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Abstract—This paper presents a fast and effective polarization 

image demosaicking algorithm, which explores inter-channel 

dependency of Stokes parameters for the minimization of residual 

aliasing artifacts after cubic spline interpolation. A guided 

filtering approach is used for denoising. An optimization based on 

the confidence level of the aforementioned guided filtering, the 

correlations between the demosaicked image and input, as well as 

the total intensity, angle and degree of linear polarization, is 

constructed and solved with Newton’s method. Experimental 

results demonstrate that the proposed algorithm can surpass the 

existing methods in terms of both objective root mean squared 

error and structural similarity index by at least 36.0% and 3.4%, 

respectively, and by close visual inspection of the clarity of objects 

in the angle and degree of linear polarization images. The 

proposed algorithm consists of only convolutions and element- 

wise operations, making it fast and parallelizable for efficient 

GPU acceleration. An image of size 512×612×4 can be processed 

within 10 s on i7-6700k CPU, and gains further 5 times speedup 

with M4000M GPU. 

 
Index Terms—Guided Filter, Image Demosaicking, Degree of 

Linear Polarization, Polarization Image, Image Denoising. 

 

I. INTRODUCTION 

N addition to conventional intensity/color imaging, 

polarization imaging is another approach to overcome the 

limitations of object detection in natural scenes by intensity- 

based and color-based image processing. Inspired by some 

animals’ instinct of polarization vision [1], polarization 

imaging has been applied to biomedical image analysis [2]-[3], 

3-dimensional object recognition [4] and material classification 

[5]-[6], to name a few. Particularly, surfaces of artificial targets 

reflect and radiate electromagnetic waves with a significantly 

larger degree of linear polarization of reflection than surfaces of 

live objects from the same angle of view [7]. Thus, polarization 

images can improve the contrast ratio of artificial target and 

live objects from their distinction in both the angle and degree 

of linear polarization images [8]-[9].  

Among different polarization image sensor implementations, 

division of focal plane (DoFP) polarization imager has become 

the mainstream. It enables the polarization sensing system to be 

integrated on a single chip, leading to high-resolution imaging 

at significantly reduced manufacturing cost [10]-[11]. To 

visualize the polarization state, a single image sensor is 

overlaid with an array of subwavelength spaced patterned wire 

grids to winnow specific polarization components. This is 

similar to the well-known mosaicked color filter array used 

widely in color imaging (e.g., Bayer pattern) [12]. With the 

rapid development of nano-scale semiconductor fabrication 

process, the pixelated micro-polarizing elements can be directly 

patterned and fabricated on top of the commercial CCD/CMOS 

image sensor’s photodiode array to extract and measure the 

different polarization components of the incident light. 

However, DoFP polarization makes a trade-off between 

sensing speed (i.e. frame rate) and spatial resolution as different 

polarization components from the incident light are sampled 

simultaneously in a single frame. As a result, “polarization 

demosaicking” is a crucial imaging pipeline in DoFP polariza-

tion images [13]-[15]. It is used to reconstruct a high-quality 

full-resolution image from the down-sampled polarization 

sub-images. As each pixel element of the image sensor can 

detect only one channel of raw image data, the data of the 

missing channels will have to be predicted from the spatially 

shifted sensor data [16]. Since spatial-limited signals can never 

be band-limited, aliasing is inevitable when a full-resolution 

image is reconstructed by sampling the raw image data, 

resulting in zipper, fringes and other visual artifacts. Thus, a 

good demosaicking algorithm is required to render a 

high-quality image by reducing the residue artifacts upon 

interpolation. Although demosaicking algorithms for color 

images have been intensively studied [14]-[20], they cannot be 

directly applied to polarization images due to two fundamental 

differences. First of all, the channel configurations in the filter 

arrays for color and polarization image sensors are different. In 

the case of color images, demosaicking is performed among 

three wavelength channels, e.g., Bayer pattern with red, blue 

and green channels. As human perception is more sensitive to 

green, the weight of green sensors is doubled in the color filter 
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array, as shown in Fig. 1(a) [12]. On the other hand, the four 

channels (0°, 45°, 90° and 135°) for polarization imaging are 

equally important, thus the number of sensors in different 

channels are identical, as shown in Fig. 1(b) [21]. The second 

difference lies in the correlation between different channels. 

For color images, RGB channels are less dependent on each 

other. In contrast, the four channels of polarization images are 

intricately interdependent [22]. Taking the 0° channel as an 

example, it is more correlated to the 45° and 135° channels than 

the 90° channel [22]. 
 

G R G R 

B G B G 

G R G R 

B G B G 

(a) 

0° 45° 0° 45° 

135° 90° 135° 90° 

0° 45° 0° 45° 

135° 90° 135° 90° 

(b) 
Fig. 1  Digital image filter arrays for (a) color and (b) polarization imaging. 

 

Polarization image demosaicking can be considered as a 

super-resolution problem, where the input image in each 

channel is enlarged by a factor of two in both horizontal and 

vertical directions. In order to improve the accuracy, various 

interpolation algorithms such as bilinear, bicubic, spline and 

gradient-based methods have been proposed [23]-[29]. In 

general, the effect of these interpolations is analogous to 

low-pass filtering, which smoothens the transition of adjacent 

pixel values by filling in the missing values. Although a low 

root mean squared error (RMSE) can be achieved from the 

interpolated outputs, the reconstructed images are often blurry 

with poorly-preserved high-frequency information. To restore 

the high-frequency information from the residuals, the residual 

of interpolation was introduced in [30]. Recently, machine 

learning methods have been used for interpolation. These 

methods include sparse representation [31] that makes use of 

sparsity and non-local self-similarity priors to regularize 

interpolation and convolutional neural networks (CNN) [32] as 

an end-to-end framework to generate the interpolated Stoke 

images directly. Although deep learning (DL) methods can 

automatically deduce and optimally tune the features, the 

desired outcomes are achieved with very long and costly 

training. Besides requiring expensive computing resources, a 

huge amount of labeled data is also needed to train the CNN. 

Although in principle DL-based approach is adaptable to 

different applications and data types, the portability to new 

applications is constrained by the difficulty to comprehend the 

output based on mere learning without the classifiers, and the 

lack of standard theory in selecting the right DL topology, 

learning method and model hyperparameter settings. Based on 

our latest literature review, DL algorithm for polarization 

image demosaicking has not been reported. One main reason is 

the lack of labeled polarization image datasets for training the 

CNN. Besides interpolation, the output RMSE can be reduced 

by denoising algorithms such as Gaussian modeling [33] or 

block-matching and 3D filtering (BM3D) [34]. The 

high-frequency information can be replenished from fine 

features and textures that repeat themselves at multiple 

locations in an image [34]. 

The above-mentioned algorithms consider merely the intra- 

channel dependency for interpolation. In this paper, the 

inter-channel dependency between different polarization angles 

and Stokes parameters are also explored, which leads to the 

following three main contributions. Firstly, we propose a fast 

and accurate DoFP interpolation method exploiting the 

inter-channel correlations. Secondly, we propose a combination 

denoising scheme guided filters (GF) to effective denoise the 

interpolated images, and a novel method to estimate the 

confidence level of each predicted pixel value through GF for 

further denoising. Thirdly, a holistic optimization is formulated 

with only two optimizing parameters, which can be efficiently 

solved by Newton’s method. This optimization is guided by 

AoLP, DoLP, S0 formulated in (1)-(5) and three sets of 

confidence levels computed through GF. The quality of the 

reconstructed polarization image is significantly enhanced with 

the proposed inter-channel correlation algorithm. 
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The rest of this paper is organized as follows. Section II 

introduces the basic concept and the proposed variations of 

guided filtering. Section III presents the problem formulation 

and the details of the proposed algorithm. In Section IV, the 

performance and computational efficiency of the proposed 

algorithm are evaluated, analyzed and compared with related 

state-of-the-art methods. The paper is concluded in Section V. 

II. GUIDED FILTERING AND THE PROPOSED VARIATIONS 

A. The Original Guided Filtering 

GF is a denoising algorithm that is well-known for its 

edge-preserving property and efficiency [35]. There are two 

inputs to GF, which are a target image p to be denoised and a 

guidance image I. The inputs of GF are separated into a 

sequence of overlapping square windows with a stride of 1. 

Each window wk of size (2r + 1) × (2r + 1) centered at pixel k is 

processed independently. The output q is a linear transfor-

mation of I, which can be expressed as: 

 i k i k kq a I b i w= + ∀ ∈  (6) 

where q i and I i are the values of q and I, respectively at pixel i, 

and ak and bk are the regression coefficients for the window wk. 

There are (2r + 1) × (2r + 1) pairs of (q i, I i) for wk. The 

values of ak and bk can be optimized by minimizing the 

“unexplained variation”, which is defined as the sum of squared 

differences between input p and output q. The objective 

function of GF can be expressed mathematically [36] as: 
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 ( )( )2 2

,

arg min
k k k

k i k i k
a b i

a I b p a
ω∈

+ − +∑  . (7) 

The optimization of the unexplained variation of (7) can be 

seen as a “straight line of best fit” problem, where ak is the 

gradient and bk is the y-axis interception. The regularization 

parameter ϵ reduces the variances of the estimated regression 

parameters, and avoids a zero-value denominator in (8). The 

optimization problem in (7) has a closed-form solution 

expressed in (8) and (9), 

 
( ) ( )( )

( )2

1

k
i i k ki w

k

k

k

I p I p
w

a
I

µ µ

δ

∈
−

=
+

∑


 
(8) 

 ( ) ( )k k k kb p a Iµ µ= −  (9) 

where μ(Ik) and μ(pk) are respectively the means of I and p, 

calculated within wk, δ(Ik) is the standard deviation of I within 

wk, and |wk | is the number of pixels in ωk.  

From (7) to (9), we can compute the optimized ak and bk, and 

then substitute them into (6) to obtain the GF output. Since the 

inputs of GF are separated into overlapping square windows, 

and each window has (2r + 1) × (2r + 1) outputs, there will be 

(2r + 1) × (2r + 1) outputs generated at each pixel position 

(except for the boundary pixels). The blue outlined 3 × 3 

windows for r = 1 are shown in Fig. 2. The final output iq  at 

pixel i is calculated by taking the average value of all q i 

containing the pixel i from different windows. Mathematically, 

iq can be calculated by (10). 
 

Fig. 2  Calculation of 
i

q  from q i of all 3×3 windows containing the pixel i. 

 ( )1

k

i k i k i i i

k i wk

q a I b a I b
w ∀ ∈

= + = +∑  (10) 

where 

 
1 1

;   
k k

i k i k

k i w k i wk k

a a b b
w w∀ ∈ ∀ ∈

= =∑ ∑ . (11) 

B. Confidence-aware Guided Filtering 

The original GF gives the output q . In polarization image 

demosaicking, the Stokes parameters are inter-related. Thus, 

they can be leveraged for mutual denoising. By varying the 

guidance image I, multiple 'sq  can be generated from the same 

target image p. To fully utilize different 'sq , a confidence level 

L is proposed to estimate the cleanliness of each q . The 

confident level L i of q i at pixel i is defined as the reciprocal of 

the unexplained variation for wk, i.e.,  

 1i k kL U i w= ∀ ∈  (12) 

Similar to (6), there are (2r + 1) × (2r + 1) L i, and Uk is a 

constant for wk. Uk is optimized in a similar way as (7), i.e., 

 ( )( )2 2

,
min

k k
k

k k i k i k
a b

i

U a I b p a
ω∈

= + − +∑   (13) 

which has the following closed-form solution for the linear 

regression [36]: 

 ( ) ( )( )2 22
k k k k k

U w p a Iδ δ= −  (14) 

where ak, δ(Ik) and |wk | are defined in (8). δ(pk) is the standard 

deviation of p within the window wk. It is the only new function 

requiring additional computation on top of (8). Similar to Fig. 2 

and (10), the confidence level 
iL  of iq  at pixel i, is calculated 

by averaging all L i from different windows having the pixel i. 

 
1

1
k

i k

k i wk

L U
w ∀ ∈

= ∑  (15) 

iL  is a measure of how confident the value of iq  is close to 

the ground truth. The higher the value of 
iL , the less the 

deviation of iq  from its true value. The confidence level 

approaches positive infinity when the unexplained variation 

approaches zero. This happens when p and I are identical. 

The entire denoised image q  and the confidence level L  

can be generated by calculating iq  and 
iL  at each pixel from 

(10) and (15). For simplicity, this calculation can be expressed 

as a single function GF in (16), where the input arguments to 

the function are a target image p to be denoised and a guidance 

image I, and the outputs of the function are q  and L .  

 ( ) ( ), ,q p IL = GF  (16) 

C. Angular Guided Filtering 

GF is originally designed to denoise pixel values in Cartesian 

coordinate system. However, some pixel values, such as AoLP, 

are represented in polar coordinate system. To enable GF on 

AoLP, a new angular guided filtering (AGF) is proposed. 

Similar to GF, the inputs to AGF are the target image p and 

guidance image I; The outputs are the denoised image q  and 

its confidence level L  expressed in (17). 

 ( ) ( ), ,q p IL = AGF  (17) 

Three modifications are required to change GF to AGF: 

1. The range of AoLP is expanded to [−π, π]. As AoLP ranges 

from [−π/4, π/4] originally, the range can be expanded by 

simply multiplying AoLP by 4. 

2. AoLP is converted to the complex Cartesian system by 

Euler’s formula. It suffices to apply AGF only on AoLP with 

guidance image S0. In other words, among the two inputs p 

and I, only the conversion for p is required. Steps 1 and 2 are 

expressed as a single function (18), where GF(·), exp(·) and j 

are the original GF function, exponential function and unit 
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imaginary number respectively. 

 ( ) ( )( )Cartesian Cartesian, ,4q p jL I= × ×GF exp  (18) 

3. The output of GF, Cartesianq , is converted back to the polar 

system by (19), where img(·) and real(·) are the imaginary 

and real parts, respectively of a complex number, and 

arctan(·) is the inverse tangent function. The output polarq is 

rescaled back to q  in the range [−π/4, π/4] in (20). Similar 

operations are performed on CartesianL . 

 
( )
( )

Cartesian

Cartesian

polar

 
=  

 

img
arctan

real

q
q

q
 (19) 

 polar / 4=q q  (20) 

With the original GF, the proposed confidence level and the 

proposed AGF for AoLP presented in this section, a new 

demosaicking algorithm is proposed, where both the RMSE 

and SSIM of the demosaicked image are improved by the 

denoised q . The regularization parameter of demosaicking 

optimization is set by confidence L . The denoising and 

regression optimization with AoLP can be processed with the 

help of AGF. The details will be presented in the next section. 

III. THE PROPOSED ALGORITHM 

The proposed algorithm consists of three main functions as 

depicted in Fig. 3, which are interpolation, denoising with I and 

denoising with AoLP/DoLP. I ∈ ℤN×M×4 is the polarized input 

image and Y ∈ ℤ2N×2M×4 is the output. N and M are the length and 

width, respectively of the input image in terms of the number of 

pixels. The first function makes use of the correlations between 

four input channels to generate a preliminary demosaicked 

image; the second function makes use of the correlations 

between demosaicked image, input image and S0 to denoise the 

demosaicked image; the third function makes use of the 

correlations between S0, AoLP and DoLP to further denoise the 

demosaicked image. In short, all these steps are designed based 

on one overarching principle of incorporating as many 

correlations between polarization channels as possible to 

improve the demosaicking quality, hence the name inter- 

channel correlations (ICC) of our proposed algorithm. These 

three functions are elaborated as follows. 
 

 
Fig. 3  A high-level overview of the proposed algorithm. 
 

A. Inter-channel Interpolation 

Interpolation is a fundamental preliminary step in demosa-

icking. As a key input to subsequent denoising and optimiza-

tion processes, the interpolated images could significantly 

affect the overall demosaicking quality. There exist many types 

of single image interpolation methods, such as linear, nearest 

pixel value, cubic spline [37] and makima [41]. Unfortunately, 

they cannot be easily adapted to polarization demosaicking, as 

the important inter-channel correlation is not considered. The 

interpolation of [42] is founded on the assumption that the 

luminance channel is highly correlated with all three color 

channels. The same assumption is also valid for polarization 

demosaicking as the total intensity (S0) is highly correlated 

with all four polarization channels. The design of our interpo-

lation filter is inspired by this observation. 

Three representative filters shown in Fig. 4 are required for 

color demosaicking in [42], but only two representative filters, 

as shown in Fig. 5(a) and (b), are required for polarization 

demosaicking. Besides, the filters in Fig. 5(b) and (c) are the 

transpose of each other. The filter in Fig. 4(a) has the same 

pattern as that in Fig. 5(a), thus the coefficients can be directly 

transplanted. The filter in Fig. 4(b) has a similar pattern as that 

in Fig. 5(b), with four extra “−1”s in the diagonal directions of 
the central “5”. Thus, these “−1”s are added into the coeffi-

cients on the fringe to obtain the filter shown in Fig. 5(b). The 

filter in Fig. 4(c) is useless for polarization images and can be 

omitted. 
 

  −3/2      1/2      −1   

 2  2    −1  −1     2   

−3/2  6  −3/2  −1 4 5 4 −1  −1 2 4 2 −1 

 2  2    −1  −1     2   

  −3/2      1/2      −1   

(a)  (b)  (c) 

Fig. 4  Three representative color demosaicking filters in [42], where (a), (b) 

and (c) are the demosaicking of red pixel in blue position, blue pixel in green 

position and green pixel in red position, respectively. 
 

  −3/2      −1/2      −2   

 2  2           4   

−3/2  6  −3/2  −2 4 5 4 −2  −1/2  5  −1/2 

 2  2           4   

  −3/2      −1/2      −2   

(a)  (b)  (c) 

Fig. 5  The proposed demosaicking filters for polarization images, where (a), 

(b) and (c) are the demosaicking of 0° pixel in 90° position, 45° position and 

135° position, respectively. 
 

When the DoFP input image is convoluted by the three 

proposed filters in Fig. 5, the three missing channels of DoFP 

input can be predicted. For simplicity, this set of convolutions 

is expressed as a single line function InterChannel in (21), 

where I ∈ ℤN×M×4 and X ∈ ℤ2N×2M×4 are the input and preliminary 

interpolated image respectively. 

 ( )= InterChannelX I  (21) 
 

B. Denoising by GF with Input Image and S0 

The output of inter-channel interpolation X is denoised by 

GF. As mentioned in Section II, a guidance image, that is less 

noisy and closely correlated to X is required. Both input image I 

Inter-channel 

Interpolation 

(Section A) 

I 

Denoising 

with I and S0 

(Section B) 

Denoising with 

AoLP & DoLP 

(Section C) 

Y 
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and total intensity S0 ∈ ℤ2N×2M fulfill the above two require-

ments. Among I and S0, I is less noisy but S0 has a higher 

resolution. As a result, S0 complements I to achieve a high- 

quality denoising of X. In what follows, GF denoising by 

exploiting the inter-channel correlations between X, I and S0 is 

presented, where X is denoised by two GFs guided by I and S0, 

respectively, and the two denoised Xs are fused with the 

confidence levels generated by GFs. 

1) Denoising by GF with Input Image 

There are four channels each in X and I. Consider all possible 

combinations of pairing a channel of X with a channel of I, 16 

GFs will be needed to fully denoise X. Of which, four GFs are 

trivial as their denoised images are identical to the guidance 

images. Since the output is the same as the input for these four 

GFs, they are redundant and can be omitted.  

The operations of the remaining 12 GFs are shown in Fig. 6. 

The denoising image X is first divided into four channels, which 

are X·,j ∈ ℤ 2N×2M with j ∈ [1, 4]. For each X·,j, it is further 

divided into four sub-images, p ju, p jh, p jv and p jd. The 

sub-image p ju is generated directly by down-sampling X·,j by a 

factor of two (denoted by ↓2 in Fig. 6) using the simple 

nearest-neighbor method [43]. The other three sub-images, p jh, 

p jv and p jd, are produced after shifting X·,j by one pixel in the 

horizontal, vertical and diagonal directions (denoted by Zh
−1, 

Zv
−1 and Zd

−1 in Fig. 6), respectively, followed by factor of two 

down-sampling. The GF operation of (16) is then applied to 

these sub-images. The guidance images of GF are chosen based 

on the position of p and I⋅,j. As shown in Fig. 7, the sub-images, 

p ju, p jh, p jv and p jd, are respectively guided by I⋅,1, I⋅,2, I⋅,3 and I

⋅,4 that are located at the same pixel positions. 
 

 
Fig. 7  The correspondence of pixel locations of sub-images, p ju , p jh , p jv  and p jd , 

on X ·,j, and input image channels, I⋅,1 , I⋅,2 , I⋅,3  and I⋅,4 , on polarization filter 

array, where the background colors of X correspond to those in Fig. 6. 
 

Two outputs, namely the denoised XI and its confidence 

level LXI ∈ ℝ2N×2M×4, are generated after applying the twelve GF 

functions. For those pixels that have skipped the four trivial GF 

functions, their confidence levels are recorded as positive 

infinity. This process is described by the following single line 

function in the pseudo-code of our algorithm. 

 ( ) ( ), ,= DenoiseByIIIX X XL I  (22) 

2) Denoising by GF with S0 

The noise in each of the four X channels of S0 is assumed to 
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Zh
−1 

Fig. 6  Denoising by 12 GFs with the input image as guidance image.  
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have the same normal distribution with zero mean and variance 

σ2. Without loss of generality, the noise of S0, n(S0), can be 

considered as an average of the noise components n(X·, j) 

contributed by the random variables X·, j for all channels j, 

j ∈ [1, 4]. Based on the statistical property of the sum and 

scaling of independent normal distributions, the mean and 

variance of n(S0) = [n(X·, 1) + n(X·, 2) + n(X·, 3) + n(X·, 4)]/4 are 

zero and σ2/4, respectively. Since the standard deviation of the 

noise of S0 is σ/2, which is only half that of X, S0 can be used by 

GF to denoise X. The four channels of X are respectively 

denoised by GF with S0. The denoised XS 0 and its confidence 

level LXS 0 ∈ ℝ2N×2M×4 are output. This process is described by 

the following single line function. 

 ( ) ( )00 , , 0= DenoiseByS0SS LXX X S  (23) 

3) Fusion 

XI and XS 0 are fused by the following pixel-wise comparison 

between LXI and LXS 0: 

 
0

0 otherwise


= 


>I

S

I SX
X

LX LX

X
. (24) 

The pixels with higher confidence levels are selected. The 

same operation is performed for the confidence level: 

 
0

0 otherwise

>
= 

S

I SILX
L

L

LX LX
X

X
. (25) 

C. Optimization with GF-denoised AoLP and DoLP 

Different Stokes representations can be generated from X, 

which include total intensity (S0), angle of linear polarization 

(AoLP) and degree of linear polarization (DoLP), where S0, S1, 

S2, AoLP, DoLP ∈ ℤ2N×2M. The AoLP and DoLP are first 

denoised by S0 using GFs. The operations are expressed as (26) 

and (27), where LA and LD ∈ ℤ2N×2M are the confidence level of 

the denoised AoLP and DoLP, respectively. 

 ( ) ( )AoLP, AoLP, 0LA S= AGF  (26) 

 ( ) ( )DoLP, DoLP, 0LD S= GF  (27) 

The denoised AoLP and DoLP are used to adjust X by 

solving the regression problem in (28). All variables in (28) and 

(29) are scalar, and the optimizations are done pixel-wise. For 

each variable, the first subscript represents the pixel position 

while the second represents the index of the channel. A variable 

of only one channel is represented with only one subscript, 

 

 ( ) ( )

( )

,1 ,2

,3 ,4

2

,2 ,3

,1 ,4

2
2 2

,1 ,4 ,2 ,3,

,

24

, , ,1

1
AoLP

2

min

DoLP
0

i i

i i

i i

i i

i i

i i i iX X
iX X i

i

i j i j i jj

X X
LA

X X

X X X X
LD

S

XLX X
=

  −   × − +   −       − + − × −   
 ′+ −  ∑

arctan



 
(28) 

 

where X i,j ∈ ℤ and 0 ≤ X i,j ≤ 255. X i,j and L i,j are the values of X 

and LX at the ith pixel of the jth channel calculated by (22). S0 i, 

AoLP i and DoLP i, LA i and LD i are the values of S0, AoLP and 

DoLP, LA and LD, respectively at the ith pixel. Note that ,′i jX  

are the original values of the arguments X i,j for j = 1, 2, 3 and 4, 

after (24), before they are updated to the new values by solving 

the minimization problem. ϵ is a positive regularization 

parameter with a very small magnitude. The minimization in 

(28) aims to adjust the values of X such that they can produce 

AoLP and DoLP nearest to the denoised values (represented by 

pixel values AoLP i and DoLP i, respectively). There are three 

terms in (28). The first and second terms are regularized by LA 

and LD, respectively. A larger LA value indicates a greater 

confidence in AoLP i than DoLP i. Thus, 

( )( )21 2 AoLP2 1 ii iS S⋅ −arctan  of the first term has a 

smaller magnitude than ( ) ( )( )22 21 2 0 DoLPi i i iS S S+ −  of 

the second term. The last term aims to constrain the change in X 

to a minimum magnitude.  

There are four variables in (28) to be optimized. It is difficult 

and time-consuming to solve them independently. To simplify 

(28), we replace X i, 1 − Xi, 4 with S1 i and X i, 2 − X i, 3 with S2 i 

such that,  

 

( ) ( )

( ) ( )
( ) ( )
( ) ( )

2

2
1 2 2
2

,1 ,1 ,4 ,4

,2 ,2 ,3 ,3
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12
min

1 2
DoLP

0

s.t.

i

i

i

i i

i

S
S

i i
i i

i

i i i i

i i i i

i i i i i i

i i

S
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S

S S
LD

S

X X X X

X X X X

X X X X

X X

LX LX

LX

    × − +  
    
 

  + × −     
′

−

= −
=

′− −
′ ′− −
′ ′−

−
= −

′−

sg

arcta

n sgn

sg

n

n sgn

( ) ( ),2 ,2 ,3 ,3i i i iXLX X ′= − −

 (29) 

where S1 i and S2 i are the values of S1 and S2, respectively at 

the ith pixel. In (28), X i,1 and Xi,4 are always calculated in pairs. 

Thus, the difference between them can be replaced by S1 i 

without losing any accuracy. X i,1 and X i,4 must change in 

opposite directions in order to minimize (X i,1− ,1′iX ) and (X i,4−
,4′iX ) for a given S1 i. This leads to the first constraint. After S1 i 

is optimized, it is straightforward to calculate the changes in 

X i,1 and X i,4 as they must be inversely proportional to LX i,1 and 

LX i,4 in order to minimize LX i,1×(X i,1− ,1′iX )2 + LX i,4×(X i,4−
,4′iX )2. This leads to the third constraint. The same is true for 

X i,2 and X i,3, which leads to the second and fourth constraints in 

(29). 

Equation (29) can be directly optimized by Newton’s 

method. The optimization starts with the original values of S1 

and S2, this reduces the probability of overfitting. The smallest 

step size is limited to 0.1 to accelerate the optimization. This 

will not appreciably affect the accuracy as the output pixels are 

stored as integers. With this step size limit, over 99% of the 

pixel values of S1 and S2 will converge to the optimal values  

by the 10th iterations. Further improvement after the 10th 

iteration, if any, is trivial based on our experimentation. After 

the optimal values of S1 and S2 are found, the optimal value of 
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X can be calculated by, 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

,1 ,4,1 ,1 ,4

,2 ,3,2 ,2 ,3

,2 ,3,3 ,3 ,2

,1 ,4,4 ,4 ,1

1 1'

2 2 '

2 2 '

1 1'

′ += + × −

′ += + × −

′ += − × −

′ += − × −

i ii i i i i

i ii i i i i

i ii i i i i

i ii i i i i

LX LXX X LX S S

LX LXX X LX S S

LX LXX X LX S S

LX LXX X LX S S

 (30) 

where S1' i and S2' i are the original values of S1 i and S2 i, 

respectively. All pixels of X are constrained to the range 

[0, 255] to produce the final output. The complete algorithm is 

described by the pseudo-code in Fig. 8. For ease of reference, 

the calling functions are annotated by the section and equation 

numbers where they are introduced. 
 

 
Fig. 8  Proposed inter-channel correlation (ICC) polarization image demosa-

icking algorithm. 
 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, the performance of the proposed demosa-

icking method, ICC, is evaluated together with four 

state-of-the-art polarization demosaicking methods, leveraging 

on intensity correlation (IC) method [24], sparse representation 

(SR) [31], Newton’s polynomial (NP) [38], and 

block-matching and 3-D filtering denoising (BM3D) denoising 

[34] respectively. Ten polarization images with input size 

256×306×4 (output size 512×612×4) are used as the benchmark 

images [39], which are listed in Fig. 9. 
 

     

     
Fig. 9  Benchmark images. 

 

We use FLIR BFS-U3-51S5P-C camera to capture the DoFP 

images. The DoFP images are separated into four polarization 

channels, followed by spline interpolation to estimate the 

missing pixels. The interpolated images are then downsized by 

a factor of four in both horizontal and vertical directions to 

produce the synthetic ground truth. In other words, one pixel in 

the synthetic ground truth is generated by averaging 16 pixels 

in the interpolated image to preserve the accuracy of pixel 

values in the ground truth. At last, the synthetic inputs to ICC is 

generated by down-sampling. The size of image at each stage is 

illustrated in the flowchart of Fig. 10. This is a simple way to 

synthesize polarization image pairs from DoFP images. The 

synthetic ground truth and synthetic input to ICC may be used 

as training pairs to deep learning networks to supplement the 

scarcity of real labeled data. 
 

 
Fig. 10  The procedure for synthesizing the input and ground truth images. 
 

To evaluate the demosaicking quality, we measure the 

RMSE and SSIM of the outputs X, S0, AoLP and DoLP against 

the ground truth. Similar to Section II.C, the values of AoLP are 

stored in the polar system. Thus, modifications on RMSE and 

SSIM are required for the evaluation of AoLP. For angular 

SSIM (ASSIM), the same modification as AGF is made, except 

that the output is rescaled to [0, 1], as shown in (31) and (32),  

 ( ) ( )( )Cartesian ,AoLP 4 AoLP 4= × × × ×SSIM exp expoutput i i  (31) 

 
( )
( )

Cartesian

Cartesian

/ π
 

=  
 

img
arctan

real

output
output

output
 (32) 

where AoLP andAoLP are the angle of linear polarization of 

the output and the ground truth, respectively.  

For angular RMSE (ARMSE), the following modification is 

performed, 

 




2

AoLP, AoLP AoLP ,1
ARMSE

4AoLP π/2 AoLP AoLP

ii

i ii
NM ∀

    −
 =       − +    

∑ min  (33) 

where pixel-level intensity is denoted by indexing the variable 

with subscript i. N and M are the length and width of the AoLP, 

respectively. Similar to RMSR and SSIM, a lower ARMSE and 

a higher ASSIM imply a better demosaicking quality. For 

simplicity, the ARMSE and ASSIM of AoLP are also referred 

to as RMSE and SSIM, respectively. To compare each method 

effectively across X, S0, AoLP and DoLP, the normalized 

RMSE is computed. The RMSE for each Stokes parameter is 

first normalized by the RMSE for the same parameter of ICC 

algorithm before they are normalized across all Stokes 

parameters. The same operations are performed to obtain the 

normalized SSIM. 

The experiments in this section are organized as follows. 

Firstly, the parameters used in the ICC algorithm are evaluated. 

Secondly, the demosaicking performance of ICC is compared 

with four competing methods. Finally, the complexity and 

processing speed of ICC are analyzed. 

Function ICC(I) 

    //Section III.A 

    X = InterChannel(I) //Eqn. (21) 

    for i = 1 to iteration 

        //Section III.B 

        (XI, LXI) = DenoisingByI(X, I)  //Eqn. (22) 

        (XS0, LXS0) = DenoisingByS0(X, I) //Eqn. (23) 

        (X, LX) = GetXandLX(XI, LXI, XS0, LXS0)  //Eqn. (24)-(25) 

        //Section III.C 

        (S0, S1, S2, DoLP, AoLP) = GetStokes(X) //Eqn. (1)-(5) 

        (AoLP, LA) = AGF(AoLP, S0)     //Eqn. (26) 

        (DoLP, LD) = GF(DoLP, S0)     //Eqn. (27) 

        (S1, S2) = Optimize(S1, S2, AoLP, DoLP, LA, LD)   //Eqn. (29) 

        X = Update(S1, S2, LX)       //Eqn. (30) 

    Return Min(Max(X, 0), 255) 
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Synthetic 
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A. Effectiveness of the Proposed Techniques 

In this section, the effectiveness of proposed inter-channel 

interpolation, denoising by GF with I and S0, confidence level 

for optimization, and iterative denoising are investigated. The 

experimental results are summarized in Table I. The contribu-

tion of each technique used in ICC is evaluated by comparing 

its RSME and SSIM with those achieved by replacing it with an 

alternative technique listed in the first column of Table I. For 

example, the first row of Table I displays the RSME and SSIM 

of ICC when the proposed inter-channel interpolation is 

replaced with linear interpolation. For interpolation, the results 

in the first five rows show that the proposed inter-channel 

interpolation is better than all the other four methods of 

interpolation for all Stokes parameters, with at least 25.7% and 

0.7% improvements in normalized RMSE and SSIM, respec-

tively. The last two rows indicate that the proposed confidence 

level improves the demosaicking quality in all parameters 

except the RMSE of AoLP, with a negligible difference of only 

0.15%. The overall improvements are 2.7% and 1.3% in 

normalized RMSE and SSIM, respectively. For denoising, the 

results in the sixth to eighth rows show that most parameters 

benefit from the GF denoising by a combination of I and S0, 

with at least 3.1% and 0.5% improvements in RMSE and SSIM, 

respectively.  

To investigate the effectiveness of iterative denoising and 

determine the number of iterations, RMSE and SSIM are 

plotted against the numbers of iterations in Fig. 11. The mean 

RMSE and SSIM of the ten benchmark images in [39] are used 

for this evaluation. All RMSEs are normalized by the raw 

RMSE measured directly after the cubic spline interpolation 

and before any GF operation, while SSIM is plotted without 

any post-processing. A half iteration refers to the completion of 

denoising with input, i.e., after the 12 GFs in Section III.B, and 

a full iteration refers to the completion of regression optimiza-

tion with the denoised AoLP/DoLP in Section III.C. The 

effectiveness of denoising with input can be evaluated by 

comparing the RMSE and SSIM of the output image between 

iteration k and k + 0.5. Meanwhile, the performance of the 

optimization with AoLP/DoLP can be evaluated by comparing 

between iterations k + 0.5 and k + 1. From Fig. 11, it can be 

observed that the RMSE and SSIM for all the Stokes images 

improve rapidly in the first half iteration and then gradually 

converge to relatively steady values. After the first half 

iteration, the RMSE can still be reduced by both techniques. On 

the other hand, as the name suggests, the improvements in 

SSIM of AoLP/DoLP are due mainly to the optimization with 

AoLP/DoLP. These two operations complement each other to 

improve the quality of the demosaicked images. However, 

RSME and SSIM do not converge at the same iteration. 

Moreover, GF introduces some minor artifacts, such as “detail 

halos” [44], in each iteration. These artifacts impact SSIM more 

than RMSE. Because of the artifacts of GF, it can be seen from  

Fig. 11 that although the RMSE curves are flattened at the 

fourth iteration, the improvement in the overall SSIM ceases 

after the second iteration. Thus, a good balance between the 

artifact and denoising power of GF is achieved by terminating 

the algorithm after two iterations for benchmark images [39]. 
 

 
Fig. 11  Normalized RMSE and SSIM after every half iteration of the ICC 

algorithm. 
 

B. Performance Evaluation of ICC 

In order to perform a comprehensive evaluation, this section 

is divided into three sub-sections to test the performance of ICC 

by clean images in [39], noisy images in [39], and other images 

in [31] and [38]. 

1) Clean Benchmark Images in [39] 

The demosaicking quality of ICC is compared with four 

state-of-the-art algorithms, both objectively in terms of 

RMSE/SSIM and subjectively by detailed inspection of a 

benchmark image [39]. The mean RMSE of the ten benchmark 

images is summarized in the third to seventh columns of Table 

II. Among these five demosaicking methods, the ICC algorithm 

TABLE I 

COMPARISON OF DEMOSAICKING QUALITY IN RMSE AND SSIM WITH/WITHOUT PROPOSED TECHNIQUES 

Technique 
RMSE SSIM 

X S0 AoLP DoLP Normalized X S0 AoLP DoLP Normalized 

Linear Interpolation 3.5052  6.1657  0.2612  0.0243  1.3004  0.9471  0.9206  0.7229  0.8304  0.9898  

Cubic Interpolation 3.4336  5.9763  0.2633  0.0254  1.2946  0.9476  0.9209  0.7198  0.8284  0.9883  

Makima Interpolation 3.3421  5.8195  0.2601  0.0242  1.2579  0.9492  0.9227  0.7246  0.8329  0.9923  

Spline Interpolation 3.5151  6.1118  0.2654  0.0279  1.3400  0.9451  0.9167  0.7151  0.8253  0.9841  

Inter-Channel Interpolation 2.3662  3.6786  0.2560  0.0237  1  0.9633  0.9311  0.7252  0.8384  1  

Denoising by GF with S0 2.6457  4.3666  0.2576  0.0243  1.0838  0.9583  0.9276  0.7152  0.8386  0.9944  

Denoising by GF with I 2.5367  3.5157  0.2587  0.0258  1.0314  0.9589  0.9200  0.7291  0.8242  0.9930  

Denoising by GF with I and S0 2.3662  3.6786  0.2560  0.0237  1  0.9633  0.9311  0.7252  0.8384  1  

Optimization w/o Confidence 2.4672  3.8305  0.2556  0.0243  1.0274  0.9599  0.9282  0.7023  0.8237  0.9861  

Optimization with Confidence 2.3662  3.6786  0.2560  0.0237  1  0.9633  0.9311  0.7252  0.8384  1  
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performs the best in terms of RMSE for all Stokes parameters. 

Specifically, ICC can reduce the RMSE of existing algorithms 

further by at least 35.6%, 22.2%, 17.7% and 68.3% for X, S0, 

AoLP and DoLP, respectively. The reduction of RMSE in 

DoLP by ICC over other methods is most prominent, which 

demonstrates the effectiveness of the denoising process 

proposed in Section III.C. The improvement in RMSE is the 

least for AoLP, as GF is a linear denoiser, while AoLP involves 

trigonometry function. From the seventh column in Table II, 

our proposed ICC algorithm could reduce the overall RMSE by 

at least 36.0%. ICC does not result in over-smoothing, as 

evinced by the SSIM scores listed in the third to seventh 

columns of Table II. It is observed that ICC improves the SSIM 

of X and S0 by at least 1.7% and 1.3% respectively compared 

with the existing algorithms. For the similar reason that GF is a 

linear denoiser, ICC improves the SSIM of DoLP by 12.4% but 

the AoLP score is slightly reduced by no more than 1.3% in 

comparison with the best competing method. Nonetheless, the 

normalized SSIM of ICC is improved by at least 3.4%, as listed 

in the last column of Table II. Based on the objective RMSE 

and SSIM scores, it can be concluded that the demosaicking 

quality of ICC is the best among the five methods. 

For a subjective evaluation of the demosaicking quality, both 

the AoLP and DoLP images of the benchmark image “carpark” 

generated by the five algorithms are compared in Fig. 12. It is 

evident that the AoLP and DoLP images produced by the ICC 

algorithm in (f) and (l) are closest to the ground truth images in 

(a) and (g), respectively. The DoLP produced by the competitor 

methods in (h) to (k) tends to have larger pixel values, which 

makes DoLP brighter than the ground truth. This inaccuracy 

can also be observed in AoLP, where the competitor methods 

tend to generate noisy AOLP in (b) to (e), making it more 

“colorful” than the ground truth. The inaccuracy of AoLP and 

DoLP by the competitor methods is due to the fact that they 

tend to insert artificial information on the edges of the features. 

On the other hand, the proposed ICC method focuses on 

retrieving the correct pixel values. For example, the road 

markings in the ground truth DoLP in (g) is black in color, 

which are accurately demosaicked by ICC in (l). In contrast, 

those markings in (h) to (k) by IC, SR NP and BM3D respec-

TABLE II 

COMPARISON OF DEMOSAICKING QUALITY IN RMSE AND SSIM OF DIFFERENT ALGORITHMS 

Input 

Images 
Method 

RMSE SSIM 

X S0 AoLP DoLP Normalized X S0 AoLP DoLP Normalized 

Images in [39] 

IC [24] 5.7458  8.2828  0.3406  0.0658  2.1970  0.8797  0.8677  0.7039  0.6168  0.8879  

SR [31] 4.5548  6.8298  0.3066  0.0500  1.7725  0.9140  0.8893  0.7343  0.7099  0.9408  

NP [38] 3.2101  4.4976  0.3014  0.0399  1.3603  0.9468  0.9190  0.7283  0.7430  0.9651  

BM3D [34] 6.6742  11.9280  0.6427  0.0505  2.6765  0.8040  0.6947  0.4850  0.7455  0.7847  

ICC 2.3662  3.6786  0.2560  0.0237  1  0.9633  0.9311  0.7252  0.8384  1  

Images in [39] 

Magnitude 

of Noise: 1 

IC [24] 5.8130  8.3338  0.3574  0.0675  2.1877  0.8531  0.8302  0.6656  0.5948  0.8723  

SR [31] 4.5992  6.8793  0.3167  0.0509  1.7562  0.8966  0.8587  0.7104  0.6951  0.9375  

NP [38] 3.3152  4.7073  0.3126  0.0407  1.3732  0.9214  0.8570  0.6984  0.7315  0.9503  

BM3D [34] 6.6826  11.9380  0.6394  0.0507  2.6089  0.7639  0.6260  0.6308  0.7386  0.8216  

ICC 2.4378  3.8531  0.2578  0.0240  1  0.9459  0.8829  0.7109  0.8371  1  

Images in [39] 

Magnitude 

of Noise: 2 

IC [24] 6.0068  8.4768  0.3754  0.0732  2.1795  0.8157  0.7780  0.6160  0.5494  0.8487  

SR [31] 4.7369  7.0349  0.3342  0.0536  1.7329  0.8725  0.8126  0.6621  0.6601  0.9247  

NP [38] 3.6085  5.2801  0.3294  0.0432  1.4120  0.8852  0.7792  0.6507  0.7046  0.9271  

BM3D [34] 6.6995  11.9440  0.6321  0.0511  2.4634  0.7594  0.6233  0.6010  0.7314  0.8351  

ICC 2.6365  4.3223  0.2600  0.0241  1  0.9225  0.8147  0.6868  0.8341  1  

Images in [39] 

Magnitude 

of Noise: 5 

IC [24] 7.2024  9.4100  0.4099  0.1053  2.1798  0.6919  0.6502  0.5439  0.3953  0.7936  

SR [31] 5.6524  8.0392  0.3760  0.0718  1.6864  0.7740  0.6883  0.5735  0.5099  0.8798  

NP [38] 5.1661  8.1245  0.3717  0.0627  1.5696  0.7611  0.6174  0.5687  0.5913  0.8720  

BM3D [34] 6.8178  11.9790  0.6056  0.0544  1.9657  0.7408  0.6176  0.5544  0.6921  0.8913  

ICC 3.7209  6.6982  0.2691  0.0273  1  0.8328  0.6566  0.6269  0.8136  1  

Images in [39] 

Magnitude 

of Noise: 10 

IC [24] 10.3160  12.0770  0.4362  0.1733  2.2758  0.5302  0.5203  0.5142  0.2224  0.7440  

SR [31] 8.3688  10.7990  0.4160  0.1229  1.7979  0.6107  0.5532  0.5238  0.2931  0.8169  

NP [38] 8.6183  14.0950  0.4067  0.1103  1.7817  0.5927  0.4662  0.5258  0.4154  0.8091  

BM3D [34] 7.3773  12.1930  0.5643  0.0704  1.5490  0.6831  0.5878  0.5232  0.5695  0.9520  

ICC 6.1817  11.7164  0.2845  0.0356  1  0.6936  0.5064  0.5794  0.7503  1  

Image 

“Buildings” 

in [31] 

IC [24] 1.5633  2.2211  0.0658  0.0097  1.5094  0.9834  0.8919  0.8648  0.9424  0.9575  

SR [31] 1.1106  1.6893  0.0439  0.0069  1.0738  0.9894  0.9112  0.9157  0.9686  0.9846  

NP [38] 2.1057  2.9222  0.0716  0.0188  2.0663  0.9753  0.9327  0.8875  0.9432  0.9724  

BM3D [34] 2.4655  4.6612  0.7613  0.0091  6.8618  0.9561  0.6284  0.8464  0.9625  0.8824  

ICC 1.0168  1.3612  0.0370  0.0089  1  0.9929  0.9624  0.9237  0.9651  1  

Images in [45] 

IC [24] 2.0133  2.2711  0.2392  0.0624  1.0163  0.9187  0.8403  0.8855  0.7267  0.9957  

SR [31] 1.9333  2.0894  0.2535  0.0817  1.0751  0.8425  0.7431  0.8303  0.5870  0.8823  

NP [38] 2.3918  2.8771  0.2320  0.0939  1.2452  0.8998  0.8351  0.8687  0.5805  0.9329  

BM3D [34] 2.5269  3.4387  0.6544  0.0979  1.8089  0.7415  0.4194  0.7619  0.4346  0.6887  

ICC 1.9570  2.2180  0.2257  0.0655  1  0.9275  0.8658  0.8882  0.7090  1  
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tively are much brighter, as the edges of the markings are 

over-emphasized and recolored into white. Although empha-

sizing the edge contrast may sharpen certain features of the 

DoLP images, they cause more loss of fidelity by introducing 

noises and unwanted information that are detrimental to 

accurate and correct information retrieval. A similar observa-

tion can be drawn from the trees at the bottom left corner, 

where the trees look sharper in (i) of SR and (j) of NP. This is 

partially because ICC is less capable of demosaicking fine 

textures. As the input has a lower resolution than DoLP, those 

fine features of size less than two pixels in DoLP may be 

ignored during denoising. For this reason, fine textures are 

noisy in (f). Nonetheless, these trees produced by SR and NP 

are noisier, as they look more reddish and brighter in AoLP and 

DoLP, respectively. Apart from the accuracy of independent 

features, ICC achieves the best demosaicking when two objects 

intercept. This can be seen when a street lamp partially blocks a 

car, as magnified on the top-right corner of each image. Both 

the lamp and car in (f) and (l) produced by ICC are clearer, and 

more distinguishable than those produced by the competing 

methods. In conclusion, the proposed ICC algorithm generates 

the most accurate AoLP and DoLP among all methods. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Fig. 12  Subjective evaluation of demosaicking quality of benchmark image “carpark”, where (a) is the AoLP ground truth, (b), (c), (d), (e) and (f) are the AoLP 

images produced by IC, SR, NP, BM3D and the proposed ICC, respectively, where red, yellow, blue and green represent polarization angle 0, π/8, π/4 and -π/8 
respectively; (g) is the DoLP ground truth, (h), (i), (j), (k) and (l) are the DoLP images produced by IC, SR, NP, BM3D and the proposed ICC, respectively. 
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2) Noisy Benchmark Images in [39] 

As real input DoFP image may be noisy, to evaluate the 

effect of noise, four sets of experiments are conducted with 

noisy inputs. The root mean square magnitudes of noises are set 

to be 1, 2, 5 and 10, respectively. Their results are shown in the 

sixth to 25th row of Table II. It can be seen that ICC scores the 

best in RMSE in most cases and in SSIM for the majority of the 

cases. This is due to the strong denoising power of GF inherited 

into ICC and this is maximally exploited in each step. In terms 

of normalized RMSE and SSIM, ICC always scores the best 

among the five algorithms, with an improvement of at least 

37.3% and 4.8% respectively compared with the best compet-

ing method. In conclusion, as observed from the results of these 

four sets of experiments, ICC can still perform even with noisy 

DoFP images. 

3) Other Benchmark Images in [31] and [38] 

Apart from [39], we have also applied the five demosaicking 

algorithms to a set of real polarization images provided by SR 

[31]. The RMSE and SSIM scores are summarized in the 26th to 

30th rows of Table II. From the objective evaluations of RMSE 

and SSIM, a similar conclusion can be drawn on the best 

performance of ICC, as it scores the best for six out of eight 

metrics. In addition, ICC improves the normalized RMSE and 

SSIM by 7.3% and 1.5%, respectively. The AoLP and DoLP 

images of all five algorithms are displayed in Fig. 13. It can be 

seen that the images produced by ICC algorithm in (f) and (l) 

are the cleanest images, and the content is nearest to the ground 

truth. A zoomed-in view of six windows is given on the bottom 

left corner of each image in Fig. 13, where two of the windows 

are smaller in size and look faint in both the AoLP and DoLP 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Fig. 13  Subjective evaluation of demosaicking quality of benchmark image “buildings”, where (a) is the AoLP ground truth, (b), (c), (d), (e) and (f) are the AoLP 

images produced by IC, SR, NP, BM3D and the proposed ICC, respectively, where red, yellow, blue and green represent polarization angle 0, π/8, π/4 and -π/8 
respectively; (g) is the DoLP ground truth, (h), (i), (j), (k) and (l) are the DoLP images produced by IC, SR, NP, BM3D and the proposed ICC, respectively.  
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ground truth images. The subtle features are much better 

preserved by ICC, as shown in (f) and (l). We have also tested 

on 10 multispectral image sets in [45], where the RMSE and 

SSIM scores are summarized in the last five rows of Table II. In 

this test, ICC scores the best in six out of eight metrics, 

resulting in at least 1.6% and 0.4% improvements on RMSE 

and SSIM, respectively. This again supports our findings that 

the demosaicking quality of ICC is the best among the five 

methods in comparison. 

4) Performance with Deep Learning Denoising 

To the best of our knowledge, there is no DL method dedi-

cated to polarization demosaicking in the literature, making it 

impossible to compare a non-DL method with a DL method for 

the same application and dataset. It is, however, feasible to 

evaluate if the proposed method will benefit from DL by 

considering a denoising CNN (DCNN) [46] and a super- 

resolution CNN (SRCNN) [47] as a plug-in in the demosaick-

ing task. Similar to the frameworks proposed in [46] and [47], 

the input images are inter-channel interpolated before they are 

fed into the respective DL network. The performances of ICC, 

and ICC with DCCN and SRCNN plug-ins are compared in 

Table III. The results show that as direct plug-in to ICC, 

DL-based denoising method actually degrades its demosaick-

ing quality, as evinced by the poorer RMSE and SSIM values. 
 

TABLE III 

COMPARISON BETWEEN ICC AND DEEP LEARNING METHODS  

Methods 
RMSE 

X S0 AoLP DoLP Normalized 

ICC W DCNN [46] 3.8444  4.7428  0.6304  0.0497  1.8686  

ICC W SRCNN [47] 3.8486  4.6755  0.6291  0.0503  1.8697  

ICC 2.3662  3.6786  0.2560  0.0237  1  

Methods 
SSIM 

X S0 AoLP DoLP Normalized 

ICC W DCNN [46] 0.9382  0.9227  0.7165  0.6777  0.9404  

ICC W SRCNN [47] 0.9399  0.9258  0.7154  0.6740  0.9401  

ICC 0.9633  0.9311  0.7252  0.8384  1  

 

C. Algorithmic Complexity and Processing time 

Except for cubic spline interpolation and GF, all other 

operations of the ICC algorithm are pixel-wise operations. 

Spline and GF require convolutions with a fixed-size filter. 

Hence, the overall complexity of ICC is O(NM), where N and M 

are the length and width of the input image I. This makes ICC 

effective for high-resolution images. For a fair comparison of 

their execution time, all five algorithms are implemented in 

Matlab 2017b and run on the same PC with i7-6700k CPU and 

32GB RAM.  
 

TABLE IV 

COMPARISON OF CPU TIME (IN SECONDS) OF DIFFERENT ALGORITHMS   

Method 
Input Image Sizes 

128×153×4 256×306×4 512×612×4 

IC [24] 0.0365 0.2541 1.2133 

SR [31] 192.66 817.28 3555.3 

NP [38] 0.0406 0.4237 1.9790 

BM3D [34] 2.7144 11.356 48.625 

ICC 0.3650 2.7412 10.9834 

ICC on GPU 0.2883 1.0217 1.8080 

 

The runtime is reported in Table IV. The processing speed of 

ICC is two orders of magnitude faster than SR. It is noteworthy 

that SR requires 23.3GB memory to processing the input of size 

512×512×4. SR is slow and resource-intensive because it is 

based on machine learning. Training and matching of diction-

ary are required in order to learn the non-local redundancy of 

images. Although ICC is slower than IC and NP, this small 

processing time overhead is more than paid off by the signifi-

cantly improved output quality, as the outputs generated by IC 

and NP are 119.7% and 36.0%, respectively noisier than ICC. 

As all operations are carried out pixel-wise except for convo-

lutions, ICC can be easily accelerated with GPU. By converting 

all matrices to gpuArray and pixel-wise operations to arrayfun 

in Matlab, the processing time can be reduced by 21.0%, 62.7% 

and 83.5% with an M4000M GPU for small, medium and large 

size images, respectively as depicted in the last row of Table 

IV. This proves that ICC is beneficial to parallelism. 

 

V. CONCLUSION 

This paper presents a novel polarization image demosaicking 

algorithm with output quality exceeding the state-of-the-art 

methods reported in recent years. After interpolation, two 

denoising processes are carried out iteratively by exploiting the 

correlations between channels and Stokes parameters of the 

interpolated image, which converges with small RMSE and 

large SSIM scores rapidly in two iterations. The proposed 

algorithm improves the normalized RMSE and SSIM of four 

recently proposed algorithms by at least 36.0% and 3.4% 

respectively. Moreover, the proposed algorithm has low 

computational complexity. Its pixel-wise and convolution 

operations are highly parallelizable to aid GPU acceleration. 

For large polarization images, its processing speed can be 

accelerated by GPU to run 5 times faster than on CPU. In the 

future, we will explore dedicated deep network models for 

polarization demosaicking based on the findings and synthetic 

inputs made possible through this research. 
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