Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter C. Healy

School of Science, Griffith University, Nathan, Brisbane 4111, Australia

Correspondence e-mail: p.healy@griffith.edu.au

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.020 \AA$
R factor $=0.034$
$w R$ factor $=0.096$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

A new polymorph of μ-bis(diphenylphos-phino)methane- $\kappa^{2} P: P^{\prime}$-bis[chlorogold(I)]

The title compound, $\left[(\mathrm{AuCl})_{2}(\mathrm{dppm})\right]\left(\mathrm{dppm}=\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)-\right.$ PPh_{2}), has been found to crystallize as a new triclinic polymorph. Unlike the previously reported monoclinic form, there are no aurophilic $\mathrm{Au} \cdots \mathrm{Au}$ interactions between the $\mathrm{Au}(\mathrm{I})$ atoms.

Comment

The structure of the title compound, (I), was first determined by Schmidbaur et al. (1977) [monoclinic, space group $C 2 / c, a=$ 22.31 (1) $\AA, \quad b=7.215$ (7) $\AA, c=18.12$ (1) \AA and $\beta=$ $\left.120.43(8)^{\circ}\right]$. This structure, ($\mathrm{I} a$), consists of discrete molecules of $\left[(\mathrm{AuCl})_{2}(\mathrm{dppm})\right]$ disposed about the crystallographic twofold axis with a conformational structure in which the $\mathrm{Au}-\mathrm{P} \cdots \mathrm{P}-\mathrm{Au}$ torsion angle is $67(1)^{\circ}$, yielding an intramolecular $\mathrm{Au} \cdots \mathrm{Au}$ distance of 3.351 (2) \AA. This distance has subsequently been classified as an intramolecular $A u^{I} \cdots u^{I}$ aurophilic interaction, facilitated by the small bite of the dppm ligand (e.g. Van Calcar et al., 1997).

(I)

The complex also crystallizes in the triclinic space group $P \overline{1}$, as discrete molecules with one complete molecule constituting the asymmetric unit [structure (Ib); Figs. 1 and 2]. The most significant difference between the structures of the two polymorphs is that, in (Ib), there are no $A u^{I} \cdots \mathrm{Au}^{\mathrm{I}}$ aurophilic interactions. In (Ib), the $\mathrm{Au}-\mathrm{P} \cdots \mathrm{P}-\mathrm{Au}$ torsion angle is $124.3(1)^{\circ}$, yielding an Au1‥Au2 distance of 5.617 (3) \AA, while all intermolecular $\mathrm{Au} \cdots \mathrm{Au}$ distances are greater than $4 \AA$. The Au atoms are located above the plane of a phenyl ring on the opposite P atom, suggesting that $\mathrm{Au} \cdots \pi$ interactions may be an important factor in the determination of the conformational structure of this polymorph.

There are no unusual features of the gold coordination geometry of (Ib), with $\mathrm{Au}-\mathrm{P}=2.233$ (3) and 2.228 (2) \AA, $\mathrm{Au}-\mathrm{Cl}=2.276(3)$ and $2.278(3) \AA$, and $\mathrm{P}-\mathrm{Au}-\mathrm{Cl}=$ 177.4 (1) and 175.5 (1) ${ }^{\circ}$ [cf. (Ia), $\mathrm{Au}-\mathrm{P}=2.238$ (1) \AA, $\mathrm{Au}-$ $\mathrm{Cl}=2.288$ (1) \AA and $\left.\mathrm{P}-\mathrm{Au}-\mathrm{Cl}=175.2(2)^{\circ}\right]$. The absence of aurophilic interactions in ($\mathrm{I} b$), however, is consistent with the observed increase in the $\mathrm{P}-\mathrm{C}-\mathrm{P}$ ligand bite angle from $116(1)^{\circ}$ in (I $\left.a\right)$ to $119.7(5)^{\circ}$ in (Ib).

Received 13 October 2003 Accepted 3 November 2003 Online 8 November 2003

Figure 1
View of (Ib), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2
Crystal packing diagram for ($\mathrm{I} b$), viewed down the a axis, with b horizontal and c vertical.

Experimental

$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{AuCl}_{4}\right](29 \mathrm{mg}, 0.049 \mathrm{mmol})$ and bis(diphenylphosphino)methane ($19 \mathrm{mg}, 0.049 \mathrm{mmol}$) were suspended in a solution of concentrated $\mathrm{HCl}(0.2 \mathrm{ml})$ in dimethylformamide $(5 \mathrm{ml})$. The mixture was gently warmed to give a clear pale-yellow solution, which quickly faded to give a colorless solution. Cooling this solution to room temperature followed by slow evaporation of the solvent over a period of several days yielded well formed colorless needle-like crystals of (Ib); m.p. 538-541 K. Analysis found: C 35.80, H 2.65%; calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2}$: C 35.36, $\mathrm{H} 2.61 \%$.

Crystal data

$\left[\mathrm{Au}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)\right]$	$Z=2$
$M_{r}=849.21$	
Triclinic. $P \overline{1}$	$D_{x}=2.190 \mathrm{Mg} \mathrm{m}^{-3}$
$a=10.912(5) \AA$	Mo K α radiation
$b=13.116(5) \AA$	Cell \AA parameters from 25
$c=9.856(4) \AA$	reflections
$\alpha=102.81(3)^{\circ}$	$\theta=12.6-16.1^{\circ}$
$\beta=107.19(3)^{\circ}$	$\mu=11.72 \mathrm{~mm}^{-1}$
$\gamma=96.88(4)^{\circ}$	$T=295 \mathrm{~K}$
$V=1287.8(10) \AA^{\circ}$	Needle, colorless
	$0.40 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku AFC-7R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.041, T_{\text {max }}=0.096$
5139 measured reflections
4519 independent reflections
3666 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.096$
$S=1.06$
4519 reflections
281 parameters
H -atom parameters constrained
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-15 \rightarrow 15$
$l=-5 \rightarrow 11$
3 standard reflections every 150 reflections intensity decay: 1.2%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0408 P)^{2}\right. \\
& \quad+7.2469 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.31 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.33 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.00070(19)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Au} 1-\mathrm{C} 11$	$2.276(3)$	$\mathrm{P} 1-\mathrm{C} 1111$	$1.803(11)$
$\mathrm{Au} 1-\mathrm{P} 1$	$2.233(3)$	$\mathrm{P} 1-\mathrm{C} 121$	$1.812(10)$
$\mathrm{Au} 2-\mathrm{Cl} 2$	$2.278(3)$	$\mathrm{P} 2-\mathrm{C} 1$	$1.821(9)$
$\mathrm{Au} 2-\mathrm{P} 2$	$2.228(2)$	$\mathrm{P} 2-\mathrm{C} 211$	$1.813(9)$
$\mathrm{P} 1-\mathrm{C} 1$	$1.820(9)$	$\mathrm{P} 2-\mathrm{C} 21$	$1.808(9)$
$\mathrm{Cl} 1-\mathrm{Au} 1-\mathrm{P} 1$	$177.44(11)$	$\mathrm{C} 1-\mathrm{P} 2-\mathrm{C} 221$	$103.4(4)$
$\mathrm{C} 2-\mathrm{Au} 2-\mathrm{P} 2$	$175.48(10)$	$\mathrm{C} 211-\mathrm{P} 2-\mathrm{C} 221$	$104.5(4)$
$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 1$	$112.9(3)$	$\mathrm{P} 1-\mathrm{C} 1-\mathrm{P} 2$	$119.7(5)$
$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 111$	$114.7(3)$	$\mathrm{P} 1-\mathrm{C} 111-\mathrm{C} 112$	$119.6(8)$
$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 121$	$113.4(3)$	$\mathrm{P} 1-\mathrm{C} 111-\mathrm{C} 116$	$121.6(8)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 111$	$108.1(5)$	$\mathrm{P} 1-\mathrm{C} 121-\mathrm{C} 126$	$123.3(14)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 121$	$102.5(5)$	$\mathrm{P} 1-\mathrm{C} 121-\mathrm{C} 122$	$119.6(9)$
$\mathrm{C} 111-\mathrm{P} 1-\mathrm{C} 121$	$104.1(5)$	$\mathrm{P} 2-\mathrm{C} 211-\mathrm{C} 212$	$119.8(7)$
$\mathrm{Au} 2-\mathrm{P} 2-\mathrm{C} 1$	$115.7(3)$	$\mathrm{P} 2-\mathrm{C} 211-\mathrm{C} 216$	$120.6(8)$
$\mathrm{A} 2-\mathrm{P} 2-\mathrm{C} 211$	$112.5(3)$	$\mathrm{P} 2-\mathrm{C} 221-\mathrm{C} 222$	$119.1(9)$
$\mathrm{Au} 2-\mathrm{P} 2-\mathrm{C} 221$	$112.6(3)$	$\mathrm{P} 2-\mathrm{C} 221-\mathrm{C} 226$	$124.0(8)$
$\mathrm{C} 1-\mathrm{P} 2-\mathrm{C} 211$	$107.1(4)$		

H atoms were constrained in the riding model approximation, fixed to their parent C atoms at a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$, and $U_{\text {iso }}(\mathrm{H})$ values were set to $1.2 U_{\text {eq }}$ of the parent atom. The maximum and minimum residual electron densities were located within $1 \AA$ of atoms Au 1 and Au 2 . The magnitude and anisotropy of the displacement ellipsoids of phenyl rings $12 n$ and $22 n(n=1-6)$ are consistent with a measure of disorder in these rings.

Data collection: MSC/AFC-7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC-7 Diffractometer Control Software for Windows; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-2001); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows and PLATON (Spek, 1980-2001).

The author thanks Griffith University for financial assistance.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Molecular Structure Corporation (1999). MSC/AFC-7 Diffractometer Control Software for Windows. Version 1.02. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

metal-organic papers

Molecular Structure Corporation (1997-2001). TEXSAN for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Schmidbaur, H., Wohlleben, A., Wagner, F., Orama, O. \& Huttner, G. (1977). Chem. Ber. 110, 1748-1754.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1980-2001). PLATON for Windows. Version 121201. University of Utrecht, The Netherlands.
Van Calcar, P. M., Olmstead, M. M. \& Balch, A. L. (1997). Inorg. Chem. 36, 5231-5238.

