metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter C. Healy

School of Science, Griffith University, Nathan, Brisbane 4111, Australia

Correspondence e-mail: p.healy@griffith.edu.au

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.020 \text{ Å}$ R factor = 0.034 wR factor = 0.096Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A new polymorph of μ -bis(diphenylphosphino)methane- $\kappa^2 P: P'$ -bis[chlorogold(I)]

The title compound, $[(AuCl)_2(dppm)]$ (dppm = Ph₂P(CH₂)-PPh₂), has been found to crystallize as a new triclinic polymorph. Unlike the previously reported monoclinic form, there are no aurophilic Au···Au interactions between the Au(I) atoms. Received 13 October 2003 Accepted 3 November 2003 Online 8 November 2003

Comment

The structure of the title compound, (I), was first determined by Schmidbaur *et al.* (1977) [monoclinic, space group *C2/c, a* = 22.31 (1) Å, *b* = 7.215 (7) Å, *c* = 18.12 (1) Å and β = 120.43 (8)°]. This structure, (I*a*), consists of discrete molecules of [(AuCl)₂(dppm)] disposed about the crystallographic twofold axis with a conformational structure in which the Au–P···P–Au torsion angle is 67 (1)°, yielding an intramolecular Au···Au distance of 3.351 (2) Å. This distance has subsequently been classified as an intramolecular Au^I···Au^I aurophilic interaction, facilitated by the small bite of the dppm ligand (*e.g.* Van Calcar *et al.*, 1997).

The complex also crystallizes in the triclinic space group $P\overline{1}$, as discrete molecules with one complete molecule constituting the asymmetric unit [structure (Ib); Figs. 1 and 2]. The most significant difference between the structures of the two polymorphs is that, in (Ib), there are no Au^I···Au^I aurophilic interactions. In (Ib), the Au-P···P-Au torsion angle is 124.3 (1)°, yielding an Au1···Au2 distance of 5.617 (3) Å, while all intermolecular Au···Au distances are greater than 4 Å. The Au atoms are located above the plane of a phenyl ring on the opposite P atom, suggesting that Au··· π interactions may be an important factor in the determination of the conformational structure of this polymorph.

There are no unusual features of the gold coordination geometry of (Ib), with Au–P = 2.233 (3) and 2.228 (2) Å, Au–Cl = 2.276 (3) and 2.278 (3) Å, and P–Au–Cl = 177.4 (1) and 175.5 (1)° [cf. (Ia), Au–P = 2.238 (1) Å, Au– Cl = 2.288 (1) Å and P–Au–Cl = 175.2 (2)°]. The absence of aurophilic interactions in (Ib), however, is consistent with the observed increase in the P–C–P ligand bite angle from 116 (1)° in (Ia) to 119.7 (5)° in (Ib).

m1112 Peter C. Healy • [Au₂Cl₂(C₂₅H₂₂P₂)]

© 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1

View of (Ib), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2

Crystal packing diagram for (Ib), viewed down the *a* axis, with *b* horizontal and *c* vertical.

Experimental

(NBu₄)[AuCl₄] (29 mg, 0.049 mmol) and bis(diphenylphosphino)methane (19 mg, 0.049 mmol) were suspended in a solution of concentrated HCl (0.2 ml) in dimethylformamide (5 ml). The mixture was gently warmed to give a clear pale-yellow solution, which quickly faded to give a colorless solution. Cooling this solution to room temperature followed by slow evaporation of the solvent over a period of several days yielded well formed colorless needle-like crystals of (Ib); m.p. 538–541 K. Analysis found: C 35.80, H 2.65%; calculated for $C_{25}H_{22}Au_2Cl_2P_2$: C 35.36, H 2.61%.

Crystal data

$[Au_2Cl_2(C_{25}H_{22}P_2)]$	
$M_r = 849.21$	
Triclinic, P1]
a = 10.912 (5) Å	(
b = 13.116(5) Å	
c = 9.856 (4) Å	(
$\alpha = 102.81 \ (3)^{\circ}$	
$\beta = 107.19 \ (3)^{\circ}$	
$\gamma = 96.88 \ (4)^{\circ}$]
$V = 1287.8 (10) \text{ Å}^3$	(

Z = 2 D_x = 2.190 Mg m⁻³ Mo Kα radiation Cell parameters from 25 reflections θ = 12.6–16.1° μ = 11.72 mm⁻¹ T = 295 K Needle, colorless 0.40 × 0.25 × 0.20 mm

Data collection

Rigaku AFC-7 <i>R</i> diffractometer
ω –2 θ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.041, \ T_{\max} = 0.096$
5139 measured reflections
4519 independent reflections
3666 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.096$ S = 1.064519 reflections 281 parameters H-atom parameters constrained 3 standard reflections every 150 reflections intensity decay: 1.2%

 $\begin{aligned} R_{\text{int}} &= 0.017\\ \theta_{\text{max}} &= 25.0^{\circ}\\ h &= -12 \rightarrow 12\\ k &= -15 \rightarrow 15\\ l &= -5 \rightarrow 11 \end{aligned}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0408P)^2 \\ &+ 7.2469P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\max} = 0.001 \\ \Delta\rho_{\max} = 1.31 \ e \ Å^{-3} \\ \Delta\rho_{\min} = -1.33 \ e \ Å^{-3} \\ Extinction \ correction: \ SHELXL97 \\ Extinction \ coefficient: \ 0.00070 \ (19) \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Au1-Cl1	2.276 (3)	P1-C111	1.803 (11)
Au1-P1	2.233 (3)	P1-C121	1.812 (10)
Au2-Cl2	2.278 (3)	P2-C1	1.821 (9)
Au2-P2	2.228 (2)	P2-C211	1.813 (9)
P1-C1	1.820 (9)	P2-C221	1.808 (9)
Cl1-Au1-P1	177.44 (11)	C1-P2-C221	103.4 (4)
Cl2-Au2-P2	175.48 (10)	C211-P2-C221	104.5 (4)
Au1-P1-C1	112.9 (3)	P1-C1-P2	119.7 (5)
Au1-P1-C111	114.7 (3)	P1-C111-C112	119.6 (8)
Au1-P1-C121	113.4 (3)	P1-C111-C116	121.6 (8)
C1-P1-C111	108.1 (5)	P1-C121-C126	123.3 (14)
C1-P1-C121	102.5 (5)	P1-C121-C122	119.6 (9)
C111-P1-C121	104.1 (5)	P2-C211-C212	119.8 (7)
Au2-P2-C1	115.7 (3)	P2-C211-C216	120.6 (8)
Au2-P2-C211	112.5 (3)	P2-C221-C222	119.1 (9)
Au2-P2-C221	112.6 (3)	P2-C221-C226	124.0 (8)
C1-P2-C211	107.1 (4)		

H atoms were constrained in the riding model approximation, fixed to their parent C atoms at a C–H distance of 0.95 Å, and $U_{\rm iso}({\rm H})$ values were set to $1.2U_{\rm eq}$ of the parent atom. The maximum and minimum residual electron densities were located within 1 Å of atoms Au1 and Au2. The magnitude and anisotropy of the displacement ellipsoids of phenyl rings 12*n* and 22*n* (*n* = 1–6) are consistent with a measure of disorder in these rings.

Data collection: *MSC/AFC-7 Diffractometer Control Software for Windows* (Molecular Structure Corporation, 1999); cell refinement: *MSC/AFC-7 Diffractometer Control Software for Windows*; data reduction: *TEXSAN for Windows* (Molecular Structure Corporation, 1997–2001); program(s) used to solve structure: *TEXSAN for Windows*; program(s) used to refine structure: *TEXSAN for Windows* and *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-*3 (Farrugia, 1997); software used to prepare material for publication: *TEXSAN for Windows* and *PLATON* (Spek, 1980–2001).

The author thanks Griffith University for financial assistance.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Molecular Structure Corporation (1999). MSC/AFC-7 Diffractometer Control Software for Windows. Version 1.02. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

- Molecular Structure Corporation (1997–2001). *TEXSAN for Windows*. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A24, 351–
- North, A. C. L., Phillips, D. C. & Mathews, F. S. (1908). Acta Cryst. A24, 551– 359. Schmidbaur, H. Wohllohon, A. Wormer, F. Oreme, O. & Huttner, G. (1077).
- Schmidbaur, H., Wohlleben, A., Wagner, F., Orama, O. & Huttner, G. (1977). *Chem. Ber.* 110, 1748–1754.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Spek, A. L. (1980–2001). PLATON for Windows. Version 121201. University of Utrecht, The Netherlands.
- Van Calcar, P. M., Olmstead, M. M. & Balch, A. L. (1997). *Inorg. Chem.* 36, 5231–5238.