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A NEW (PROBABILISTIC) PROOF OF THE DIAZ–METCALF AND
PÓLYA–SZEGŐ INEQUALITIES AND SOME APPLICATIONS

UDC 519.21

TIBOR K. POGÁNY

Abstract. The Diaz–Metcalf and Pólya–Szegő inequalities are proved in the proba-
bilistic setting. These results generalize the classical case for both sums and integrals.
Using these results we obtain some other well-known inequalities in the probabilistic
setting, namely the Kantorovich, Rennie, and Schweitzer inequalities.

1. Introduction

The celebrated Cauchy–Bunyakovskĭı–Schwarz inequality can be written in the prob-
abilistic setting as follows:

(1) |E ξη|2 ≤ E ξ2 E η2

where ξ and η are random variables defined on some probability space (Ω, F, P). An
inequality, converse to (1), is also true but only in exceptional cases known as the Diaz–
Metcalf and Pólya–Szegő inequalities. Some partial cases of the latter two results are
known as Kantorovich, Rennie, and Schweitzer inequalities (see [6, §2.11], [7]).

Below we prove new inequalities that can be viewed as inverses to (1) for almost surely
bounded random variables ξ and η. These inequalities involve two first moments E ξ
and E ξ2 and the upper and lower bounds m and M of the random variable ξ, that is, we
assume that P{m ≤ ξ ≤ M} = 1. We provide necessary and sufficient conditions for all
cases under consideration. These results generalize the classical Diaz–Metcalf and Pólya–
Szegő inequalities as well as other inequalities mentioned above for the probabilistic
setting. The proof below is given for both discrete and continuous cases. We also
consider inequalities for random vectors and inequalities with weights. The methods we
use are elementary and are based on the properties of the operator E.

We write ξ ∼ ψ if the random variable ξ has the distribution/density ψ. The sym-
bols IA and χS(t) stand for the indicator of a random event A and the characteristic
function of a set S, respectively; N0 denotes the set of nonnegative integers, δλµ is the
Kronecker delta. Finally L2

ϕ[A] denotes the space of functions {h :
∫

A
|h(t)|2ϕ(t) dt < ∞}

such that supp(h) = {t : h(t) �= 0}.
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2. Diaz–Metcalf inequality

Below we consider real, almost surely bounded random variables ξ for which there are
real constants m and M , m ≤ M , such that

P{m ≤ ξ ≤ M} = 1.

The moments E ξr, r > 0, can be estimated in the case of m ≥ 0 by mr ≤ E ξr ≤ Mr.
The variance satisfies the inequality Var ξ ≤ (M − m)2/4. In what follows we obtain
more sophisticated results.

First we provide an auxiliary result used then to derive conditions where the Diaz–
Metcalf inequality becomes an equality. This result is communicated to the author by
O. I. Klesov [5].

Equality Theorem. Let X be a random variable for which there are two real numbers
m and M, m < M, such that

P(m ≤ X ≤ M) = 1.

The following two conditions are equivalent:

(2) E(X − m)(M − X) = 0

and

there exist random events A and B such that

X = mIA + MIB a.s.,(3)

P(A ∪ B) = 1,(4)

P(A ∩ B) = 0.(5)

Here “a.s.” stands for “almost surely”.

Proof. Put δ = (X−m)(M−X). Conditions (3)–(5) imply (2), since δ = 0 almost surely
in this case.

To prove the converse put A = {ω : X(ω) = m} and B = {ω : X(ω) = M}. Then (2)
implies

P(X ∈ R \ {m, M}) = 0,

whence conditions (3) and (4) follow. Since m < M, condition (5) also holds. �
Now we are ready to prove the Diaz–Metcalf inequality for bounded random variables.

Theorem 1. Let ξ and η be real random variables defined on the same probability space
(Ω, F, P). Assume that P{m1 ≤ ξ ≤ M1} = 1, P{m2 ≤ η ≤ M2} = 1, m1 ≤ M1,
m2 ≤ M2, and m2 > 0. Then

(6) E ξ2 +
m1M1

m2M2
E η2 ≤

(
m1

M2
+

M1

m2

)
E ξη.

The inequality becomes an equality if and only if either (i) m1/M2 = M1/m2, or (ii)
m1/M2 < M1/m2 and

(7) P

(
ξ

η
∈

{
m1

M2
,
M1

m2

})
= 1.

Proof. It is easy to see that

(8)
m1

M2
≤ ξ

η
≤ M1

m2
.

The operator E is monotone, thus

(9) E

(
M1η

m2
− ξ

) (
ξ − m1η

M2

)
≥ 0.
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Now (6) follows from (9), since E is a linear operator.
It remains to treat the case of an equality in (6), that is, in (9). Since the case (i)

is obvious, we consider the case (ii). Let m1/M2 < M1/m2 and condition (7) hold. We
have in the case of (ii) that

P(m2ξ = M1η ∨ M2ξ = m1η) = 1 and P(m2ξ = M1η ∧ M2ξ = m1η) = 0.

Thus inequality (9) becomes an equality if (8) holds. On the other hand, if (9) becomes
an equality, then

(10) P{M2ξ = m1η ∨ m2ξ = M1η} = 1.

Put A = {ω ∈ Ω: M2ξ = m1η} and B = {ω ∈ Ω: m2ξ = M1η}. We apply the Equality
Theorem to

X = ξ/η, m = m1/M2, M = M1/m2

and complete the proof of (7). �

Corollary 1.1 (Weighted Diaz–Metcalf type inequality in the discrete case). Assume
that

m1 ≤ xk ≤ M1, k = 1, . . . , n.

Let 0 < m2 ≤ yl ≤ M2, l = 1, . . . , m, pkl ≥ 0, and
∑n

k=1

∑n
l=1 pkl = 1. Then

(11)
n∑

k=1

x2
kqk +

m1M1

m2M2

m∑
l=1

y2
l rl ≤

(
m1

M2
+

M1

m2

) n∑
k=1

m∑
l=1

xkylpkl

where
m∑

l=1

pkl = qk, k = 1, . . . , n,

n∑
k=1

pkl = rl, l = 1, . . . , m.

Inequality (11) becomes an equality if and only if
(i) either m1/M2 = M1/m2,
(ii) or m1/M2 < M1/m2 and

(12)
∑

k,l∈Ix,y

pkl = 1,

where Ix,y := {(k, l) : xk/yl ∈ {m1/M2, M1/m2}}.

Proof. Let (ξ, η) be a random discrete vector whose coordinates are defined on a probabil-
ity space (Ω,P(Ω), P). Let η be a nonnegative random variable and P(Ω) = {S : S ⊆ Ω}.
Let (ξ, η) ∼ P{ξ = xk, η = yl} = pkl, k = 1, . . . , n, l = 1, . . . , m, and

∑n
k=1

∑m
l=1 pkl = 1.

Theorem 1 and inequality (6) prove (11). The case of an equality in (11) follows from
the corresponding part of Theorem 1. �

Remark 1. Putting m = n and pkl = δkl/n, k, l = 1, . . . , n, in (11) (note that

qk = rl = 1/n

in this case) we obtain the original Diaz–Metcalf inequality:
n∑

k=1

x2
k +

m1M1

m2M2

n∑
l=1

y2
l ≤

(
m1

M2
+

M1

m2

) n∑
k=1

xkyk

(see [2]). This inequality becomes an equality if and only if xk/yl ∈ {m1/M2, M1/m2}
for all k = 1, . . . , n. This follows from (12), since pkl = 0 for all k �= l and pkk = 1/n.

A generalization of the latter inequality is given in [2] for complex numbers (see also
the list of references in [6, pp. 66–67]).
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Corollary 1.2 (Weighted Diaz–Metcalf inequality for integrals). Let f and g be Borel
functions such that

(13)
m1 ≤ f(x) ≤ M1 and 0 < m2 ≤ g(y) ≤ M2

for almost all (x, y) ∈ [a, b] × [c, d].

Let w(x, y) be a nonnegative function such that supp(w) = [a, b] × [c, d] and∫ b

a

∫ d

c

w(x, y) dx dy = 1.

Put ∫ d

c

w(x, y) dy = w1(x),
∫ b

a

w(x, y) dx = w2(y).

Then ∫ b

a

f2(x)w1(x) dx +
m1M1

m2M2

∫ d

c

g2(y)w2(y) dy

≤
(

m1

M2
+

M1

m2

) ∫ b

a

∫ d

c

f(x)g(y)w(x, y) dx dy.

(14)

Inequality (14) becomes an equality if and only if either
(i) m1/M2 = M1/m2, or
(ii) m1/M2 < M1/m2 and ∫

Ix,y

w(x, y) dx dy = 1

where Ix,y := {(x, y) : f(x)/g(y) ∈ {m1/M2, M1/m2}}.

Proof. Let (ξ, η) be a random vector with the density w(x, y) whose support is [a, b]×[c, d].
It is clear that w1(x) and w2(y) are the densities of the random variables ξ and η,
respectively. Since f and g are Borel functions, they belong to L2

w1
[a, b] and L2

w2
[c, d],

respectively. Let m1, m2 and M1, M2 be real numbers such that

P{m1 ≤ f(ξ) ≤ M1} = P{m2 ≤ g(η) ≤ M2} = 1.

It follows from Theorem 1 that

(15) E f2(ξ) +
m1M1

m2M2
E g2(η) ≤

(
m1

M2
+

M1

m2

)
E f(ξ)g(η)

which is equivalent to (14).
The case of equality is obvious in the case of (i). In the case of (ii) we have

E f2(ξ) +
m1M1

m2M2
E g2(η) −

(
m1

M2
+

M1

m2

)
E f(ξ)g(η)

= E

(
f(ξ) − M1

m2
g(η)

)(
f(ξ) − m1

M2
g(η)

)
and thus the statement on the equality follows from the Equality Theorem. �

Remark 2. If (ξ, η) ∼ w(x, y) = (b − a)−1χ[a,b]2(x, y)δxy, then Corollary 1.2 coincides
with the classical Diaz–Metcalf inequality for integrals:∫ b

a

f2(x) dx +
m1M1

m2M2

∫ b

a

g2(x) dx ≤
(

m1

M2
+

M1

m2

) ∫ b

a

f(x)g(x) dx,

since the densities of the coordinates in this case are given by

w1(x) = (b − a)−1χ[a,b](x) = w2(x).
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The equality holds if and only if either (i) m1/M2 = M1/m2, or (ii) m1/M2 < M1/m2

and ∫
Ix

w1(x) dx = 1,

where Ix ≡ Ix,x, x ∈ [a, b] (see Corollary 1.2 and [2]). Other related results can be found
in [6, p. 64].

3. Pólya–Szegő inequality

The Pólya–Szegő inequality is published in [6, pp. 57 and 213–214] for both sums and
integrals. Below we provide a probabilistic inequality for moments covering this classical
result.

Theorem 2. Let ξ and η be real random variables defined on a probability space (Ω, F, P).
If P{m1 ≤ ξ ≤ M1} = 1 and P{m2 ≤ η ≤ M2} = 1 for 0 < mj ≤ Mj, j = 1, 2, then

(16)
E ξ2 E η2

(E ξη)2
≤ 1

4

(√
m1m2

M1M2
+

√
M1M2

m1m2

)2

.

Inequality (16) becomes an equality if and only if

(17) ξ = m1IA(ω) + M1IΩ\A(ω) and η = m2IΩ\A(ω) + M2IA(ω) a.s.

for some random event A ∈ F such that

(18) P(A) =
M1m2

m1M2 + M1m2
.

Proof. Assume that ξ and η are almost surely nonnegative bounded random variables.
Applying arithmetic-mean–geometric-mean inequality to the left-hand side of the

Diaz–Metcalf inequality (6) we obtain

(19) E ξ2 +
m1M1

m2M2
E η2 ≥ 2

√
m1M1

m2M2
E ξ2 E η2.

Now it is easy to get the desired result.
To prove the necessity in the statement on equality let ξ and η be defined by (17) and

(18), respectively. It is easy to see that

E ξ2 =
m1M1(m1m2 + M1M2)

m1M2 + M1m2
,

E η2 =
m2M2(m1m2 + M1M2)

m1M2 + M1m2
,

E ξη =
2m1m2M1M2

m1M2 + M1m2
,

whence we obtain an equality in (16).
Inequality (16) becomes an equality if inequalities (6) and (19) become equalities.

Assume that m1m2 < M1M2 (the theorem is obvious otherwise). Then

P

(
ξ

η
∈

{
m1

M2
,
M1

m2

})
= 1,(a)

E ξ2 = m1M1(m2M2)−1 E η2.(b)

Relation (a) holds if and only if there exist events A, B ∈ F, A ∪ B = Ω, A ∩ B = ∅,
such that

(20) ξ = m1IA(ω) + M1IB(ω), η = m2IB(ω) + M2IA(ω).
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Substituting (20) into (b) we obtain

P(A)
M1/m1

=
P(B)

M2/m2
,

that is,

P(A) =
M1m2

m1M2 + M1m2
, P(B) =

M2m1

m1M1 + M1m2
.

Thus relations (17) and (18) are proved. �

Corollary 2.1 (Weighted Pólya–Szegő type inequality for sums). Assume that

0 < m1 ≤ xk ≤ M1, k = 1, . . . , n, 0 < m2 ≤ yl ≤ M2, l = 1, . . . , m.

Also let pkl ≥ 0 and
∑n

k=1

∑n
l=1 pkl = 1. Then

(21)
n∑

k=1

x2
kqk

m∑
l=1

y2
l rl ≤

1
4

(√
m1m2

M1M2
+

√
M1M2

m1m2

)2 (
n∑

k=1

m∑
l=1

xkylpkl

)2

where
m∑

l=1

pkl = qk, k = 1, . . . , n,

n∑
k=1

pkl = rl, l = 1, . . . , m.

Inequality (21) becomes an equality if and only if m = n and

κ =
M1m2n

m1M2 + M1m2
∈ N0,(22)

xi1 = · · · = xiκ
= m1, xiκ+1 = · · · = xin

= M1,

yi1 = · · · = yiκ
= M2, yiκ+1 = · · · = yin

= m2, ij ∈ {1, . . . , n},(23)

pkl = 0, (k, l) ∈ {i1, . . . , iκ} × {iκ+1, . . . , in} ∪ {iκ+1, . . . , in} × {i1, . . . , iκ}.(24)

Proof. Let a random vector (ξ, η) be defined on a probability space (Ω,P(Ω), P) and

0 < (ξ, η) ∼ P{ξ = xk, η = yl} = pkl.

Applying (16) we easily prove (21).
The statement on equality easily follows from conditions (22)–(24), since m = n. �

The Kantorovich inequality is a particular case of the weighted Pólya–Szegő inequality
for sums (see [4]). Putting m = n, x2

j = γj , y2
k = γ−1

k , we obtain 0 <
√

µ ≤ γk ≤
√

M
where m1 = µ and M1 = M . If

(25) pkl =
u2

k∑n
j=1 u2

j

δkl, k, l = 1, . . . , n,

where uk �= 0 for at least one k, then we get the Kantorovich inequality from (21):

n∑
j=1

γju
2
j

n∑
j=1

u2
j

γj
≤ 1

4

(√
µ

M
+

√
M

µ

)2 ( n∑
j=1

u2
j

)2

(see also [6, p. 61]).
For m = n we define the weights pkl similarly to (25). Then

n∑
k=1

x2
ku2

k

n∑
k=1

y2
ku2

k ≤ 1
4

(√
m1m2

M1M2
+

√
M1M2

m1m2

)2 ( n∑
k=1

xkyku2
k

)2

,

which is exactly the Greub and Rheinboldt result (see [3] and [6, p. 61]).
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Putting m = n and pkl = n−1δkl we obtain from (21) the classical weighted Pólya–
Szegő inequality for sums:

(26)
n∑

k=1

x2
k

n∑
k=1

y2
k ≤ 1

4

(√
m1m2

M1M2
+

√
M1M2

m1m2

)2 ( n∑
k=1

xkyk

)2

for all positive real numbers xk and yk, k = 1, . . . , n, bounded as in Corollary 2.1 (see
for example, [6, pp. 60–61], [8]).

The condition for the equality is simpler in this case (as compared to Corollary 2.1),
namely (26) becomes an equality under conditions (22)–(24).

Corollary 2.2 (Weighted Pólya–Szegő inequality for integrals). Let f and g be positive
Borel functions such that

(27)
0 < m1 ≤ f(x) ≤ M1 and 0 < m2 ≤ g(y) ≤ M2

for almost all (x, y) ∈ [a, b] × [c, d].

Let w(x, y) be a nonnegative weight function with supp(w) = [a, b] × [c, d]. Put∫ d

c

w(x, y) dy = w1(x),
∫ b

a

w(x, y) dx = w2(y).

Then

(28)

∫ b

a
f2(x)w1(x) dx

∫ d

c
g2(y)w2(y) dy(∫ b

a

∫ d

c
f(x)g(y)w(x, y) dx dy

)2 ≤ 1
4

(√
m1m2

M1M2
+

√
M1M2

m1m2

)2

.

Inequality (28) becomes an equality if and only if [a, b] ≡ [c, d] and

(29) f(x) = m1χS(x) + M1χ[a,b]\S(x), g(y) = M2χ[a,b]\S(y) + m2χS(y),

for some Borel set S ⊆ [a, b] whose Lebesgue measure is such that

(30) |S| =
M1m2(b − a)

m1M2 + M1m2
,

and

(31) w(x, y) = 0 for all (x, y) ∈ S2 ∪ ([a, b] \ S)2.

Since the proof of inequality (28) is similar to that of Corollaries 1.2 and 2.1, we omit
it.

Remark 3. If [a, b] = [c, d] and (ξ, η) ∼ w(x, y) = (b − a)−1χ[a,b]2(x, y)δxy, then

(32)

∫ b

a
f2(x) dx

∫ b

a
g2(x) dx(∫ b

a
f(x)g(x) dx

)2 ≤ 1
4

(√
m1m2

M1M2
+

√
M1M2

m1m2

)2

for all f, g ∈ L2[a, b] such that

0 < m1 ≤ f(x) ≤ M1, 0 < m2 ≤ g(x) ≤ M2.

If functions f and g satisfy conditions (30) and (31), then inequality (32) becomes an
equality, and vice versa. Inequality (32) is proved by Pólya and Szegő (see [8, pp. 71 and
253–255, Problem 93]). Note that the case of equality in (32) is not studied in [8].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



120 TIBOR K. POGÁNY

4. Rennie and Schweitzer inequalities

In this section we give a generalization of the Rennie and Schweitzer inequalities for
the probabilistic setting. There are two methods of proof of these results, namely

1) the proof based on the linearity and monotonicity of the operator E,
2) the proof based on an application of the Diaz–Metcalf and Pólya–Szegő inequal-

ities.

Let ζ be a positive and bounded random variable, that is,

P{m ≤ ζ ≤ M} = 1, m > 0.

Then

E
(
Mζ−1 − 1

)
(ζ − m) ≥ 0.

Thus

E ζ + mM E ζ−1 ≤ m + M.

The latter is a Rennie type inequality for positive bounded random variables. Accord-
ing to the arithmetic-mean–geometric-mean inequality, the left-hand side of the Rennie
inequality is greater than or equal to

2
√

mM E ζ E(1/ζ).

Hence

E ζ E ζ−1 ≤ (m + M)2

4mM
,

which is a Schweitzer type inequality.

Theorem 3. Let ζ be an almost surely positive bounded random variable defined on a
probability space (Ω, F, P), that is, m > 0 and P{m ≤ ζ ≤ M} = 1. Then

(33) E ζ + mM E ζ−1 ≤ m + M

where the inequality becomes an equality if and only if ζ = mIA(ω)+MIΩ\A(ω) for some
random event A ∈ F. Moreover

(34) E ζ E ζ−1 ≤ (m + M)2

4mM

where the inequality becomes an equality if and only if ζ = mIA(ω)+MIΩ\A(ω) for some
random event A ∈ F such that P(A) = 1

2 .

Proof. It is necessary to put ξ2 = ζ = η−2 in (6) and (16). �

The following result is given in [9] without any discussion of the case of equality (see
also [6, p. 63]).

Corollary 3.1 (Rennie inequality for sums). Let xj, 1 ≤ j ≤ n, be positive real numbers
and let πj ≥ 0 for all 1 ≤ j ≤ n and

∑n
j=1 πj = 1. Then

(35)
n∑

j=1

xjπj + mM

n∑
j=1

πj

xj
≤ m + M,

where m and M are the minimal and maximal terms of the sequence {xj}.
Inequality (35) becomes an equality if and only if xj ∈ {m, M}, j = 1, . . . , n.
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Proof. Consider a random variable ζ with the distribution P{ζ = xj} = πj . Apply-
ing (34) we get (35).

Let I ⊆ {1, . . . , n}. Put xj = m for j ∈ I and xj = M for j �∈ I. Since
n∑

j=1

xjπj + mM
n∑

j=1

πj

xj
= m

∑
j∈I

πj + M
∑
j �∈I

πj + mM

(
1
m

∑
j∈I

πj +
1
M

∑
j /∈I

πj

)
= m + M,

Corollary 3.1 is proved. �

Corollary 3.2 (Rennie inequality for integrals). Let f, 1/f ∈ L1
w[a, b] where w(x) ≥ 0

and
∫ b

a
w(x) dx = 1. If 0 < m ≤ f(x) ≤ M for all x ∈ [a, b], then

(36)
∫ b

a

f(x)w(x) dx + mM

∫ b

a

w(x)
f(x)

dx ≤ m + M.

The inequality becomes an equality if and only if f(x) = mχS(x)+Mχ[a,b]\S(x) for some
Borel set S ⊆ [a, b].

Corollary 3.3 (Weighted Schweitzer inequality for sums). Let

0 < m ≤ xj ≤ M, πj ≥ 0, j = 1, . . . , n,

and moreover
∑n

j=1 πj = 1. Then

(37)
n∑

j=1

xjπj

n∑
j=1

πj

xj
≤ (m + M)2

4mM
.

The inequality becomes an equality if and only if n is even (n = 2λ),
∑λ

l=1 πl = 1/2, and

xj1 = · · · = xjλ
= m, xjλ+1 = · · · = xjn

= M, jl ∈ {1, . . . , n}.

Corollary 3.4 (Weighted Schweitzer inequality for integrals). Let

f ∈ L1
w[a, b] and 1/f ∈ L1

w[a, b]

where w(x) ≥ 0 and
∫ b

a
w(x) dx = 1. If 0 < m ≤ f(x) ≤ M for all x ∈ [a, b], then

(38)
∫ b

a

f(x)w(x) dx

∫ b

a

w(x)
f(x)

dx ≤ (m + M)2

4mM
.

The inequality becomes an equality if and only if f(x) = mχS(x)+Mχ[a,b]\S(x) for some
Borel set S ⊆ [a, b] whose Lebesgue measure |S| is equal to (b − a)/2.

The Schweitzer inequality can be found in [10] for both sums and integrals. If a
random variable

ξ ∼ P{ξ = xj} = πj = 1/n, j = 1, . . . , n,

is defined on some probability space (Ω,P(Ω), P), then (34) implies that
n∑

j=1

xj

n∑
j=1

1
xj

≤ (m + M)2n2

4mM
,

which coincides with the Schweitzer inequality for sums.
If ξ ∼ U [a, b] in (39), that is, w(x) = (b − a)−1χ[a,b](x), then∫ b

a

f(x) dx

∫ b

a

dx

f(x)
≤ (m + M)2

4mM
(b − a)2.

This is the original Schweitzer inequality proved in [10]. Other related results can be
found in [6, pp. 60–61], [8, pp. 71 and 253–255].
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