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We present a new polynomial-time algorithm for linear programming. In the worst case, 
the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of 
variables and L is the number of bits in the input. The running,time of this algorithm is better than 
the ellipsoid algorithm by a factor of O(n~'~). We prove that given a polytope P and a strictly in- 
terior point a E P, there is a projective transformation of the space that maps P, a to P ' ,  a '  having 
the following property. The ratio of the radius of the smallest sphere with center a' ,  containing 
P '  to the radius of the largest sphere with center a '  contained in P '  is O(n). The algorithm consists 
of repeated application of such projective transformations each followed by optimization over an 
inscribed sphere to create a sequence of points which converges to the optimal solution in poly- 
nomial time. 

1. Informal outline 

In this Section we give an informal discussion of the main ideas involved in 
the algorithm. A more rigorous description will be given in the next Section. 

1.1. Problem definition 

W e  s h a l l  r e d u c e  t h e  g e n e r a l  l i n e a r  p r o g r a m m i n g  p r o b l e m  o v e r  t h e  r a t i o n a l s  
t o  t h e  l o l l o w i n g  p a r t i c u l a r  c a s e :  

minimize c rx  

A x = O  
subject to ~ ~'xi  = 1 

(x=>O. 

Here x = ( x l  . . . .  , x.)TER ", cEZ", A E Z  "~ ' .  

This is a substantially revised version of the paper presented at the Symposium on Theory 
of Computing, Washington D. C., April 1984. 

AMS subject classification (1980): 90 C 05 
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Let 12 denote the subspace {xlAx=0}. Let A denote the 
= {xlx >= O, .~xi = 1} and let H be the polytope defined by 

1I = ONA. 
Thus the problem we consider is 

minimize c rx  

subject to xE/7. 

simplex A=  

1.2. Optimization over a sphere 

If  we replace the constraint xEA by a constraint of the form x~S, where S 
is a sphere, then it is trivial to see that the optimum can be found by solving a 
linear system of equations. 

The intersection of a sphere and an affine space is a lower dimensional 
sphere inside that affine space. Hence the problem becomes: 

min c ' rx ,  subject to xES" (a sphere) 

where c' was obtained by projecting c orthogonally onto t2. 
But this problem is trivial: From the center of the sphere, take a step along 

the direction - c ' ,  of length equal to the radius of the sphere. 

1.3. Bounds on the objective function 

Let a0 be strictly interior point in the polytope P. Suppose we draw an ellip- 
soid E with center a0, that is contained in the polyt ope and solve the optimization prob- 
lem over the restricted region E instead of P. How good a solution do we get as com- 
pared to the optimal solution? To derive a bound, we create another ellipsoid E'  
by magnifying E by a sufficiently large factor v so that E'  contains P. 

Ec P c  E', E" = rE. 

denote the minimum values of objective function f (x)  on E, P, and Let rE, A ,  fr ,  
E '  respectively. 

f ( ao ) - f~  <----f(ao)--fe ~--f(ao)-fw = vtf(ao)-fe] .  

The last equation follows from the linearity off(x) .  

f(a0) - f ~  1 
f ( a o ) - f p -  v 

~ - ~  ~ ( 1 _ 1 ) .  
f(ao) - f e  

Thus by going from a0 to the point, say a', that minimizesf(x) over E we come closer 
to the minimum value of the objective function by a factor I - v  -1. We can repeat 
the same process with a' as the center. The rate of convergence of this method depends 
on v, the smaller the value of v, the faster the convergence. 
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1.4. Projective transformations 

Projective transformations of R" are described by formulas of the form 

C x + d  
x ~  f r x + g  

where C6R *X", d, f6R", g~R and the matrix 

is non-singular. 
We shall be interested in projective transformations of the hyperplane 

2:=  { IZx, = 1}. 

It is easy to see that these transformations are described by 

Cx 
X ~ "  e T f x  

where e=(1, 1 . . . . .  1) r and C is a non-singular n×n matrix. 
For each interior point a of A there is a unique projective transformation 

T(a, ao) of the hyperplane 2: fixing all vertices of the simplex A and moving a =  
= (al . . . .  , a,) r to the center a0=(1/n)e. This transformation is given by 

x i / a f  t _ _  . 

x~ = Z xJaj 
J 

Observe that the corresponding matrix C is now diagonal: C =  
, 1  

=d iag [  1 . . . .  7,,)" The transformation C(a, a0) has the following properties : 

1. T is one-to-one and maps the simplex onto itself. Its inverse is given by 

a i XPt i =  1 , 2 , . . . , n .  X i  = , ~  a d x j  

J 

2. Each facet of the simplex given by xi=0 is mapped onto the corresponding 
facet xi=0.  

1 
3. Image of the point x = a  is the center of the simplex given by -' X I ~ - - .  

n 

4. Let Ai denote the ith column of A. Then the system of equations 

z~ Aixi = 0 
i 

now becomes 
.~ Aiaix~ 

t = 0  
Z a,x; 

i 



376 N. K A R M A R K A R  

o r  

Z A;x; = o 
i 

where 
A~ = aiAi. 

We denote the affine subspace {x'lA'x'=0} by f2". 

5. I f  a~ f2 then the center of the simplex aoC f2'. 

Let B(ao, r) be the largest ball with center a0, the same as the center of the 
simplex, and radius r that is contained in the simplex. Similarly let B(ao, R) be 
the smallest ball containing A. It is easy to show that R / r = n - 1 .  

B(a0, r) ~ A ~ B(ao, R) 
B(a0, r)O~2' =c A (q (2" ~ B(a0, R)N f2'. 

But A fqf2' is the image 17' of  the polytope H=Af~f2. The intersection of a ball 
and an affine subspace is a ball of lower dimension in that subspace and has the 
same radius if the center of the original ball lies in the affine subspace, which it 
does in our case. Hence we get 

R 
B'(ao, r ) ~  H'~B' (ao ,  R), - - = n - 1  

r 

which proves that v =dimension of  the space can always be achieved by this method. 
(Note: A is an n - 1  dimensional simplex.) 

1.5. Invariant potential functions 

The algorithm creates a sequence of points x (°), x (1), ..., x (k), ... having dec- 
reasing values of  the objective function. In the k th step, the point x (k) is brought 
into the center by a projective transformation. Then we optimize the objective 
function over the intersection of the inscribed ball and the affine subspace to find 
the next point x (k+l). Based on the results of  the previous Sections, we expect the 
objective function to be reduced by a factor of (1 - n - 0  at least, in each step, but 
there is one more technicality we have to deal with. The set of linear functions is 
not invariant under a projective transformation, but ratios of linear functions are 
transformed into ratios of  linear functions. With every linear objective function 
/(x) we associate a "potential function" g(x) expressed in terms of logarithms of 
ratios of linear functions, in order to measure the progress of  the algorithm. 

It has the following properties: 

1. Any desired amount of reduction in the value o f / (x )  can be achieved by sufficient 
reduction in the value of g(x). 
2. g(x) is mapped into a function of the same.form by projective transformations 
T(a, a0) described in 1.4. 
3. Optimization of g(×) in each step can be done approximately by optimizing a 
linear function (but a different linear function in different steps). 
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1.6. Complexity of the algorithm 

The value of the objective function is reduced by a constant factor in O(n) 
steps. As in the ellipsoid algorithm we define 

L = log (1 + ID,..~!)+log (1 +~) 

where Dm=x = max {Idet(X)lIX is a square submatrix of constraint matrix A} 

: max {[c;I, Ib,[ i= l  .. . .  , n}. 

Clearly, L is not greater than the length of the input. 
During the course of the algorithm, we periodically check for optimality by 

converting the interior point solution to an extreme point solution without degrading 
the objective function value, and testing the extreme point for optimality. The inter- 
val between two successive checks can be adjusted so that time spent between checks 
is comparable to tinae spent in checking for optimality. Any two distinct values of 
the objective function on the vertices of the polytope have to differ by at least 2 -kz 
for some constant k [3]. Therefore, in at most O(nL) steps we reach a situation in 
which any extreme point better than the current interior point has to be an exact 
optimal solution. 

In each step, we have to solve a linear system of equations which takes O(n 3) 
arithmetic operations in the worst case. However, if we solve the equations at each 
step by modifying the solution to the previous step, we can s a v e a  factor of 1/n. 
This method is described in Section 6. 

For each arithmetic operation, we need a precision of O(L) bits. Note that this 
much precision is required for any method that solves the equations A x = b  if 
det (A) :O(2L),  e.g., the complexity of gaussian elimination is O(n3L In L lnln L), 
although it is normally stated as O(n~). This factor L must appear in the conlplexity 
of any algorithm for linear programming, since representing the output can require 
O(L) bits/variable in the worst case. 

The overall complexity of our algorithm is O(n3-SL "~ In L Inln L) as compared 
to O(n6L 2 In L lnln L) for the ellipsoid algorithm. 

2. Main algorithm 

2.1. Problem definition 

In order to focus on the ideas which are new and the most important in our 
algorithm, we make several simplifying assumptions. In Section 5 we will remove 
all these restrictions by showing how a linear programming problem in standard 
form can be transformed into our canonical form. 

Canonical form of the problem 

Input: ACZ '~×', c~Z". 
Let g2={xlAx=0}, A={xlx=>0, ~ ' x i = l }  and ao=e/n. 

Assumptions: crx=>0 for every x~ ~2NA; ao is a feasible starting point, i.e. Aao-0 ;  
crao#O. 
Output:either Xo~QNA such that crxo=0 or a proof  that min{erxlxCflAA}>0, 
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2.2. Comments 

1. Note that the feasible region is the intersection of  an affine space with a 
simplex rather than the positive orthant. Initially it takes one projective transfor- 
mation to bring a linear programming problem to this form. 

2. The linear system of equations defining f2 is homogeneous i.e., the right 
hand side is zero. The projective transformation that transforms positive orthant 
into simplex also transforms inhomogeneous system of equations into an homo- 
geneous one. 

3. The target minimum value of the objective function is zero. This will be 
justified by combining primal and dual into a single problem. 

2.3. Description of the Algorithm 

The algorithm creates a sequence of points x (°), x (1), ..., x (~) by these steps: 

Step 0. Initialize 
x (°) : center of the simplex 

Step 1. Compute the next point in the sequence 

x(k+ 1) .~_ ~D(x(k)). 

Step 2. Check for infeasibility 

Step 3. Check for optimality 

go to Step 1. 

Now we describe the steps in more detail. 

Step 1. The function b=q~(a) is defined by the following sequence of operations. 
Let D=diag  {al, a2 . . . . .  a,} be the diagonal matrix whose fh diagonal 

entry is a~. 

1. Let B =  ~ 

i.e., augment the matrix AD with a row of all l's. This guarantees that Ker B ~  2;. 
2. Compute the orthogonal projection of Dc into the null space of B. 

cp = [ I -  BT (BBr)-IB] Dc. 
^ Cp 

3. c - ~ 7  I , i.e. ~ is the unit vector in the direction of %. 

4. b'=a0-~tr~, i.e. take a step of  length ctr in the direction ~, where r is 
the radius of the largest inscribed sphere 

1 
r =  

t /n(n-  1) 

and ~E(O, l) is a parameter which can be set equal to 1/4. 
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5. Apply inverse projective transformation to b" 

Db" 
h ~ - - ~  

erDb , • 
Return b. 

Step 2. Check for in feasibility. 
We define a "potential"  function by 

c T x  
f ( x )  = Z l n - -  

i Xt 

We expect certain improvement 6 in the potential function at each step. The value 
of  3 depends on the choice of parameter ~ in Step 1.4• For example if ~ -  1/4 then 
6=1/8. If we don't  observe the expected improvement i.e. if f(x(k+l))>f(x(k))--3 
then we stop and conclude that the minimum value of  the objective function must 
be strictly positive. When the canonical form of the problem was obtained by trans- 
formation on the standard linear program, then this situation corresponds to the 
case that the original problem does not  have a finite optimum i.e. it is either infea- 
sible or unbounded• 

Step 3. Check for optimality. 
This check is carried out periodically• It involves going from the current 

interior point to an extreme point without increasing the value of  the objective 
function and testing the extreme point for optimality• This is done only when the 
time spent since the last check exceeds the time required for checking• 

3. Underlying conceptual algorithm 

In this Section we show how the computations in step 2 represent an underlying 
conceptual sequence of operations. We will also introduce more notation and state 
theorems about the performance of the algorithm. All proofs will be given in Sec- 
tion 4. (A note on notation : In choosing variable names we use the same philosophy 
as in the design of  a large program: Some variables are local to a theorem while 
others are global, some theorems are stated in terms of "formal"  parameters and 
in order to apply them to the algorithm, one has to substitute actual values for the 
formal parameters e.g•, a result about one step of the algorilhm may be stated in 
terms of input point a and output point b, and can be applied to the k th step of the 

• _ (k) x ( k +  I)  ) algorithm by substituting a = x  and b :  • 

3.1. The top level 

Theorem 1. In O(n(q+log n)) steps the algorithm finds a feasible point x such that 

c T x  
_ _  - ~  2 - - q  : • 

e T a 0 

We associate the objective function c r x  with a "potential function" f (x )  
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given by 

f (x)  y 
7 ~ x; J" 

Theorem 2. Either (i) f(xtk+l))~f(x(k))--6 or 
(ii) the minimum value o f  objective function is strictly positive, where 6 is a 

constant and depends on the choice o f  the value o f  the parameter ~ o f  Step 1, Sub- 
step 4. 

A particular choice that works: If ~=  1/4, then 6~1/8.  

3.2. The basic step 

One step of the algorittun is of the form b=~0(a) which consists of a sequ- 
ence of three steps: 

1. Perform the projective transformation T(a, a0) of the simplex A that 
maps input point a to thecenter a0. 

2. Optimize (approximately) the transformed objective function over an 
inscribed sphere to find a point b'. 

3. Apply the inverse of T to point b' to obtain output b. 

We describe each of the steps in detail. 

3.3. Projective transformation T(a, ao) 

Let a = (al, a2 . . . .  , a,) 
Let D=diag  {at, a2 . . . .  , a,} be the diagonal matrix with diagonal entries 

al, a2 . . . . .  a,.  Then T(a, ao) is given by 

D-1X 
x ' -  where e = ( 1 , 1 , . .  1). 

e T D  - i x  " ' 

Its inverse is givenby 
Dx" 

X - -  e T D x  . 

L e t f '  be the transformed potential function defined by 

f (x)  = f '  (T(x)). 
Then 

c 'Ty 
f '(Y) = Z In ~ -  ~ Inaj 

J Yj J 

where c ' =  Dc. Let f2' be the transformed affine space f2. 

Ax  = O ¢~, AD x" =0. 

Thus 12' is the null-space of AD. 
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3.4. Optimization over a ball 

Let r be the radius of the largest ball with center a0 that can be inscribed in 
the simplex A. Then 

1 
t -  

e n ( n - i )  

We optimize over a smaller ball B(ao, c~r) 0 < ~ <  1 for two reasons: 
1. It allows optimization of f ' (y) to be approximated very closely by opti- 

mization of a linear function. 
2. If  we wish to perform arithmetic operations approximately rather than 

by exact rational arithmetic, it gives us a margin to absorb round-off errors without 
going outside the simplex. 

One choice of the value of ~ that works is ~ = 1/4 and corresponds to 3 > 1/8 
in Theorem 2. We restrict the affine space ~ ' =  {Yl ADy=0} by the equation ~'y~= 
= 1. Let O" be the resulting at'fine space. Let B be the matrix obtained by adding 
a row of all l's to AD. Then any displacement in ~"  is in the null space of B, 

i.e., for uE~"  ~ ? ' = u + K e r B .  

We are interested in optimizing f ' ( y )  over B(a0, ~r)NO". First, we prove 
the existence of  a point that achieves a constant reduction in the potential function. 

Theorem3. There exists a point b'EB(a0, co ' )n~"  such that f ' (b ' )=<f ' ( a0 ) -3 ,  
where 3 is a constant. 

Then we prove that minimization of f ' (x) can be approximated by minimi- 
zation of the linear function c 'rx.  

Theorem 4. Let b" be the point that minimizes c ' r x  over B(ao, e r )NfU.  Then 
f ' ( b ' )~=f ' ( ao ) -6  where 3 is a positive constant depending on ~. For c~=1/4 we 
may take 6 = 1/8. 

Finally we describe an algorithm to minimize c ' rx ,  over B(a0, e ' r ) .  

Algorithm A. 

1. Project c' orthogonally hIto the null space o f  B: 

2. Normalize cv: 

3. Take a step o f  length 

c ,  = [ I -  Br(BB r) -1B]c'. 

Cp 

: lop---L 

~tr along the direction - c v  

h p _~ a o - ~ r c p ,  

Theorem 5. The point b" returned by algorithm A minimizes c ' r x  over B(a0, ~r)OfY'. 
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4. Analysis of  the algorithm 

Proof  of  Theorem 5. Let  z be any point  such that  zEB(ao,  ~r)7) Q" 

b', z E Q" ~ B (b" - z) = 0 

=~ B T ( B B r ) - a B ( b  " -  Z) = 0 

= (c' -- ce)T(b" -- Z) = 0 

=~ c 'T (b ' - -Z )  : c ~ ( b ' - - z )  

ceT(b ' -  Z) : IceTIcer[ao-- o~r~ e -  z] 

= [cpr[ {~.er (ao-- z) -- ~r} 

~-er(ao-z) --<-- [~:pllao--Z[ --<-- ~r since zEB(ao ,  ~r) 

c ~ ( b ' - z )  <_- 0 

c ' r ( b  " -  z) <= 0 

c ' T h  ' ~ tT c z, for all zEB(ao,  a r ) N Q " ,  l 

Proof  of  Theorem 3. Let x* be the point  in ( 2 " N S  where the min imum of  
is achieved. Clearly x* ~[ B(ao, ~r). 

Let b" be the point  where the line segment  aox* 
of  the sphere B(ao ,~r ) .  h ' = ( 1 - 2 ) a o + 2 x *  for  some 
b 'EB(ao ,~ r )  and ao, x*EQ" imply  b'EgT'. 

Hence h 'EB(ao,  ~r)Og2" 

c ' r b  ' = (1 - 2 ) c ' r a o + A c ' r x  * = (1- -2)c 'Tao  

cPTao ] 

c ' r b  ' 1 - 2  

and 
b~ = (1 - 5~) aoj + 2x*. 

Hence 
c ' r  ao b~ (1 - )0 a.  r + 2x,*- 

f ' ( a o ) - f ' ( b ' )  = Z In = ~ In 
c ' r b  ' aoj i (1 - 2)aoj 

= Z l n [ 1 4  2 x~.] 
j l - -2  aojJ" 

c tTx  

intersects the bounda ry  
2E[0, 1]. By definition, 
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Now we use the following inequality: If  P~_->O then /-/(1 +P3=>I +z~Pt .  There- 
i 

fore, z~ In (1 + P 3  =>ln (1 + z~ P~). 
i 

f f ( a o ) - f ' ( b ' )  => In lq  1--2  aoi • x = In 1+ 

h" = (1 -2 )ao+2X* 

b ' - a o  = 2 ( x * - a o )  

c{r = ]b '-aol  = 2[x*-aol -<- XR 

where R is the radius of the smallest circumscribing sphere and R/r=n- 1. 
r c~ )~ -->_ cx -- - -  

R n--1 

2n n~ 
1 4  1 ~ - 2  >- 1 ' n a / ( n  - 1 )  = 12r - -  >- 1 +  

- -  -I- 1 -  c ~ / ( n -  1) n - l - - ~  

f ' ( a o ) - f ' ( b ' )  ->_ ln(1 +c  0. 

Taking 6=In(1  +c0, f ' (h ' )<=f ' (ao)-3 .  I 

Proof  of Theorem 4. First we prove a few lemmas. 
X 2 

Lemma 4.1. I f  Ix1-<__13<1 then [ l n ( l + x ) - x l ~ - -  2(1 - /~)  
Proof. A simple exercise in calculus. I 

Lemma 4.2. Let fl=ct n Thenforany xEB(ao,~r),  In "'J ~ f12 
• ao j  2 (1 - f l)  " 

Proof. xEB(ao, ~r) implies ]x-ao/2_-<~2r ~, Therefore 

y 
7" ~ aoj / (l/n) 2 n(n--1)  

X j  - -  ao j  = 
i-<13 for j 1 . . . .  , n  

I aoj 
Iln(iNxj--aoll xi--ao,]< I txi--ao,l' 

ao.~ J aoj = 2(1-  13) ~ aoi )' by Lemma 4.1 

Z l n  xj = Z l n [ l +  xj-a°J] 
j ao j  j aoj J 

~[lnXJ x,--aoy<= ------'-szl (xi--aoji' - fl~ 
• ao~. aoj 2(I--13__#~ aoj. / 2(1--13) 

but 

xy--aoj_ 1 [~xj--~aoj]=-~ol/[1--1]=O 
J a o j  - -  ao j  " j 

~- 2(1-13)" I 
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Now we prove Theorem 4. 

Definef(x)=n In c'Tx Let bm be the point in 
C pT ao • 

achieves its minimum value. 

f(ao) - f (b ' )  = f(ao) -fib.,)  +f(h,,,) - f (b ' )  

= [ f (a0) - f (b ,~ ) ]  

+ [ f(b,.)-(f(ao) + f(b,.))] 
-[ f (b ' )-( f (ao)  + f(b'))] 
+ [f(b,,) -f(b')] 

By Theorem 3, 

(1) f(ao)-f(b,,,) --> In (I +a). 

For xEB(ao, :¢r)(q f2", 
cPTx 

f(x)  - (f(ao) +f(x))  = Z In - - - -  
j Xj  

= - Z  In xj 
j aoj 

In e ' r a °  - n ~ '  In e'r--''~x 
J ao j cp T ao 

B (ao, czr) A f2" where f(x) 

(3) f(b,, ,)  ~ f (b ' ) .  
By (1), (2) and (3), 

f(ao) - f ( b ' )  >= In (1 + 00 

Define 

6 = a  

Observe that 

~2 cx~ l 
• If ~=~-,  then 1. . . . .  lira 3(n)=~z-~- 

1-c¢ 
> 1  

2. If" n=>4, c~= 1 then ~=To"  | 

fl  ~ ~ 2 ~2 H 2 

( l - f l )  - 2 n(n_  1) [1 _ ~/n__Z_~_] 

0¢2 ~2// 

[ V ] 2 ( n - l )  1--c~ 

f (ao) - f (b ' )  => 6. 

lira 6 (n) => I 

" b' < '(a P r o o f  o f  T h e o r e m  2. By Theorem 4, f ( ) = f  o)-6. Applying the inverse trans- 
form T-l(a, ao) and substituting x(aJ=T-l(ao), we obtain x(k+l)=T-l(b'), 
f(xC~+.)~f(x%-6.  | 

I ~  In xj f12 
(2~ I f (x ) -  (f(a°)+f(x))l = aoj <= 2( i=  D 
by Lemwa 4.2. 

Since f(x) depends on c ' rx  in a monotonically increasing manner, f ix)  
aud e ' rx achieve their minimum values over B(a0, ~r) (3 Q" at the same point, viz b', 
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Proof  of  Theorem 1. For each k we have 

f ( x  (k+x)) ~_ f (x  ok)) -- 6 

f ( x  (k)) _~ f (x  C°)) -- k6 

crx(k) In era°  - 

T xF" J aoj 

In cr x(k) n ~_ 2 In (x5 k)) -- ~ In a0j - k3. 
c r a o  j J 

crx  tk) k 
But x~k)~l, aoj= 1 ,  so lnc---~ao <-ln(n)--~ 'n  

a constant k" such that after m=k'(n(q+ln (n))) steps. 

c T x  
Crao =< 2 - L  II 

Therefore there exists 

5. Transformation of a linear program to canonical form 

Consider a linear programming problem in the standard form: 

minimize cTx 

~Ax_~ b 
subject to t x _-> O. 

There are many ways by which this problem can be converted to our canonical 
form. We describe one such method. 

Step 1. Combine primal and dual problems. 

Ax=>h 

AZu =< c 

e T x - - b T u  = 0 

x_~O u ~ O .  

By duality theory, this combined problem is feasible if and only the original problem 
has finite optimum solution. 

Step 2. bltroduee slack variables. 

x_~O 

A x - y  = b  

A r u + v  = c 

c r x - b r u  = 0 

u ~ O  y=>O v ~ O .  
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Step 3. Introduce an artificial variable to create an interior starthlg pohTt. Let Xo, Yo, 
uo, vo be mic t ly  interior points in the positive orthant 

minimize ~. 

A x - y + ( b - A x o + Y o ) •  = b 
JAru+v+(c-Aruo)~ = c 

subject to ] e r x _ b r u + ( _ c r x o + b r v o ) X  = 0 

Ix_-->0 y=>0, u=>0, v:>0, )~=>0. 

Note that x - x 0 ,  Y=Yo, u=uo,  V=Vo, ;~=1 is a strictly interior feasible solution 
which we can take as a starting point. The minimum value of X is zero if and only 
if the problem in step 2 is feasible. 

Step 3. Change o f  Notation. For convenience of  description we rewrite the problem 
in Step 3 as 

minimize c rx ,  c, xER" 

subject to Ax = b, x => 0 

x = a  is a known strictly interior starting point, and the target value of the objective 
function we are interested in is zero. 

Step 4. A projective transformation o f  the positive orthant into a simplex. Consider 
the transformation x ' = T ( x )  where xER", x 'ER "+1 are defined by 

xl/ai i = 1, 2, . . . ,  n 
x" -- X (xflaj) + 1 

J 

Xn+ 1 ~- 1 -  X i. 
i = 1  

Let P+ denote the positive orthant 

P+ = {xER"lx =~ 0} 
and A denote the simplex 

n + I  

A={xER"+IIx->0, z~x,=l}- 
i = l  

The transformation T(x) has the following properties: 

I. It maps P+ onto A. 

2. It is one-to-one and the inverse transformation is given bv 

a;x~ i = 1, 2 . . . . .  n. 
"k" i __  X n + l  

3. The inaage of point a is the center of  the simplex. 

4. Let Ai denote ith column of A. I f  

~ A i x  i = b 
i = 1  
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then 

o r  

.~, Aialx; = b 
Xn+l  

Aiaix; - b x , + t  0. 
i = l  

We define the columns of  a matrix A" by these equations: 

A ~ = a i A  i, i =  1 , . . . , n  

A~+I : - b .  
Then 

n+l 

Z A x; = O. 
i = 1  

Let I2" denote this affine subspace, i.e. f2 '={x'ER"+IIA'x '=0}.  Thus we 
get a system of homogeneous equations in the transformed space. 

5. Since we are interested in target value of zero, we define Z to be the afflne 
subspace corresponding to the zero set of the objective function in the original space 

Z = {xER"IcTx = 0}. 
Substituting 

a i x~ 
X i = . , 

Xn+ l 
we get 

Define c 'ER "+1 by 

n + l  • c i a i x i  
Y - O. 

I 

l = l  Xn+l 

c ;=a ic i  i = 1 , 2  . . . .  , n  

cL1 = 0. 

Then cTx = 0  implies c 'Tx '=0 .  
Therefore the image of Z is given by Z ' =  {x'ER"+l[c 'rx '=0}. 

The transformed problem is 

minimize 

subject to 

c r T x  ~ 

A'x '  = 0 
n + l  

Z ' ×' > 0 ,  x i  = 1 
i = l  

The center of the simplex is a feasible starting point. Thus we get a problem 
in the canonical form. 

Application of our main algorithm to this problem either gives a solution 
x '  such that c ' T x ' = 0  or we conclude that minimum value of c ' r x  ' is strictly posi- 
tive. In the first case, the inverse image of x'  gives an optimal solution to the original 
problem. In the latter case we conclude lhat the original problem does not have 
a finite optimum, i.e. it is either infeasible or unbounded. 

9* 
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6. Incremental computation of inverse 

6.1. A modification to the main algorithm 

The computational effort in each step of the main algorithm is dominated 
by the computation of cv: 

cv = [I--Br(BBr)-~B]Dc. 

We have to find the inverse of (BB r) or solve a linear system of equations 
of the form (BBr)u=v.  

(1) 

since 
steps, 

The only quantity that changes from step to step is the diagonal matrix D, 
D} k) =x} k). In order to take advantage of the computations done in previous 
we exploit the following facts about matrix inserve: 
Let D, D' be n × n diagonal matrices. 

1. If D and D" are "close" in some suitable norm, the inverse of AD'2A r 
can be used in place of the inverse of AD2A r. 

2. If D and D' differ in only one entry, the inverse of AD'2A r can be com- 
puted in O(n') arithmetic operations, given the inverse of AD2A r. 

(Note: Instead of finding the inverse, one could also devise an algorithm 
based on other techniques such as LU decomposition. In practice, it may be better 
to update the LU decomposition directly, but this will not change the theoretical 
worst-case complexity of the algorithm.) 

We define a diagonal matrix D "ok), a "working approximation" to D t*) in 
step k, such that 

1 [D','k'] 
(2) ~ I _ D ~ )  I -<2 for i - -  1 ,2 , . . . , n .  

We use (A(D'(k))2Ar) -1 in place of (A(D(k))2Ar) -1. Initially, D'(°)=D(°)= 1 I. 
n 

We update D' by the following strategy: 
1. D'(k+lJ=a(k)D "Ck), where a (k) is a scaling factor whose significance will 

be explained in Section 6.3. For the purpose of this section take a (k) = 1. 

2. For i = l  t o n d o  
if 

' 

then let D~[k+I)=D~(~+I); and update (A(D'(k+x))~Ar) -~ by rank-one modification. 
Thus, this strategy maintains the property in equation (2). Now we describe 

the rank-one modification procedure. Suppose a symmetric square matrix M is 
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modified by a rank-one matrix expressed as the outer product of two vectors u and 
v. Then its inverse can be modified by the equation 

(3) (M+uvr ) - i  - - 1  (M-Xu)(M-Xv) r 
= M  -- l + u r M - l v  " 

Given M -x, computation of (M+uvr)  -x can be done in O(n 2) steps. In order to 
apply equation (3), note that if D" and D" differ only in the ith entry then 

(4) AD'2Ar=AD"ZAr+[D~ -D~Z] alaT 

where a~ is the ith column of A. This is clearly a rank-one modification. If D' and 
D" differ in l entries we can perform I successive rank-one updates in O(n21) time 
to obtain the new inverse. All other operations required for computing cv, the 
orthogonal projection of c, involve either multiplication of a vector by a matrix, 
or linear combination of two vectors, hence can be performed in O(n 2) time. 

6.2. Equivalence of the modified and original problems 

In this Section we analyze the effect of the replacement of D (k) by D '(k). 
Consider the following generalization of the optimization problem over an inscribed 
sphere in the transformed space: 

Problem P" : 
Minimize c ' rx  } 

(5) subject to Bx = 0 . 
and xrQx --<_ ~'r 

(Taking Q = I  and ~'=ct corresponds to the original problem.) 
We are going to show that replacing D ~k) by D "tk~ corresponds to solving 

the problem P ,  for appropriate choice of Q. Let h(x)=xrQx.  Its gradient is given 
by Vh(x)=2Qx. 

At the optimal solution x to the problem P', 

(6) c' = BTZ+# .2Qx 

where the vector 7, and the scalar # are undetermined Lagrange multipliers 

BQ-lc" = BQ-aBr~,+21~Bx = BQ-1BrZ 

(7) k = (BQ-1BT)-IBQ-Xe ". 

Substituting for k in equation (6), x, which we now denote by cv, is given (up to 
a scale factor) by 

(8) x = c v = [I-Q-XBT(BQ-1Br)-IB]Q-lc  ". 

[A° 1 This requires the inverse of BQ-IB r. Substituting B =  7 we get 

[ADQ-1DA r ADQ-le]  
(9) BQ-XB r = [ (ADO_Xe)r erQ_Xe | .  
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It is enough to know the inverse of the submatrix ADQ-aDA r, because then 
(BQ-~Br) -1 can be computed in O(n 2) additional steps by the formula 

(10) [ M  ~ ] - ~ _  1 [ ( c - a r M - x a ) M - ~ + ( M - ~ a ) ( M - l a )  T - M - X a ]  
a T c - a r M - l a  - ( M - l a )  r 1 

where M, a and c are m×m, m × l ,  1)<I matrices, respectively. But we know 
(AD'2Ar) -~ where D'=D .E, and E is a diagonal "error matrix" such that E~E 
E[1/2, 2]. Setting Q = E  -2 we get 

AD,2A r = ADEeDAr = ADQ-1DA r. 

In the modified algorithm we keep (AD'eAr) -~ around, update it whenever 
any entry in D' changes and use it in equation (8) to compute cp and thereby solve 
the modified problem P'. 

Now we relate the solution of problem P '  to the main optimization problem. 
Since Qu=Eff2E[]/2, 2] 

L x T  x < xrQx ~ 2xrx.  (11) 2 = 

Hence 

B ao, ~--r ~ {xlxrQx ~ c~'r} ~ B(ao, 2~'r). 

Taking ~'=~/2, and taking intersection with f2" 

(12) B(a0, ~r/4)0 f2" c= {xlxTQx ~ ~'r, Bx = O} c B(ao, ar)N g2". 

Because of the first inclusion, 

(13) rain {f ' (x)[xrQx ~ c(r, Bx = 0} 

rain {f '(x)lxEB(a0, c~r/4) f-) f2"} ~f ' (a , , )  - l n  (1 +c~/4). 

The last inequality follows from Theorem 3. Thus for the modified algorithm, the 
claim of Theorem 3 is modified as follows 

(]4) f ' ( b ' )  <=f ' (a0)- ln  (I +a/4). 

Because of the second inclusion, Lemma 4.2 continues to be valid and we can appro- 
ximate minimization of f "(x) by minimization of a linear function. The claim (as in 
Theorem 2) about one step of the algorithm f ( x  (k+t))~f(x(k))-6 also remains 
valid where 6 is redefined as 

(15) 6 =  I n ( l + e / 4 )  2(1--fl)"  

This affects the number of steps by only a constant factor and the algorithm still 
works correctly. 
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6.3. Performance of the modified algorithm 

In this Subsection we show that the total number of rank-one updating ope- 
rations in m steps of the modified algorithm is O(mJ/n ) .  Since each rank-one modi- 
fication requires 0@21 arithmetic operations, the average work per step is O(n  2"5) 
as compared to O(n 3) in the simpler form of the algorithm. 

In each step lh'-a0]_=c~r. Substituting h'=T(x(k+t)); a 0 = n - l e  and T(x)=  
D - 1 X  I 

- -  r - -  

e T D - l x  " 1/n(n - 1) 

[ x}k+i)lx}k) 

j 

Let 

(16) 

Then 

Let 

(17/ 

1.] 2 < ~_2 

n] = n ( n - l ) '  

a(k) 1 j ~  (k+l)  .(k) 
: - -  X j  / X j  , 

El 

f i]2<= 
. . (k+l) 

A!k)  - . t l  

X!k) ~(k) • 

Therefore • [A~ k ) -  1] 2_-< fla. Recall that D (k) = Diag {x(~ '), x~ k) . . . . .  x(,k)}, D(k+l)= 
i 

Diag {x} k+l), ,,(~,+11 x,(k+l)}. D "(k) is updated in two stages. 

First we scale D "(k) by a factor a (k) defined in equation (16) 

(18) 

Then for each entry i such that 

we r e s e t  D ; I ( g + I ) = D ! / k + l ) .  

D ' ( k + l )  _-- a(g)D'(k) .  

D,(k+ 11 ]~ 

Define discrepancy between D uo and D '(k) as 

(19) 5} k) = In f D;i('' "l 
t D}p 1" 

Just after an updating operation for index i, 

6} k) = 0. 

Just before an updating operation for index i, 
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Between two successive updates, say at steps kx and k~, 

~}~')-,~1 ~'> = " Z '  [z}~+ ' -  ,~?>1. 
k : k  I 

Let A~ k) be the change in the discrepancy at step k. 

(20) z16}~) = 6}~+x)_ 6}~). 

T h e n  

(21) k•l 
k ~ k  I 

Now we analyze the change in discrepancy in step k, assuming that no updating 
operation was performed for index i. 

D{,( k+l> D}p > a(~)x} k> 
Af}k) = &}k+x)_6[~) = In --.ntk+l) D~ff) = In ~ = - l n A [  k) 

(22) IzJ6}~) I = IlnzJ}~> 1. 

Let nL= the number of updating operations corresponding to index i in m 
n 

steps of the algorithm and N =  Z nL, be the total number of updating operations 
1=1 

in m steps. 

By equations (20) and (21), 

k = l  

(23) In ~ N ~ Z ~ Iln Atk)[. 
i = 1  k = l  

We use equation (17) to bound the R.H.S. of equation (23) 

Z [A?>- 1]' ~_ t~' =, IA? ) -  11 ~- 
i 

(A[k)-- 1)3 by Lemma 4.1 =~ [In A} a - (A/k> - 1)] ~_ 2-0 ---~ 

Z [A[~) - 1]' _ p '  =, Z [a~ ~>- if ~_ ¢n~. 
l i 
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Hence 

(24) 

From equations (22) and (24) 
(25) 

Iln A}~) I = Z ]lnA[ k) - (A}~)- 1)-4- (A!k)-- 1)1 
i = l  i = l  

-~ ~ [lnA}~)-(A}*'-I)I÷ ~ [A} ~)- ll 
i = i  i = 1  

< y [A if)-  1 ] 2 

2 (l 

~ IlnA} k)] -< m "2(i-- B) ~- gn-/~ = O (m Vn-). 
i = I  k : l  

N : O(ml/n). 

7. Concluding remarks 

7.1. Global analysis of optimization algorithms 

While theoretical methods for analyzing local convergence of non-linear 
programming and other geometric algorithms are well-developed the state-of-the-art 
of global convergence analysis is rather unsatisfactory. The algorithmic and analy- 
tical techniques introduced in this paper may turn out to be valuable in designing 
geometric algorithms with provably good global convergence properties. Our method 
can be thought of as a steepest descent method with respect to a particular metric 
space over a simplex defined in terms of "cross-ratio", a projective invariant. The 
global nature of our result was made possible because any (strictly interior) point in 
the feasible region can be mapped to any other such point by a transformation that 
preserves affine spaces as well as the metric. This metric can be easily generalized to 
arbitrary convex sets with "well-behaved" boundary and to intersections of such con- 
vex sets. This metric effectively transforms the feasible region so that the boundary of 
the region is at infinite distance from the interior points. Furthermore, this tians- 
formation is independent of the objective function being optimized. Contrast this 
with the penalty function methods which require an ad hoc mixture of objective 
function and penalty function. It is not clear a priori in what proportion the two 
functions should be mixed and the right proportion depends on both the objective 
function and the feasible region. 

7.2. Comments on the factor "L" in running time 

Since representing the output of a linear programming problem requires 
O(L) bits per variable in the worst case, the factor L must appear in the worst-case 
complexity of any algorithm for linear programming. In practice L is much smaller 
than n. Therefore, whenever it is possible to replace a factor of n by L, one should 
always do so if one is interested in an algorithm which is efficient in practice. 
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7.3. Performance in practice 

Each step of the algorithm requires optimization of a linear function over an 
ellipsoid or equivalently, solution of a system of linear equations of the type 
(ADAr)x=b, where A is a fixed matrix and D is a diagonal matrix with positive 
entries which changes by small amount from step to step. We devise a method based 
on successive rank-one modifications and prove a worst-case bound of O(n 2"5) 
arithmetic operations per step. 

In practice, the matrices encountered are sparse, hence more efficient methods 
for solving the above problem are possible. Another feature of the algorithm which 
can lead to computational saving is that it is not necessary to find the exact solution 
to the optimization problem stated above. Here it is useful to distinguish between 
two types of approximate solutions. Let x0 be the exact solution and x an approxi- 
mate solution and let cTx be the objective function. A strong approximation (or 
approximation in the solution space) requires that x be close to x0 in some suitable 
norm. A weak approximation (or approximation in objective function space)requires 
that c rx  be close to crx0. A weak approximation is sufficient for our method, and 
is easier to achieve numerically. The optimization problem in each step is a good 
candidate for applying iterative methods to obtain approximate solutions. The 
worst-case bound is based on finding an exact solution. 

The number of steps of the algorithm depends on the "R/r" ratio, i.e. the 
ratio of radius of the sphere circumscribing the polytope to the radius of the inscribed 
sphere. We prove an O(n) upper bound on this ratio. However it is likely to be smaller 
than n in typical problems of praclieal interest and also in the worst-case if the cir- 
cumscribing sphere is chosen to include only that portion of the polytope having 
values of objective function better than the current value, and after computing lhe 
direction of one step (as described in section 2) its length is chosen to be ~r" ralher 
than ar where r '  is the largest possible step length without going outside the feasible 
region. The possibility of improvement in R/r ratio gives rise to a number of research 
problems for further investigation, such as probabilistic analysis of the problem, 
experimental measurements on problems arising in practical applications, analysis 
of special cases of practical interest such as "box"  type of constraints and finally, 
the most difficult oi all, obtaining a better worst-case bound. 

7.4. Numerical  stability and round-off errors 

In the ellipsoid algorithm, the round-off errors in numerical computation 
accumulate from step to step. The amount of precision required in arithmetic ope- 
rations grows with the number of steps. In our algorithm, errors do not accumulate. 
On the contrary, the algorithm is self-correcting in the sense that the round-off 
error made in one step gets compensated for by future steps. If  we allow 1% error 
in computation of the vector x (~ in each step, we can compensate for the errors 
by running the algorithm 2 % more steps. 
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7.5. Multiple columns and parallel computation 

In the simplex method, the current solution is modified by introducing a non- 
zero coefficient for one of  the columns in the constraint matrix. Our method allows 
the current solution to be modified by introducing several columns at once. In the 
algorithm described in this paper, all columns are "active", but a variation in which 
a suitably chosen subset of  columns is active at one time is possible. It seems that 
on a highly parallel architecture a method that uses many columns at once may be 
preferable to the simplex method. 

7.6, Other areas for further research 

Since many polynomial-time solvable combinatorial problems are special 
cases of  linear programming, this work raises the possibility of  applying the new 
techniques to such special cases. Problems solved by the column generation method 
require a special variant of the algorithm. 
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