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Abstract. A new method for computing the discrete Fourier transform
(DFT) of data endowed with linear symmetries is presented. The method
minimizes operations and memory space requirements by eliminating re-
dundant data and computations induced by the symmetry on the DFT
equations. The arithmetic complexity of the new method is always lower,
and in some cases significantly lower than that of its predecesor. A par-
allel version of the new method is also discussed. Symmetry-aware DFTs
are crucial in the computer determination of the atomic structure of
crystals from x-ray diffraction intensity patterns.

1 Preliminares

Let N be a positive integer, Z/N the set of integers modulo N , Zd/N = Z/N ×
· · · × Z/N , the cartesian product of d copies of Z/N , and f a real- or complex-
valued mapping defined in Zd/N . The d-dimensional discrete Fourier transform
(DFT) of edge length N is defined by

f̂(k) =
1√
N

∑
l∈Zd/N

f(l)wk·l
N , k ∈ Zd/N ; (1)

where wN = exp(−2πi/N), · denotes the dot product, and i =
√−1. A fast

Fourier transform [3] (FFT) for d = 1 computes (1) in O(N log N) operations.
For d ≥ 2, the usual FFT method consists of applying Nd−1 one-dimensional
FFTs along each of the d dimensions. This yields O(Nd log N) operations. Al-
though this complexity bound cannot be improved for general DFT computa-
tions, some attempts to reduce the actual operation count and memory space
requirements have been made for problems whose data is endowed with redun-
dancies, such as x-ray crystal diffraction intensity data. In this article we review
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a method for computing prime edge length DFTs of crystallographic data intro-
duced by Auslander and Shenefelt [1],[2] and propose a new method with lower
arithmetic complexity.

We first establish some notation. An expression of the form [Vk] denotes
a column vector. A bracketed expression with an ordered pair as a subscript
denotes a matrix, and its row and and the column indices, respectively. If A is
a set and g a mapping defined in A, its image set is denoted g (A) = {g(a) :
a ∈ A}. By a partition of a set A we understand a collection {A1, ..., Am} of
subsets of A such that for each j *= k, Aj ∩ Ak = ∅, and A = A1 ∪ · · ·Am. An
equivalence relation on A is a relation a ≈ b defined for pairs in A × A which
satisfies reflexivity, symmetry, and transitivity. An equivalence relation induces
the partition of A consisting of the sets O(a) = {b ∈ A : a ≈ b}. A subset of A
formed by selecting one and only one element from each set in a partition of A
is called fundamental set. The number of elements in a set A is denoted |A|.

A matrix [W (k, l)](k,l), 0 ≤ k < N1, 0 ≤ l < N2 is Hankel if W (k, l) =

W (k′, l′) whenever k + l = k′ + l′. An N × N matrix [H(k, l)](k,l) is Hankel-

circulant if H(k, l) = H(k′, l′) whenever k + l = k′ + l′ modulo N . Since a
Hankel-circulant matrix is completely determined by its first row, we write H =
hc(first row of H). A Hankel matrix W is said to be embedded in a Hankel-
circulant H if W is the upper leftmost corner of H . Given an N1 ×N2 Hankel
matrix W there exists at least one N ×N Hankel-circulant into which W can be
embedded, for each N ≥ N1+N2−1. For N = N1+N2−1, this Hankel-circulant
is

hc(W (0, 0), · · · ,W (0, N2 − 1),W (1, N2 − 1), · · · ,W (N1 − 1, N2 − 1)). (2)

For N > N1 + N2 − 1, the Hankel-circulant is obtained just by padding the
argument of hc with N − (N1 + N2 − 1) zeros to the right. An N -point cyclic
convolution is a product of the form U = HV , where H is an N ×N Hankel-
circulant. We represent the N -point one-dimensional DFT by its complex matrix

FN =
[
wkl
N

]
(k,l)

, 0 ≤ k, l ≤ N − 1. (3)

It has been shown that for a Hankel-circulant H

∆(H) = FNHFN (4)

is a diagonal matrix whose main diagonal is the DFT of the first row of H . Thus,
cyclic convolutions can be computed in O(N log N) operations through

U = F−1
N ∆(H)F−1

N V . (5)

Equation (5) is often referred as fast cyclic convolution algorithm.

2 Symmetries and Crystallographic FFTs

Crystalline structures are determined at atomic level by computing several three-
dimensional DFTs of their energy spectrum sampled every few angstroms. Since
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crystal structures consist of repeating symmetric unit cells, their spectral data
is highly redundant. A fast Fourier transform (FFT) method that uses these
redundancies to lower the arithmetic count and memory space requirements of
a three-dimensional FFT is called a crystallographic FFT. In this section we
review some basic properties of matrix representations of crystal symmetries,
use them to eliminate redundancies from the DFT equations, and outline the
Auslander-Shenefelt crystallographic FFT.

We assume throughout that P is prime. A square matrix is a matrix over
Z/P if all its entries are elements of the set Z/P of integers modulo P. The
product of two such matrices modulo P is a matrix over Z/P . A matrix over
Z/P is nonsingular if and only if its determinant is not zero modulo P. For a
matrix M over Z/P and a nonegative integer j, M j denotes the product of M by
itself modulo P , j times. In particular, M0 = I , where I is the identity matrix
of appropriate size.

A real- or complex-valued mapping f defined on the set Zd/P of d-dimensional
vectors over Z/P is said to be S-symmetric if there exists a d × d nonsingular
matrix S over Z/P such that

f(l) = f(Sl) for all l ∈ Zd/P. (6)

For example, the mapping f defined in Z2/5 by the two-dimensional data array
[f(k, l)](k,l)

f(Z2/5) =




2.9 2.3 1.5 1.5 2.3
1.2 6.0 4.3 4.6 2.8
1.4 3.3 5.1 4.2 1.7
1.4 1.7 4.2 5.1 3.3
1.2 2.8 4.6 4.3 6.0


 (7)

is S-symmetric where

S =

[−1 0
0 −1

]
=

[
4 0
0 4

]
modulo 5. (8)

It is clear from (6) that f(Sja) = f(a) for all j. Thus, the data redundancies of
a S-symmetric mapping constitute subsets of Zd/P of the form

OS(a) = {Sja modulo P : j integer }. (9)

Such a subset is called an S orbit of a. It is readily verified that the relation
defined by a ≈S b if and only if b = Sja for some integer j is an equivalence
relation over Zd/P . Thus, the set of all S-orbits is a partition of Zd/P . The
number of elements |OS(a)| is called the orbit length. A subset of the form

O
(la)
S (a) = {Sja : 0 ≤ j ≤ la − 1} where la ≤ |OS(a)| is said to be an S

segment. An S-symmetric function is completely determined by its values on a
fundamental set FS induced by ≈S . For example, the S-orbits and their images
under f for (7) are

OS(0, 0) = {(0, 0)} , f(OS(0, 0)) = {2.9} (10)
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OS(0, 1) = {(0, 1), (0, 4)} , f(OS(0, 1)) = {2.3} (11)

OS(0, 2) = {(0, 2), (0, 3)} , f(OS(0, 2)) = {1.5} (12)

OS(1, 0) = {(1, 0), (4, 0)} , f(OS(1, 0)) = {1.2} (13)

OS(1, 1) = {(1, 1), (4, 4)} , f(OS(1, 1)) = {6.0} (14)

OS(1, 2) = {(1, 2), (4, 3)} , f(OS(1, 2)) = {4.3} (15)

OS(1, 3) = {(1, 3), (4, 2)} , f(OS(1, 3)) = {4.6} (16)

OS(1, 4) = {(1, 4), (4, 1)} , f(OS(1, 4)) = {2.8} (17)

OS(2, 0) = {(2, 0), (3, 0)} , f(OS(2, 0)) = {1.4} (18)

OS(2, 1) = {(2, 1), (3, 4)} , f(OS(2, 1)) = {3.3} (19)

OS(2, 2) = {(2, 2), (3, 3)} , f(OS(2, 2)) = {5.1} (20)

OS(2, 3) = {(2, 3), (3, 2)} , f(OS(2, 3)) = {4.2} (21)

OS(2, 4) = {(2, 4), (3, 1)} , f(OS(2, 4)) = {1.7}. (22)

Thus, we may choose FS = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4),
(2, 0), (2, 1), (2, 2), (2, 3), (2, 4)}.

It is easy to show that if f is S-symmetric, then f̂ is S∗-symmetric, where S∗
is the transpose of the inverse of S. Therefore, f̂ is also completely determined by
its values in a fundamental set FS∗ induced by ≈S∗ . We call f (FS) and f̂ (FS∗)
fundamental input data and fundamental output data, respectively. In example
(7) the fundamental input data set is

f(FS) = {2.9, 2.3, 1.5, 1.2, 6.0, 4.3, 4.6, 2.8, 1.4, 3.3, 5.1, 4.2, 1.7} (23)

Reducing the original input data to a fundamental input data set requires a
modification in the DFT equations. Since f(FS(a)) contains just one f(a) from
each f(OS(a)) orbit and each k ∈ Zd/P , the input datum f(a) is factored out

of the terms of f̂(k) indexed by OS(a) in equation (1). That is,

∑
l∈OS(a)

f(l)wk·l
P = f(a)


 ∑

l∈OS(a)

wk·l
P


 = f(a)KP (k,a). (24)

KP (k,a) =
∑

l∈OS(a) w
k·l
P is called a symmetrized DFT kernel. The linear trans-

formation
f̂(k) =

∑
a∈FS

KP (k,a)f(a), k ∈ FS∗ (25)

where the output has also been restricted to a fundamental output set, is called
a symmetrized DFT. Equation (25) involves

∑
k∈FS∗

∑
l∈FS

|OS(l)| =
∑

k∈FS∗
P d ≤ P 2d (26)

arithmetic operations. Thus, in general, the mere reduction of redundant data
does not yield a superior FFT method.
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Auslander and Shenefelt [1] proposed computing (25) through fast cyclic
convolutions. Crucial to this aim is the fact the set of all non-null elements in
Z/P , denoted Z/P

∗
, is a cyclic group under multiplication. In particular, there

is an element g ∈ Z/P
∗

called generator, such that for each a ∈ Z/P
∗
, an integer

j can always be found for which gj = a modulo P . The action of g on Zd/P
produces g-orbits of the form Og(a) = {gja : 0 ≤ j ≤ P − 2}. Furthermore, the
action of g produces partitions of FS and FS∗ formed by g-segments. Let FgS and
FgS∗ be fundamental sets for these partitions. For a pair (a, b) ∈ FgS∗ ×FgS let
la and lb be the lengths of the g-segments in FgS∗ and FgS, respectively. Then,

W(a,b)(k, l) = KP (gka, glb), 0 ≤ k ≤ la − 1. 0 ≤ lb − 1, (27)

is a block in (25). Since clearly for k + l = k′ + l′, W(a,b)(k, l) = W(a,b)(k
′, l′),

each block W(a,b) is Hankel. Each one of these blocks can be computed with the
fast cyclic convolution algorithm by embeddings in Hankel-circulants.

Since the length of a g-segment is at most P − 1, the Auslander-Shenefelt
method involves O(Pd−1) cyclic convolutions unless the average length of the
S-orbits is also a power of P . The latter condition is not satisfied by most of the
symmetries of practical importance.

Our strategy towards a more efficient crystallographic FFT is to minimize the
amount of cyclic convolutions, even at the cost of increasing their sizes. This is
achieved by using M -segments instead of g-segments, where M is a nonsingular
matrix over Z/P . This modification and its impact in the computation of (25)
are described in the next section.

3 A Framework for Designing Crystallographic FFTs

Let S and M be nonsingular matrices over Z/P . Let k, l, k′, and l′ be nonegative
integers such that k + l = k′ + l′. Then for any pair (a, b) ∈ FS∗ ×FS ,

KP (Mka, (M t)
l
b) = KP (Mk+la, b) (28)

= KP (Mk′+l′a, b) (29)

= KP (Mk′a, (M t)
l′
b). (30)

It follows that W(a,b)(k, l) = KP (Mka, (M t)
l
b) is Hankel. These matrices will

represent all the computations in (25) if and only if FS∗ and FS can be parti-
tioned into M - and M t-segments, respectively. It can easily be shown that this
is the case if MS∗ = S∗M . Let FMS∗ and FMtS be fundamental sets for these
partitions. Then (25) can be rewritten as

[
f̂ (FS∗)

]
=
[[
W(a,b)(k, l)

]
(k,l)

]
(a,b)

[f (FS)] , (31)

where the nested brackets denote a block matrix, (a, b) ∈ FMS∗ × FMtS , and
0 ≤ k < la, 0 ≤ l < lb.
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Before embedding each W(a,b) in a Hankel-circulant we make two considera-
tions. First, no blocks corresponding to pairs (0, b) and (a,0) will be embedded.
These are 1× lb and la × 1 matrices and therefore, embedding them in Hankel-
circulants is not practical. We call these matrices border blocks and compute
with them separately. We call the remaining set of blocks the core symmetric
DFT computations. Second, although other choices are available, we propose a
common size N ×N for the Hankel-circulants into which the W(a,b) blocks will
be embedded. This N is a positive integer greater than or equal to the sum of
the length of the largest input segment plus the length of the largest output
segment minus 1. It turns out that the maximum length of the input segments
is always equal to the maximum length of the output segments. We denote this
common maximum length by L. On the other hand, since the choice of N is
guided by the efficiency of the N -point FFT, it is reasonable to assume that
2L − 1 ≤ N ≤ 2"log2(2L−1)#, where "x# is the smallest integer that is greater
than or equal to x.

Let F∗
MtS and F∗

MS∗ be the original fundamental sets without 0. Let H(a,b)

be the N × N Hankel-circulant in which W(a,b) is embedded. Then, the core
symmetric DFT computations are represented as U = HV where

H =
[[
H(a,b)(k, l)

]
(k,l)

]
(a,b)

, (32)

(a, b) ∈ F∗
MS∗ × F∗

MtS , and 0 ≤ k, l < N . The input vector V is composed

of N -point vector segments V b, each consisting of the lb values of f(O
(lb)
MtS(b))

followed by N−lb zeros. Vector U , in turn, is composed by the N -point segments
Ua, a ∈ F∗

MS∗ , that result from

Ua =
∑

b∈F∗
MtS

H(a,b)V b (33)

=
∑

b∈F∗
MtS

F−1
N ∆

(
H(a,b)

)
F−1
M V b (34)

= F−1
N


 ∑
b∈F∗

MtS

∆
(
H(a,b)

)
F−1
M V b


 . (35)

Following is a prime edge length symmetric FFT framework based on (35):

Core computations:
Step 1. For each b ∈ F∗

MtS compute Y b = F−1
N V b.

Step 2. For each pair (a, b) ∈ F∗
MS∗×F∗

MtS compute the Hadamard or component-

wise product Z(a,b) = ∆
(
H(a,b)

)
Y b.

Step 3. For each a ∈ F∗
MS∗ compute Xa =

∑
b
Z(a,b).

Step 4. For each a ∈ F∗
MS∗ compute Ua = F−1

N Xa.

Border computations:
Step 5. f̂(0) = 1√

P

∑
b∈FS f(b)|OS(b)|
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Step 6. For each a ∈ F∗
MS∗ compute f̂(Ola

M (a)) = 1√
P

[f(0)]la +U∗
a
. Here U∗

a

is the column vector formed by the la first entries of the vector Ua computed
in step 4 .

All parameters required for the actual implementation of the method are
determined in a separate precomputation phase. This phase includes the com-
putation of the Mt- and M -orbit segments, and the diagonals ∆(H(a,b)).

Since the border computations involve O(|FS |) sums and products, their
contribution to the arithmetic complexity of the method is marginal. As for the
core computations, let Λ = |F∗

MtS |. Then, using N -point FFTs, steps 1 and 4
involve O(2ΛN log N) operations. Step 2 involves Λ2N complex multiplications
and step 3, ΛN(Λ− 1) complex additions. Therefore, the complexity of the core
computation phase is modeled by the two-parameter mapping

c(Λ, N) = 2ΛN (κ log N + Λ− 1) , (36)

where κ is a positive constant. It follows that the order of the arithmetic complex-
ity of a crystallographic FFT derived from the general framework isO(ΛN log N)
if

ρ1 =
(Λ− 1)

log2 (2L− 1)
≤ 1, (37)

and O(Λ2N) if

ρ2 =
(Λ− 1)

"log2 (2L− 1)# > 1. (38)

The best case, Λ = 1, ensures an O(N log N) symmetric FFT. If ρ2 is greater
than 1, but close to 1 and Λ is relatively small, it is still possible to get a competi-
tive crystallographic FFT. However, the arithmetic count of the crystallographic
FFT increases rapidly with Λ, as shown in table 1. The parallel version of the
method that is outlined in section 5 is intended to reduce the execution time for
cases in which Λ > 1.

The Auslander-Shenefelt method can be derived from the general framework
by setting M = gId, where Id is the d × d identity matrix. From a previous
remark we know that the Auslander-Shenefelt algorithm is likely to produce large
values for Λ for most symmetries of practical importance. One such example is
the symmetry

S =

[−1 0 0
0 −1 0
0 0 −1

]
. (39)

In this case, the Auslander-Shenefelt crystallographic FFT gives Λ = P2+P and
L = (P−1)/2. Thus, c(Λ, N) is always O(Λ2N). Using the minimum N = 2L−1
we see that Λ2(2L− 1) = (P 2 +P )2(P − 2). Therefore, step 2 of the Auslander-
Shenefelt FFT is O(P5) which is greater than O(P3 log P ), the complexity order
of the usual three-dimensional FFT.
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4 Existence of O(N log N) Crystallographic FFTs

Some theoretical results concerning the existence ofO(N log N) crystallographic
FFTs are presented in this section. The lemmas, proofs of which can be found,
for instance, in [4], are well-known results that have been used in coding the-
ory, digital signal processing, and the theory of linear autonomous sequential
machines, among others.
Lemma 1. For any polynomial φ(x) over Z/P, there is a positive integer k for
which φ(x) divides xk − 1.

The smallest such k is called the period of φ(x).

Lemma 2. For each irreducible polynomial φ(x) of degree n over Z/P, φ(x)
divides xP

n−1 − 1.
A polynomial is maximal if its period is Pn − 1.

Lemma 3. The number of maximal polynomials of degree n over Z/P is ϕ(Pn−
1)/n, where ϕ denotes Euler’s ϕ−function.

Similarly, for any nonsingular square matrix M over Z/P, there is a least
positive integer k such that Mk = I , where I denotes an identity matrix of
appropriate size. This k is called the period of M. A d × d M is maximal if its
period is P d − 1. Thus, the action of a maximal M on Zd/P produces only
two orbits: one consisting of {0}, and one consisting of all non-null vectors in
Zd/P . The characteristic polynomial φM of a square matrix M is defined by
the determinant M − xI modulo P . The Cayley Hamilton Theorem states that
every square matrix satisfies its own characteristic equation, i.e., φM (M) = 0.

Lemma 4. A nonsingular matrix M over Z/P is maximal if and only if its
characteristic polynomial φM (x) is irreducible and maximal.

Corollary 1. All M -orbits are of equal length if the characteristic polynomial
of M is irreducible.

These results provide a first example of the existence of an O(N log N) crys-
tallographic FFT for a symmetry of practical importance. In fact, for any P there
will be a maximal matrix M over Z/P . Since the symmetry S = S∗ defined in
(39) commutes with any 3×3 matrix, it commutes, in particular, with any max-
imal matrix M over Z3/P . But since M is maximal, the partitions induced by
M t and M on F∗

S and F∗
S∗ , respectively, consist of just one segment. Therefore,

since Λ = 1, the crystallographic FFT derived from the general framework is
O(N log N).

Another interesting case is given by the next theorem.

Theorem 1. Let S be a matrix over Z/P with irreducible characteristic poly-
nomial and let M be a maximal matrix that commutes with S. Then there is
exactly one M -segment in FS∗ and its size is m = (Pd−1)/k where k is the size
of the S∗-orbits.

Proof. From the previous corollary, all orbits induced by S∗ are of equal length.

Let x be any nonzero vector in Zd/P. Then the sequence x,Mx,M2, · · · ,MPd−2x
contains at most k S∗-equivalent elements. Suppose it contains fewer than m
S∗-equivalent elements. Let a and b, a < b be the least positive integers for
which Max and Mbx are S∗-equivalent and so Max = ScM bx for some c.
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Hence S∗−cx = Mb−ax and so M (b−a)kM b−a · · ·Mb−ax = (S∗−c)kx = x where
(b− a)k < P d − 1, which contradicts that M is maximal.

5 Further Examples and Conclusions

As remarked before, some crystallographic symmetries will not yield O(N log N)
crystallographic FFTs. For such symmetries, the parameter Λ is minimized by
finding a matrix M satisfying MS∗ = S∗M , and whose action produces the
largest possible M-segments in FS∗ . Such M is called optimal. In this section
we show a symmetry whose parameter Λ > 1 and compare the complexity of
the crystallographic FFT built with the optimal M with that of the Auslander-
Shenefelt algorithm. We also describe a natural parallel version of the method
for symmetries whose parameter Λ is greater than 1.

Let us consider the symmetry represented by

S =

[
0 0 1
0 1 0

−1 0 0

]
. (40)

Table 1 compares the parameters and the arithmetic complexity of the second
step of the crystallographic FFT derived from the general framework using an
optimal M with the Auslander-Shenefelt method. We have chosen N = 2L−1 for
these comparisons. To our knowledge there is no existing method for computing

Table 1. Crystallographic FFT derived from an optimal segmentation of the funda-
mental sets versus Auslander-Shenefelt crystallographic FFT (ASCFFT) for symmetry
(40)

Problem Optimal Λ N Λ2N ASCFFT ASCFFT ASCFFT
size M Λ N Λ2E

233 = 12167
[

2 0 1
0 5 0
22 0 2

]
24 263 151,488 145 43 904,075

313 = 29791
[

4 0 1
0 3 0
30 0 4

]
32 479 490,496 257 59 3,896,891

433 = 79507
[

2 0 1
0 3 0
42 0 2

]
44 923 1,786,928 485 83 19,523,675

473 = 103823
[

2 0 1
0 5 0
46 0 2

]
48 1103 2,541,312 577 91 30,296,539

the optimal M directly. Our results have been produced computationally.
For Λ > 1, in a distributed memory system with Λ processors, the symmetric

FFT can be performed in parallel, as follows:

Parallel core symmetric FFT
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Parallel step 1. For each b ∈ F∗
MtS compute in parallel Y b = F−1

N Vb.
Parallel step 2. For each b) ∈ F∗

MS∗ compute in parallel Z(a,b) = ∆
(
H(a,b)

)
Y b,

for all a ∈ F∗
MtS .

Communication step. For each a ∈ F∗
MS∗ , gather all vector segments Z(a,b) in

a single processor.
Step 3. For each a ∈ F∗

MS∗ compute in parallel Xa =
∑

b
Z(a,b).

Step 4. For each a ∈ F∗
MS∗ compute in parallel Ua = F−1

N Xa.

Parallel border computations:

Step 5. f̂(0) = 1√
P

∑
b∈FS f(b)|OS(b)|

Step 6. For each a ∈ F∗
MS∗ compute in parallel f̂(Ola

M (a) = 1√
P

[f(0)]la +U∗
a
.

Here U∗
a

is the column vector formed by the la first entries of the vector Ua

computed in step 4 .

The parallel method reduces the time complexity of steps 1 and 4 to O(N log N)
and that of steps 2 and 3 to O(ΛN), to the cost of sending ΛN(Λ − 1) com-
plex number between processors. For large values of Λ, an adquate balance be-
tween communications and computations can be achieved by aggregating parallel
computations. The symmetric FFT framework can be implemented as a meta-
algorithm able to generate crystallographic FFTs that are tailored to a target
computer system. The inputs of the meta-algorithm will be the symmetry S
and the edge length P of the DFT. The output will be a crystallographic FFT
computer program that optimally uses the hardware and the software of the
target system, very much in the spirit of the fast Fourier transform method
known as the FFTW [5]. Experimental work exploring the potential of this idea
is currently underway.
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