual bias in a single pixel for a range of SNR in

(Q,U). Section 4.3 tests the methods using real noise values from

the WMAP polarisation data.

Using Monte Carlo simulations, we measure the residual bias

in a single pixel for four polarisation amplitude estimators:

(i) p̂′ =P′ =
√

Q′2 +U ′2, the naive estimator with no correction

for bias.

(ii) p̂MAS, the Plaszczynski et al. modified asymptotic estimator,

from Eq. 19.

(iii) p̂χ, the known-angle estimator, from Eq. 22.

4.1 Isotropic case

We ran 106 Gaussian noise realisations for the Q,U Stokes parame-

ters. For the known-angle estimator, we also produced an additional

set of 106 noise realisations for the high signal-to-noise template

Q,U , which accounts for the uncertainty in the known angle. We

start with the simpler case where σQ and σU are not correlated.

We studied the bias, defined as bias = p̂−P0 and the risk function

Figure 3. Fractional bias of the known-angle estimator, p̂χ , for different

values of the error ellipse (r = σ′
U/σ′

Q) and an uncertainty in the template

angle of 5◦ (top). The bottom plot shows the residual fractional bias of p̂χ
for different values of the uncertainty in the template angle, σχ, for a fixed

value of r = 0.8. Both plots are calculated with P0 = 1.

= 〈( p̂−P0)
2〉, for the different estimators. In Fig. 4 we show on

the top panel the residual bias of the estimators as a function of the

observed SNRP ≡ P0/σP, with σP defined in Eq. 17. We show four

lines for p̂χ, which correspond to different values of the SNR of the

angle template. The bottom panel of Fig. 4 shows the risk function

for the different estimators.

We can see that the known-angle estimator performs very well

in the case when the polarisation angle is known with relatively

high precision, i.e. when the SNR of the template is > 2–3 times

the SNR of the target.

The construction of the known-angle estimator allows for neg-

ative values of p̂χ. Fig. 5 shows the distributions of p̂χ simulations

for three different values of the SNR of the target and the template.

4.2 General case

Here we allow for asymmetric errors in Q,U , i.e. for r < 1. We cre-

ated a grid of 100×100 different values of Q0/σQ and U0/σQ, in

c© 2015 RAS, MNRAS 000, 1–9
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Figure 4. Residual bias (top) and risk function (bottom) for the naive, p̂′

(continuum line), p̂MAS (dashed), p̂AS (dot-dashed line) and p̂χ (colours)

estimators as a function of the SNR of the true polarisation amplitude P0.

As the residual bias and risk function of the known-angle estimator depends

on the uncertainty of the high SNR template, we show these two functions

for four different values of the uncertainty of the high SNR template: same

SNR of the target in magenta, 2 times the SNR of the target in green, 3

times in red and 5 times better in blue. Both plots are for the isotropic case,

σQ = σU.

the range Q0/σQ 6 4, U0/σQ 6 4, using a uniform spacing. This

was repeated for four values of r. We set θ= 0, so that r = σU/σQ

(the pattern in the (Q,U) plane simply rotates for other values of θ).

Then, ×105 Gaussian noise realisations are added to the each point

in the grid. We calculated the ‘observed’ polarisation amplitude P′

from the noisy simulations, applied the four estimators to each sim-

ulation, and in each case measured the mean bias b = (〈 p̂〉−P0)
for each pixel. The first column of Fig. 6 shows the bias of the

naive estimator P′. The second column shows the residual bias af-

ter using the modified asymptotic estimator (MAS). The biased re-

gions in the SNR plane reduces considerably in comparison with

the first column that has no correction. The third and forth columns

shows the residual bias using the known-angle estimator. As this

estimator requires an independent value for the polarisation angle

along with the observed values (Q′,U ′), we generated an additional

×105 Gaussian realisations for the Q,U Stokes parameters of the

template and with them, we reconstructed the known polarisation

angle, centred at the true value, χ0, for each SNR value. Here, the

SNR of the template is 2 (third column) and 3 (forth column) times

the SNR of the target.

Figure 5. Histograms showing the distribution of p̂χ (coloured lines) and

the naive (black line) estimator for three values of SNR in the target (top to

bottom) and three values of the SNR of the template (as a multiple of the

SNR of the target). All histograms are for the isotropic case, σQ = σU.

As expected, apart from numerical noise these results agree

with the exact calculation shown in Fig. 3.

4.3 WMAP simulations

WMAP provided maps at five frequency bands between 23 and

94 GHz (Bennett et al. 2013). In the lower three frequencies the

sky polarisation is dominated by Galactic synchrotron emission,

with a brightness temperature that drops steeply with frequency

(Tν ∝ ν β, with β ≈−3). Since the brightness temperature sensitiv-

ity is similar in all bands, the highest SNR is at 23 GHz (K band),

where large areas of diffuse polarised emission have SNR > 3 after

smoothing to 1◦ FWHM resolution. In these bands the synchrotron

polarisation angle reflects the Galactic magnetic field direction in

the source regions, and is expected to be almost independent of

frequency. The most likely cause of any frequency variation is su-

perposition on the line of sight of regions with different field direc-

tions and also difference spectral indices β; however, the variation

of β for the synchrotron component is small as has been shown

by Fuskeland et al. (2014) and (Vidal et al. 2015). On the other

hand, the higher WMAP bands begin to be sensitive to dust po-

larisation, which has β ≈ +1.7, and Planck data confirm that this

c© 2015 RAS, MNRAS 000, 1–9



6 Vidal, Leahy & Dickinson

Figure 6. Contours of the mean residual bias of three estimators for the polarised intensity as a function of (Q,U), calculated using Monte Carlo simulations

for four different values of the error ellipse axial ratio, r. We take covQU = 0 (there is no loss of generality, as the covariance can always be eliminated by

a rotation of the Q−U axes). The colour scale represents the percentage bias of the estimated polarisation value in each pixel. The left column shows the

naive estimator, p̂′. The second column shows the MAS estimator, p̂MAS, from Plaszczynski et al. (2014). The third and forth columns show the known-angle

estimator, p̂χ, presented in Eq. 22 for two different SNR levels of the angle template: 2 times and 3 times the SNR of the target.

is generally significantly misaligned with synchrotron (Planck Col-

laboration et al. 2015a,b). For this reason we only consider the three

lowest WMAP bands below.

Fig. 7 show histograms of the SNR for the Stokes parameters

(Q,U) of the three frequency bands: K- (23 GHz), Ka- (33 GHz)

and Q- (41 GHz) bands. The polarisation SNR in K-band is larger

than the SNR in the other bands for almost the entire sky; in fact,

the SNR in the Ka-, and Q-bands rarely exceeds 3. In Fig. 8 we

show histograms of the axial ratio of the error ellipses for all the

pixels in these WMAP bands. The mean ratio for all the bands is

r = 0.86.

We used the Planck Sky Model (PSM) (Delabrouille et al.

2013) to simulate the polarised sky at K-, Ka- and Q-bands at an

angular resolution of 1◦, from which we can obtain maps for the

c© 2015 RAS, MNRAS 000, 1–9
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Figure 7. Histograms of the estimated signal-to-noise ratio of the polarisa-

tion amplitude, SNRP = P/σP of WMAP data in 3 frequency bands. The

histograms are made using the full sky maps at an angular resolution of

1◦, with Nside = 256. The percentage of pixels where the SNR at K-band is

larger than the SNR at Ka and Q bands is 75% and 78% respectively.

Figure 8. Histograms of the polarisation error ellipse axial ratio (Eq. 13) of

WMAP data in 3 frequency bands. The histograms are made using the full

sky maps at an angular resolution of 1◦ , with Nside = 256.

unbiased polarisation amplitude, P0. The model is closely based

on the WMAP K-band map, and uses realistic spectral indices. We

added random noise, generated using the WMAP covariance matri-

ces C for each pixel, to the simulated Stokes Q and U map. The

maps are generated at HEALPix Nside = 512. Smoothing was done

by transforming to spherical harmonics, which were then divided

by the WMAP instrumental window functions and multiplied by

the window function of a Gaussian beam with 1◦ FWHM, then

re-transformed. Noise and sky model maps were downgraded to

Nside = 64 to give approximately independent pixels, and summed

to give maps of the ‘observed’ polarisation amplitude, P′. In the

top panel of Fig. 9 we show the reconstructed simulated polarisa-

tion angle map at K-band. The middle and lower panel of Fig. 9

show the observed polarisation angle by WMAP at Ka and Q-bands

respectively. We can see that the simulated K-band angles, which

we use as our template is very similar (but less noisy than) the ob-

served angle at Ka and Q band. This is the characteristic that the

known-angle estimator requires.

We corrected for the bias in these P′ maps using the same three

estimators discussed in Section 4.2. Ka- and Q-bands are corrected

using the known-angle estimator where the angle information re-

quired by the p̂χ estimator is measured from the K-band map. We

then compared these de-biased maps with the true polarisation am-

plitude map from the PSM simulations. In Table 1 we list the nor-

malised bias value, averaged over the entire sky of 500 simulations

for the three frequency bands that we studied.

The mean uncorrected bias, 〈∆ p̂′〉 = 〈P′−P0〉 increases with

Table 1. Full-sky averaged values for the normalized polarisation bias and

standard deviation of each estimator in simulated WMAP data, over 500

simulations. See Fig. 10 for the histograms of the errors p̂−P0.

Estimator K–band Ka–band Q–band

〈∆ p̂〉a std[∆ p̂]b 〈∆ p̂〉a std[∆ p̂]b 〈∆ p̂〉a std[∆ p̂]b

∆ p̂′ 0.20 0.98 0.50 0.91 0.66 0.87

∆ p̂MAS 0.06 1.00 0.27 0.93 0.42 0.88

∆ p̂χ – – −0.05 1.01 −0.03 1.01

a mean normalized bias, 〈 p̂−P0〉/〈σP〉 where σP is given by Eq. 17.
b Standard deviation of p̂−P0, again in units of the mean error.

Figure 9. Full sky polarisation angle map. On top is the reconstructed angle

map from the Planck Sky model with the added noise from WMAP K-band

data. The middle and bottom panels show the observed polarisation angle

from WMAP Ka and Q-bands respectively.
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8 Vidal, Leahy & Dickinson

''

'

'

Figure 10. Histograms showing the bias of the three estimators studied for

the simulated WMAP data at K, Ka and Q band described in the text. His-

tograms combine all 500 simulations and all sky pixels. They show the dis-

tribution of the difference between the estimators and the true polarisation

amplitude P0, in units of the average polarisation noise, 〈σP〉. The column

on the left shows the histograms of the polarisation bias of the naive estima-

tor, i.e. the ∆P0 =P′−P0 (no bias correction). The second column shows the

residual bias for the MAS estimator, ∆PMAS = p̂MAS −P0. For the noisier

bands (Ka and Q), the histograms are not centred at zero, implying that there

is additional residual bias on the corrected map. The third column shows the

histograms produced using the p̂χ estimator, ∆Pχ = p̂χ −P0. Here the bias

correction works much better and the distributions for the three bands are

centred at zero. Table 1 lists the central values and spreads for all these his-

tograms.

frequency due to the decrease in SNR. p̂MAS substantially reduce

the bias at K and Ka bands, but Q band is so noisy that its impact

is relatively modest. A clearer view of the effect of the estimators

is revealed in the histograms of normalised errors, P′ −P0/〈σP〉,
shown in Fig. 10. In Ka- and Q-band the histograms of the uncor-

rected polarisation maps are not centred at zero (the three plots in

the left column). Where available, i.e. for Ka- and Q-bands, the p̂χ
estimator performs dramatically better than p̂MAS. Note also that

the histograms of the p̂χ estimator have a clear Gaussian shape.

This shows that the uncertainty on the estimator (Eq. 23) can be

used safely.

In order to see where the residual bias is more important, we

show maps of the fractional bias after the correction using the dif-

ferent estimators. Fig. 11 shows the fractional bias at K-, Ka- and

Q-band, for each of our estimators. Pixels where the residual bias is

larger than 20 per cent are shown in grey. The p̂MAS estimator (sec-

ond row) leaves a small residual bias over most of the sky (green ar-

eas in the Figure). The p̂χ estimator (bottom row) performs clearly

better. In Table 2 we list the percentage of the area of the sky with

a residual fractional bias smaller than ±0.2.

The excellent performance of the known-angle estimator in

this case is due to the use of some extra information. The improve-

ment is spectacular due to the very low SNR over much of the sky

Table 2. Percentage of the area of the full-sky map that have an absolute

value of the residual fractional bias smaller than 0.2. These areas corre-

sponds to the coloured pixels in Fig. 11.

Estimator K–band Ka–band Q–band

% % %

P′ 84.9 35.0 18.4

p̂MAS 91.5 53.3 29.5

p̂χ – 84.8 84.3

at the target frequencies. One could attempt to restore the signal-

to-noise by simply smoothing to lower resolution, but this will fail

when there is substantial real variation in the polarisation angle,

which would cause the Q and U signals averaged over large areas

to tend towards zero. The great advantage of the known-angle es-

timator is that we correctly preserve the true polarisation direction

while still allowing coherent averaging of the polarised amplitude.

Vidal et al. (2015) uses p̂χ to measure the spectral index of the dif-

fuse synchrotron polarised emission over large regions of the sky,

an ideal application of the known-angle estimator. It can also be

applied in the Planck data, both for the low-frequency synchrotron

emission and also for the high-frequency dust polarisation, where

a natural template would be the highest available frequency, since

the dust emission rises with frequency (Planck Collaboration et al.

2015b).

5 CONCLUSIONS

We have proposed a new way of correcting for the positive bias that

affects the polarisation amplitude. The ‘known-angle estimator’,

p̂χ, works when there is independent and high SNR information

about the polarisation angle of the observed source. This additional

information helps to reduce the polarisation amplitude bias.

We have derived formulae for the estimator, its precision,

and its residual bias, due to the uncertainty in the template angle

that is used. The estimator is continuous, analytic, possibly neg-

ative and highly Gaussian. Given an independent good template

for the polarisation angle, i.e. the SNR of the template is at least

two time the SNR of the target, this estimator performs excellently

in the low SNR regime. We have shown with simulations using

WMAP data that the known-angle estimator, p̂χ, outperforms the

modified asymptotic (MAS) estimators, which is not surprise as

p̂χ uses additional information about the U/Q ratio to correct for

the bias. We believe that this new estimator will be of great use in

datasets that encompass multiple frequencies with different SNR

rations like Planck, or even in multi-wavelength analysis mixing

optical, infrared and radio data.
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Figure 11. Maps showing the fractional bias in the WMAP K, Ka- and Q-bands (left, middle and right columns respectively). The top top row shows the

fractional bias for the naive estimator P′ =
√

Q′2 +U ′2. The second row shows the residual bias when using the p̂MAS estimator and the bottom row has the

residual bias that remains after correcting with the p̂χ estimator. All the pixels with an absolute value larger than 0.2 are shown in grey.

of the work of this paper was done using routines from the IDL As-

tronomy User’s Library. Some of the results in this paper have been

derived using the HEALPix (Górski et al. 2005) package.
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