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Abstract

In this paper we present a new iterative projection method for finding the closest
point in the intersection of convex sets to any arbitrary point in a Hilbert space. This
method, termed AAMR for averaged alternating modified reflections, can be viewed as
an adequate modification of the Douglas–Rachford method that yields a solution to the
best approximation problem. Under a constraint qualification at the point of interest,
we show strong convergence of the method. In fact, the so-called strong CHIP fully
characterizes the convergence of the AAMR method for every point in the space. We
report some promising numerical experiments where we compare the performance of
AAMR against other projection methods for finding the closest point in the intersection
of pairs of finite dimensional subspaces.

Keywords Best approximation problem, convex set, projection, reflection, nonexpan-
sive mapping, Douglas–Rachford algorithm, feasibility problem

MSC2010: 47H09, 47N10, 90C25

1 Introduction

Given two nonempty closed and convex subsets A, B of a Hilbert space H and any point
q ∈ H, we are interested in solving the best approximation problem of finding the closest
point to q in A ∩B; i.e.,

Find p ∈ A ∩B such that ‖p− q‖ = inf
x∈A∩B

‖x− q‖. (1)

For any pair of parameters α, β ∈ ]0, 1[, we introduce the averaged alternating modified re-
flections operator (AAMR operator), which is the operator TA,B,α,β : H 7→ H given by

TA,B,α,β := (1− α)I + α(2βPB − I)(2βPA − I), (2)

where I denotes the identity mapping and PA and PB denote the projectors (best approxi-
mation operators) onto A and B, respectively.

Given any initial point x0 ∈ H, we define a new projection method termed averaged
alternating modified reflections (AAMR) method, which is iteratively defined by

xn+1 := TA−q,B−q,α,β(xn), n = 0, 1, 2 . . . (3)
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If A ∩B 6= ∅, under the constraint qualification

q − PA∩B(q) ∈ (NA +NB)(PA∩B(q)),

where NA and NB denote the normal cones to the sets A and B, respectively, we shall show
(Theorem 4.1) that the sequence generated by (3) weakly converges to a point x⋆ such that

PA(x
⋆ + q) = PA∩B(q),

and the shadow sequence (PA(xn + q))∞n=0 is strongly convergent to PA∩B(q), and thus solves
problem (1). Even though we show that the so-called strong conical hull intersection property
(strong CHIP in short, see Definition 2.2) of {A,B} at the point PA∩B(q) is sufficient but
not necessary for the convergence of the AAMR method (see Example 4.1), the strong CHIP
turns out to be the precise condition to be required for the convergence of the AAMR method
for every point q ∈ H (see Theorem 4.1 and Proposition 4.1).

The AAMR operator (2) can be viewed as a modification of the Douglas–Rachford
operator (also known as averaged alternating reflections operator), which is the operator
DRA,B,α : H → H given by

DRA,B,α := (1− α)I + α(2PB − I)(2PA − I). (4)

The iterative method defined by the Douglas–Rachford operator is known to be weakly
convergent to a point whose projection onto the set A belongs to A ∩ B (see [47]), and the
shadow sequence defined by the scheme is also weakly convergent to the projection onto A
of that point (see [55]). Surprisingly, though, the slight modification 2βPB − I and 2βPA− I
in the reflector operators 2PB − I and 2PA − I completely changes the dynamics of the
sequence generated by the scheme. It permits to find, not only a point in the intersection
of convex sets, but the closest point in the intersection to any arbitrary point in the space
and, moreover, it forces the strong convergence of the shadow sequence.

Different projection methods have been proposed in the literature for solving the best
approximation problem (1). For a very recent bibliography of papers and monographs on
projection methods, we recommend [26]. Probably, the most well-known of these schemes is
the method of alternating projections (MAP), which was originally introduced by John von
Neumann [49] for solving the best approximation problem with two closed linear subspaces.
For closed affine subspaces, the sequence generated by MAP is strongly convergent to the
solution of (1). The method has been widely studied and generalized by many authors; see,
e.g., [8, 21, 31, 38, 43, 45, 46] and the monographs [12, 25, 32, 37]. Although MAP is also
weakly convergent for arbitrary convex sets (see [42, 17, 48]), it only solves the feasibility
problem in this more general setting; that is, it only finds some point in the intersection of
the sets, but this point does not need to be the projection onto the intersection of the point
of interest. Similarly, the Douglas–Rachford method (DRM) mentioned above can be used
to solve the best approximation problem for two closed affine subspaces, but for arbitrary
convex sets it only finds a point in the intersection. This scheme was originally introduced in
connection with partial differential equations arising in heat conduction [35]. The DRM has
recently gained much popularity, in part thanks to its good behavior in non-convex settings;
see, e.g., [1, 2, 3, 4, 16, 19, 20, 22, 41, 51]. For very recent results on the behavior of the
algorithm in the inconsistent case, see [18].

For the general case of arbitrary convex sets, Dykstra’s algorithm arose as a suitable
modification of MAP that forces strong convergence to the solution of the best approximation
problem, see [9]. It was first proposed by Dykstra in [36] for closed and convex cones in finite-
dimensional Euclidean spaces, and then extended by Boyle and Dykstra in [23] for closed
and convex sets in a Hilbert space. For the case of affine subspaces, Dykstra’s algorithm
coincides with MAP (see, e.g., [32, pp. 215–216]).
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There are other approaches based on projection algorithms to solve best approximation
problems. For instance, the Haugazeau-like algorithms introduce a projector onto the inter-
section of two halfspaces, which can be explicitly computed, combined in a suitable manner
with another projection algorithm. This combination ensures the strong convergence of the
algorithm. Haugazeau’s algorithm on its basic form was first proposed in [40]. Thanks to
the weak-to-strong convergence principle given in [11], different modifications of the method
have been introduced. Another method is the one proposed by Halpern [39], whose strong
convergence to the solution under different conditions for the parameters has been proved by
different authors. The main contributions are due to Lions, Wittmann and Bauschke, see [7]
for details. As a result, this algorithm is sometimes called the Halpern–Lions–Wittmann–
Bauschke (HLWB) method. It is also worth to mention the work of Combettes [30], where a
Douglas–Rachford-like strongly convergent algorithm is proposed to compute the resolvent
of the sum of maximally monotone operators. Particularly, under the same constraint quali-
fication (strong CHIP) that is needed for AAMR to converge, the scheme can be applied for
solving best approximation problems. This method is discussed in Section 5, where we reveal
some similarities and differences with respect to AAMR. A good variety of best approxima-
tion methods has been recently collected in [16, Section 4.2], see also [12, Chapter 29].

Observe that all the projection methods mentioned above, with the exception of Com-
bettes’ algorithm, produce an iterative sequence that converges to a point from which one
can obtain the projection of the initial point of the sequence onto the intersection of the sets.
Unlike in these schemes, the initial point in the AAMR method can be arbitrarily chosen in
the space. Further, it is important to point out that, in general, the set of fixed points of the
operator TA,B,α,β is not equal to the intersection of the sets of fixed points of the operators
2βPB−I and 2βPA−I. Therefore, the operator TA,B,α,β does not belong to the broad family
of operators studied in [53], see Remark 3.2(ii) for additional details.

The paper is organized as follows. Some preliminary concepts and auxiliary results are
presented in Section 2. In Section 3 we analyze the main properties of the AAMR operators.
We introduce the new projection scheme in Section 4, where our main convergence results are
collected. In Section 5 we show how finitely many sets can be handled through a standard
product space formulation. Various numerical experiments performed on finite-dimensional
subspaces are presented in Section 6. Finally, conclusions and future work are drawn in
Section 7.

2 Preliminaries

Throughout this paper our setting is the real Hilbert space H equipped with the inner
product 〈·, ·〉 and the induced norm ‖ · ‖. We abbreviate norm convergence of sequences in
H with → and we use ⇀ for weak convergence. The range of an operator T is denoted by
ranT := T (H) (with closure ran T ), the set of fixed points of T is denoted by FixT := {x ∈
H |x ∈ T (x)}, and its set of zeros by zerT := {x ∈ H | 0 ∈ T (x)}. For a subset A of H,
we denote by intA, riA, coreA and coneA the interior of A, the relative interior of A, the
algebraic interior of A and the cone generated by A, respectively; i.e.,

coreA = {a ∈ A | ∀x ∈ H, ∃ε > 0 such that a+ λx ∈ A, ∀λ ∈ [−ε, ε]} ,

coneA = {λa | λ ≥ 0, a ∈ A} .

We denote by A and A⊥ the closure and the orthogonal complement of the set A, respectively;
i.e.,

A⊥ = {x ∈ H | 〈a, x〉 = 0, ∀a ∈ A}.

Given a nonempty subset C ⊆ H and x ∈ H, a point p ∈ C is said to be a best
approximation to x from C if
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‖p− x‖ = d(x,C) := inf
c∈C

‖c− x‖.

If a best approximation in C exists for every point in H, then C is proximal. If every
point x ∈ H has exactly one best approximation p, then C is Chebyshev and p is called the
projection of x onto C. In this case, the projector is the operator PC that maps every x ∈ H
to its unique projection onto C, that is PC(x) = p.

Fact 2.1. Let C ⊆ H be nonempty, closed and convex. Then the following hold.

(i) C is Chebyshev.

(ii) For every x ∈ H,

p = PC(x) ⇔ p ∈ C and 〈c− p, x− p〉 ≤ 0 for all c ∈ C.

(iii) For every x ∈ H and λ ≥ 0,

PC (PC(x) + λ (x− PC(x))) = PC(x).

(iv) For every y ∈ H, Py+C(x) = y + PC(x− y).

(v) For every λ ∈ R, PλC(λx) = λPC(x).

Proof. See, e.g., [12, Theorem 3.14, Proposition 3.17 and Proposition 3.19] and [31, 2.7].

Definition 2.1. Let D be a nonempty subset of H and let T : D 7→ H. The operator T is
said to be

(i) nonexpansive if
‖T (x)− T (y)‖ ≤ ‖x− y‖, ∀x, y ∈ D;

(ii) firmly nonexpansive if

‖T (x)− T (y)‖2 + ‖(I − T )(x)− (I − T )(y)‖2 ≤ ‖x− y‖2, ∀x, y ∈ D,

or, equivalently,

〈x− y, T (x)− T (y)〉 ≥ ‖T (x)− T (y)‖2, ∀x, y ∈ D;

(iii) γ-cocoercive for γ > 0 if γT is firmly nonexpansive, i.e.,

〈x− y, T (x)− T (y)〉 ≥ γ‖T (x)− T (y)‖2, ∀x, y ∈ D;

(iv) contractive if there exists some constant 0 ≤ κ < 1 such that

‖T (x)− T (y)‖ ≤ κ‖x− y‖, ∀x, y ∈ D;

(v) quasi-nonexpansive if

‖T (x)− y‖ ≤ ‖x− y‖, ∀x ∈ D, ∀y ∈ FixT ;

(vi) strictly quasi-nonexpansive if

‖T (x)− y‖ < ‖x− y‖, ∀x ∈ D\FixT, ∀y ∈ FixT ;
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(vi) α-averaged for α ∈ ]0, 1[, if there exists a nonexpansive operator R : D 7→ H such that

T = (1− α)I + αR.

Remark 2.1. Firm nonexpansiveness implies nonexpansiveness, which itself implies quasi-
nonexpansiveness. The converse implications are not true. For more, see [12, Chapter 4].

Fact 2.2. Let D be a nonempty subset of H and let T : D 7→ H. The following hold:

(i) T is firmly nonexpansive ⇔ 2T − I is nonexpansive.

(ii) If T is α-averaged, then T is nonexpansive and strictly quasi-nonexpansive. Moreover,
if α ∈

]

0, 12
]

then T is firmly nonexpansive.

Proof. See, e.g., [12, Proposition 4.2, Remark 4.24, Remark 4.26 and Remark 4.27].

Fact 2.3. Let C ⊆ H be nonempty, closed and convex. Then the projector operator PC is
firmly nonexpansive. Moreover, if C is a closed subspace, then PC is a linear mapping.

Proof. See, e.g., [12, Proposition 4.8] and [32, Theorem 5.13].

Fact 2.4. Let D ⊆ H be nonempty, closed and convex, and let T : D 7→ H be nonexpansive.
Then, FixT is a closed and convex set.

Proof. See, e.g., [12, Corollary 4.15].

In the next result we consider a Krasnosel’skĭı–Mann iteration. The second part is a
straightforward consequence of [30, Theorem 2.1], which is a refinement of the algorithm
proposed by Lions and Mercier in [47].

Fact 2.5. Let T1, T2 : H 7→ H be firmly nonexpansive operators, let (λn)
∞
n=0 be a sequence

in [0, 1], and let x0 ∈ H. Consider T := (2T2 − I)(2T1 − I) and suppose FixT 6= ∅. Set

xn+1 = (1− λn)xn + λnT (xn) for n = 0, 1, 2 . . . .

Then the following hold:

(a) If
∑

n≥0 λn(1− λn) = +∞ for all n ≥ 0, then

(i) (xn+1 − xn)
∞
n=0 converges strongly to 0.

(ii) (xn)
∞
n=0 converges weakly to a point in FixT .

(b) Suppose that T1 is γ-cocoercive for some γ > 1 and infn≥0 λn > 0. Then (T1(xn))
∞
n=0

converges strongly to the unique point in T1(FixT ).

Proof. (a) This is a Krasnosel’skĭı–Mann algorithm (see, e.g., [12, Theorem 5.14]), and T is
nonexpansive by Fact 2.2.
(b) Since T1 and T2 are firmly nonexpansive, by [12, Corollary 23.8], the operators Ai :=
T−1
i − I are maximally monotone (see e.g. [12, Definition 20.20]) and satisfy Ti = JAi

, for
i = 1, 2, where JAi

= (I + Ai)
−1 is the resolvent of Ai. By [12, Proposition 25.1], we have

zer(A1 + A2) = JA1(Fix((2JA2 − I)(2JA1 − I))) = T1(FixT ) 6= ∅. By assumption, T1 is
γ-cocoercive for some γ > 1. Then, by [12, Proposition 23.11], we know that A1 is (γ − 1)-
strongly monotone (i.e., A1−(γ−1)I is monotone). Hence, (b) is a direct consequence of [30,
Theorem 2.1(ii)(b)].
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Fact 2.6. Let T : H → H be a nonexpansive linear operator and let x0 ∈ H. Set xn+1 =
T (xn), n = 0, 1, 2 . . . Then

xn → PFixT (x0) ⇔ xn − xn+1 → 0.

Proof. See, e.g., [12, Proposition 5.27].

Fact 2.7. Given α ∈ ]0, 1[, let T : H 7→ H be an α-averaged operator. For any x ∈ H, the
following hold:

(i) (Tn(x)− Tn+1(x))∞n=0 converges in norm to the unique element of minimum norm in
ran(I − T );

(ii) FixT = ∅ ⇔ ‖Tn(x)‖ → +∞.

Proof. (i) See [6, Corollary 2.3], [50, Corollary 2]. (ii) See [6, Corollary 2.2].

Let C ⊂ H be a nonempty convex set and let x ∈ H. The normal cone mapping to C is
given by

NC(x) : x 7→

{

{u ∈ H | 〈u, c− x〉 ≤ 0, ∀c ∈ C} if x ∈ C,
∅ otherwise.

The nearest point projection can be characterized by the normal cone.

Fact 2.8. Let C ⊆ H be a nonempty closed and convex set, and let x and p be points in H.
Then,

p = PC(x) ⇔ x− p ∈ NC(p).

Proof. See, e.g., [12, Proposition 6.46].

The following notion, coined by Chui, Deutsch and Ward in [28, 29] and developed by
Deutsch, Li and Ward in [34], has been widely studied in the literature, see also [32].

Definition 2.2. Let C and D be two closed and convex subsets of H. The pair of sets
{C,D} is said to have the strong conical hull intersection property (or the strong CHIP) at
x ∈ C ∩D if

NC∩D(x) = NC(x) +ND(x).

We say {C,D} has the strong CHIP if it has the strong CHIP at each x ∈ C ∩D.

For relationships between strong CHIP and the so-called bounded linear regularity prop-
erty in Euclidean spaces, which plays an important role in the rate of convergence of projec-
tion algorithms, see [10, 44].

Next we show a sufficient condition for the strong CHIP in terms of the epigraph of the
support function. Recall that, given a nonempty subset C of H, the support function σC is
defined by σC(x) = supc∈C〈c, x〉 for x ∈ H. The epigraph of a function f : H → R ∪ {+∞}
is the set epi f defined by

epi f = {(x, r) ∈ H × R | f(x) ≤ r}.

Fact 2.9. Let C and D be two closed and convex subsets of H. Then {C,D} has the strong
CHIP if one of the following conditions hold:

(i) If the set epiσC + epiσD is weakly closed (which holds e.g. if (intD) ∩ C 6= ∅, 0 ∈
core(C −D) or cone(C −D) is a closed subspace);

(ii) If H is finite dimensional and (riC) ∩ (riD) 6= ∅.
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Proof. See [24, Theorem 3.1, Proposition 3.1], [54, Corollary 23.8.1].

Finally, we present some useful results that characterize the strong CHIP for closed
subspaces.

Fact 2.10. Let M1,M2 ⊆ H be closed subspaces. Then the following hold:

(i) For all x ∈ M1, one has NM1(x) = M⊥
1 ;

(ii) (M1 ∩M2)
⊥ = M⊥

1 +M⊥
2 .

Proof. See, e.g., [32, Theorem 4.5 and Theorem 4.6].

Definition 2.3. Let U, V be two closed subspaces in H. The Friedrichs angle between U and
V is the angle in [0, π2 ] whose cosine is

cF (U, V ) := sup
{

|〈u, v〉| : u ∈ U ∩ (U ∩ V )⊥, v ∈ V ∩ (U ∩ V )⊥, ‖u‖ ≤ 1, ‖v‖ ≤ 1
}

.

Fact 2.11. Let U, V be two closed subspaces in H. Then

{U, V } has the strong CHIP ⇐⇒ U+V is closed ⇐⇒ U⊥+V ⊥ is closed ⇐⇒ cF (U, V ) < 1.

In particular, the latter holds if U or V has finite dimension or finite codimension.

Proof. See, e.g., [32, Therorem 9.35 and Corollary 9.37] and Fact 2.10.

3 The averaged alternating modified reflections operator

We begin this section with the following simple result that motivates the definition of what
we call a modified reflection.

Proposition 3.1. Let D be a nonempty subset of H and let T : D 7→ H. If T is firmly
nonexpansive, then 2βT − I is nonexpansive for any β ∈ ]0, 1].

Proof. Since T is firmly nonexpansive, the operator βT is firmly nonexpansive for any β ∈
]0, 1]. The result follows from Fact 2.2(i).

Definition 3.1. Let C be a nonempty closed convex set. Given any β ∈ ]0, 1], the operator
2βPC − I is called a modified reflector operator. The case β = 1 is known as the reflector
and is denoted by RC := 2PC − I.

Remark 3.1. For any β ∈ ]0, 1] and any x ∈ H, one has

(2βPA − I)(x) = βRA(x) + βx− x = βRA(x) + (1− β)(−x);

that is, (2βPA − I)(x) is a convex combination of RA(x) and −x (see Figure 1).

The next result shows that the modified reflector operators have a unique fixed point.

Proposition 3.2. Let C ⊆ H be nonempty, closed and convex, and let β ∈ ]0, 1[. Then

Fix(2βPC − I) = {βPC(0)} .

Proof. First, notice that y ∈ Fix(2βPC − I) if and only if βPC(y) = y; that is, the set of
Fix(2βPC − I) = Fix(βPC). Since βPC(0) = PC(0) + (1− β)(0−PC(0)), with 1− β > 0, we
deduce from Fact 2.1(iii) that PC(βPC(0)) = PC(0). Thus, βPC(0) ∈ Fix(2βPC − I). The
uniqueness directly follows from the fact that βPC is a contraction, by Fact 2.3.
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Definition 3.2. Let A,B ⊆ H be nonempty, closed and convex sets. Given α, β ∈ ]0, 1[, we
define the averaged alternating modified reflections (AAMR) operator TA,B,α,β : H 7→ H as

TA,B,α,β := (1− α)I + α(2βPB − I)(2βPA − I). (5)

Where there is no ambiguity, we will abbreviate the notation of the operator TA,B,α,β by Tα,β.

Proposition 3.3. If A,B ⊆ H are nonempty, closed and convex sets, then Tα,β is α-averaged
for all α, β ∈ ]0, 1[, and thus nonexpansive and strictly quasi-nonexpansive. Moreover, if
α ∈ ]0, 1/2], then Tα,β is firmly nonexpansive.

Proof. It is straightforward, in view of Proposition 3.1 and Fact 2.2(ii).

A geometric interpretation of the AAMR operator TA,B,α,β is shown in Figure 1, which
was created with Cinderella [27]. It is important to emphasize that we require β < 1 in
the definition of the AAMR operator. The case β = 1 in (5) corresponds with the Douglas–
Rachford operator DRA,B,α = (1 − α)I + αRBRA, whose behavior is remarkably different.
In particular, one has PA(FixDRA,B,α) = A ∩ B, while PA(FixTα,β) ( A ∩ B, as we show
in the next remark.

Figure 1: Geometric interpretation of the modified reflector operator 2βPA − I and the
AAMR operator Tα,β .

Remark 3.2. (i) Observe that FixTα,β = Fix((2βPB − I)(2βPA − I)) for all α ∈ ]0, 1[ . In
fact, x ∈ FixTα,β if and only if

x = Tα,β(x) = (1− α)x+ α(2βPB − I)(2βPA(x)− x)

= (1− α)x+ 2αβPB(2βPA(x)− x)− α(2βPA(x)− x)

= x+ 2αβPB(2βPA(x)− x)− 2αβPA(x);
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that is,
x ∈ FixTα,β ⇔ PB(2βPA(x)− x) = PA(x). (6)

As a consequence, we have PA(FixTα,β) ⊂ A∩B. In general, though, PA(FixTα,β) 6= A∩B.
For a simple example, consider A := R2 and B := {(x1, x2) ∈ R2 | x1 = 1}, and choose any
β ∈ ]0, 1[ . Then, it can be easily checked using (6) that FixTα,β = {(1, 0)} and

PA(FixTα,β) = PA({(1, 0)}) = {(1, 0)} 6= A ∩B = B.

(ii) As a consequence of Proposition 3.2, Fix(2βPA − I) ∩ Fix(2βPB − I) = ∅ whenever
PA(0) 6= PB(0). Hence, in general,

FixTα,β = Fix ((2βPB − I)(2βPA − I)) 6= Fix(2βPA − I) ∩ Fix(2βPB − I).

For instance, consider the same example as in (i). By Proposition 3.2, we have Fix(2βPA −
I) = {(0, 0)} and Fix(2βPB − I) = {(β, 0)}, while FixTα,β = {(1, 0)}.

Therefore, the operator TA,B,α,β does not belong to the broad family of operators studied
by Reich and Zalas in [53], which covers many projection algorithms, because they consider
the general problem of finding x ∈

⋂n
i=1 FixUi 6= ∅ for some quasi-nonexpansive operators

Ui : H → H.

The following result shows that, in fact, the fixed points of the AAMR operator Tα,β are
very special.

Proposition 3.4. Let A,B ⊆ H be nonempty, closed and convex sets, and let α, β ∈ ]0, 1[.
If x ∈ FixTα,β, then A ∩B 6= ∅ and

PA(x) = PA∩B(0).

Proof. If x ∈ FixTα,β , we know by (6) that

PA(x) = PB(2βPA(x)− x),

which implies PA(x) ∈ A ∩ B. Using twice the characterization of the projections given in
Fact 2.1(ii), we obtain

〈y − PA(x), x− PA(x)〉 ≤ 0, ∀y ∈ A, (7)

〈y − PA(x), 2βPA(x)− x− PA(x)〉 ≤ 0, ∀y ∈ B. (8)

Inequalities (7) and (8) hold simultaneously for any y ∈ A ∩ B. Then, by adding them, we
deduce

〈y − PA(x),−2(1− β)PA(x)〉 ≤ 0, ∀y ∈ A ∩B.

As β < 1, the factor 2(1− β) is strictly positive and can be removed. Therefore,

〈y − PA(x),−PA(x)〉 ≤ 0, ∀y ∈ A ∩B.

By Fact 2.1(ii), we conclude that PA(x) = PA∩B(0).

In the next theorem we present a constraint qualification that characterizes the nonempti-
ness of the set of fixed points of the AAMR operators.

Theorem 3.1. Let A,B ⊆ H be nonempty closed and convex sets, and let α, β ∈ ]0, 1[.
Then,

FixTα,β 6= ∅ ⇔ A ∩B 6= ∅ and − PA∩B(0) ∈ (NA +NB) (PA∩B(0)) .

9



Proof. To prove the direct implication, pick any x ∈ FixTα,β . Then, by Proposition 3.4, we
have A ∩B 6= ∅ and

PA∩B(0) = PA(x) = PB(2βPA(x)− x).

Thus, by Fact 2.8, we deduce

x− PA∩B(0) ∈ NA(PA∩B(0))

and
(2β − 1)PA∩B(0)− x = 2βPA(x)− x− PA∩B(0) ∈ NB(PA∩B(0)).

By taking dA := 1
2(1−β) (x− PA∩B(0)) and dB := 1

2(1−β) ((2β − 1)PA∩B(0)− x), we get

−PA∩B(0) = dA + dB,

with dA ∈ NA(PA∩B(0)) and dB ∈ NB(PA∩B(0)), as claimed.
To prove the converse implication, assume that A ∩ B 6= ∅, and let dA ∈ NA(PA∩B(0))

and dB ∈ NB(PA∩B(0)) be such that

− PA∩B(0) = dA + dB. (9)

Take
x := PA∩B(0) + 2(1− β)dA. (10)

As β < 1, we have 2(1− β)dA ∈ NA(PA∩B(0)). Then, by Fact 2.8, we get

PA(x) = PA (PA∩B(0) + 2(1− β)dA) = PA∩B(0). (11)

Hence,
2βPA(x)− x = 2βPA∩B(0)− PA∩B(0)− 2(1− β)dA

= PA∩B(0) + 2(1− β)(−PA∩B(0)− dA).
(12)

Now, by combining (9) and (12), we have

2βPA(x)− x = PA∩B(0) + 2(1− β)dB. (13)

Then, we use again Fact 2.8 in (13) to obtain

PB(2βPA(x)− x) = PA∩B(0). (14)

Finally, from (11) and (14), we deduce

PA(x) = PB(2βPA(x)− x), (15)

which implies x ∈ FixTα,β , by (6).

The following corollary is a direct consequence of Theorem 3.1 and characterizes the
nonemptiness of the set of fixed points of the AAMR operators defining our iterative methods.

Corollary 3.1. Let A,B ⊆ H be nonempty closed and convex sets, and let α, β ∈ ]0, 1[.
Then for any q ∈ H,

FixTA−q,B−q,α,β 6= ∅ ⇔ A ∩B 6= ∅ and q − PA∩B(q) ∈ (NA +NB) (PA∩B(q)) .
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Proof. According to Theorem 3.1, FixTA−q,B−q,α,β 6= ∅ if and only if,

(A− q) ∩ (B − q) 6= ∅ and − P(A−q)∩(B−q)(0) ∈ (NA−q +NB−q)
(

P(A−q)∩(B−q)(0)
)

.

Observe that (A − q) ∩ (B − q) = (A ∩ B) − q. Then (A − q) ∩ (B − q) 6= ∅ ⇔ A ∩ B 6= ∅.
Now, by Fact 2.1(iv), we have

−P(A∩B)−q(0) = −PA∩B(q) + q,

and then,

(NA−q +NB−q)
(

P(A∩B)−q(0)
)

= (NA +NB)
(

P(A∩B)−q(0) + q
)

= (NA +NB) (PA∩B(q)) ,

which completes the proof.

The next result shows that, when PA(0) = PB(0), any point in the segment with end
points PA(0) and (2β − 1)PA(0) is a fixed point of the mapping Tα,β . Thus, if PA(0) =
PB(0) 6= 0, the mapping Tα,β has multiple fixed points.

Proposition 3.5. Let A,B ⊆ H be nonempty, closed and convex, and let α, β ∈ ]0, 1]. The
following hold.

(i) If PA(0) ∈ B, then (2β − 1)PA(0) ∈ FixTα,β.

(ii) If PB(0) ∈ A, then PB(0) ∈ FixTα,β.

(iii) If PA(0) = PB(0), then

(1− 2λ(1− β))PA(0) ∈ FixTα,β for all λ ∈ [0, 1].

Proof. (i) This assertion can be deduced from the second part of Theorem 3.1. Indeed, if
PA(0) ∈ B, then PA∩B(0) = PA(0). Since −PA(0) ∈ NA(PA(0)), we may take dA := −PA(0)
and dB := 0 and (9) holds. Thus, taking x as in (10), we have

x = PA(0)− 2(1− β)PA(0) = (2β − 1)PA(0),

which is a fixed point of Tα,β by (15).
(ii) Analogous to the previous one.
(iii) Use (i) and (ii) together with Fact 2.4.

Next, we show some results regarding the range of the operator I − TA,B,α,β , which will
be useful later having in mind Fact 2.7.

Lemma 3.1. Let A,B ⊆ H be nonempty, closed and convex sets, and let α, β ∈ ]0, 1[. Then

(i) x− TA,B,α,β(x) = 2αβ (PA(x)− PB(2βPA(x)− x)) , ∀x ∈ H;

(ii) ran(I − TA,B,α,β) = ran(I − TA+q,B+(2β−1)q,α,β) + 4αβ(β − 1)q, ∀q ∈ H.

Proof. Assertion (i) is straightforward from the definition of TA,B,α,β: for any x ∈ H, we
have

x− TA,B,α,β(x) = x− (1− α)x− α(2βPB − I)(2βPA − I)(x)

= α (x− (2βPB(2βPA(x)− x) + 2βPA(x)− x)

= 2αβ (PA(x)− PB(2βPA(x)− x)) .

11



To prove (ii), pick any x, q ∈ H. By using the translation formula for projections given
in Fact 2.1(iv), we obtain

PA(x)− PB(2βPA(x)− x)

= PA+q(x+ q)− q − PB(2βPA+q(x+ q)− 2βq − x)

= PA+q(x+ q)− q − PB+(2β−1)q(2βPA+q(x+ q)− x− q) + (2β − 1)q

= PA+q(x+ q)− PB+(2β−1)q (2βPA+q(x+ q)− (x+ q)) + 2(β − 1)q.

Therefore, by assertion (i), we get

(I − TA,B,α,β) (x) =
(

I − TA+q,B+(2β−1)q,α,β

)

(x+ q) + 4αβ(β − 1)q, ∀x ∈ H,

and we are done.

Theorem 3.2. Let A,B ⊆ H be nonempty, closed and convex sets, and let α, β ∈ ]0, 1[.
Suppose that one of the following holds:

(i) H is finite-dimensional.

(ii) intA 6= ∅ or intB 6= ∅;

Then the unique element of minimum norm in ran (I − Tα,β) is 2αβv, where v = PA−B(0).

Proof. Let w be the unique element of minimum norm in ran(I − Tα,β). By Lemma 3.1(i),
we have ran(I − Tα,β) ⊆ 2αβ(A−B), which implies w ∈ (2αβ)A−B.

Suppose that (i) holds. Pick any a ∈ riA, b ∈ riB and set qa,b := a−b
2(β−1) . Then, by

Lemma 3.1(ii), we have

ran (I − TA,B,α,β) = ran
(

I − TA+qa,b,B+(2β−1)qa,b,α,β

)

+ 2αβ(a− b), (16)

with

b+ (2β − 1)qa,b = b+
2β − 1

2(β − 1)
(a− b) = b+

(

1 +
1

2(β − 1)

)

(a− b)

= a+
a− b

2(β − 1)
= a+ qa,b;

i.e., we have a+ qa,b = b+(2β− 1)qa,b ∈ ri(A+ qa,b)∩ ri(B+(2β− 1)qa,b). Hence, according
to Fact 2.9(ii) and Theorem 3.1, the mapping TA+qa,b,B+(2β−1)qa,b,α,β has a fixed point and

therefore the unique element of minimum norm in ran
(

I − TA+qa,b,B+(2β−1)qa,b,α,β

)

is 0.
Hence, by (16), we deduce

‖w‖ = inf
{

‖z‖ : z ∈ ran
(

I − TA+qa,b,B+(2β−1)qa,b,α,β

)

+ 2αβ(a− b)
}

≤ 2αβ‖a− b‖+ inf
{

‖z‖ : z ∈ ran
(

I − TA+qa,b,B+(2β−1)qa,b,α,β

)}

= 2αβ‖a− b‖,

(17)

and this holds for every a ∈ riA and every b ∈ riB.
Now, choose any a ∈ A, b ∈ B. Then, there exist two sequences {an} ⊂ riA, {bn} ⊂ riB

such that an → a and bn → b, and by (17), we get

2αβ‖a− b‖ = 2αβ
∥

∥

∥ lim
n→∞

(an − bn)
∥

∥

∥ = 2αβ lim
n→∞

‖an − bn‖ ≥ ‖w‖.
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Thus, since (2αβ)−1w ∈ A−B and ‖(2αβ)−1w‖ ≤ ‖a− b‖, for all a ∈ A and b ∈ B, it must
be that (2αβ)−1w = PA−B(0), which proves (i).

To prove the result when (ii) holds, if intA 6= ∅ (intB 6= ∅), then take any a ∈ intA
and b ∈ B (a ∈ A and b ∈ intB) and repeat the proof of the previous case using Fact 2.9(i)
instead of Fact 2.9(ii).

We conclude this section by presenting some translation formulas for the AAMR operators
in the special case when both sets are closed affine subspaces.

Proposition 3.6. Let A,B ⊆ H be closed affine subspaces with nonempty intersection. Let
y ∈ A ∩B and let α, β ∈ ]0, 1[. Then, for any x ∈ H,

TA,B,α,β(x) = TA−y,B−y,α,β(x) + TA,B,α,β(0), (18)

and
TA,B,α,β(x) = TA−y,B−y,α,β(x− z∗) + z∗, ∀z∗ ∈ FixTA,B,α,β . (19)

Furthermore, one has

FixTA,B,α,β = z∗ + FixTA−y,B−y,α,β , ∀z∗ ∈ FixTA,B,α,β. (20)

Proof. Because A− y and B − y are closed linear subspaces of H, then PA−y and PB−y are
linear mappings (see Fact 2.3). Denote the modified reflector operator onto any set C ⊂ H
by Qβ,C := 2βPC − I. Then, the mappings Qβ,A−y and Qβ,B−y are also linear. Further, for
any z ∈ H, by Fact 2.1(iv), we have

Qβ,A(z) = 2βPA(z)− z = 2βPA−y(z − y) + 2βy − z

= 2βPA−y(z)− z + 2β(PA−y(−y) + y)

= Qβ,A−y(z) + 2βPA(0) = Qβ,A−y(z) +Qβ,A(0).

Similarly, we get Qβ,B(z) = Qβ,B−y(z) + Qβ,B(0). Combining these equalities together and
using the linearity of Qβ,B−y, we obtain

Qβ,BQβ,A(x) = Qβ,B (Qβ,A−y(x) +Qβ,A(0))

= Qβ,B−yQβ,A−y(x) +Qβ,B−yQβ,A(0) +Qβ,B(0)

= Qβ,B−yQβ,A−y(x) +Qβ,BQβ,A(0),

which implies (18).
Now take z∗ ∈ FixTA,B,α,β. Then, by (18), we have

z∗ = TA,B,α,β(z
∗) = TA−y,B−y,α,β(z

∗) + TA,B,α,β(0).

By replacing TA,B,α,β(0) = −TA−y,B−y,α,β(z
∗) + z∗ in (18) and using the linearity of the

operator TA−y,B−y,α,β , we obtain (19).
The last assertion easily follows from (19). Indeed, for any z∗ ∈ FixTA,B,α,β , one has

w⋆ ∈ FixTA,B,α,β ⇔ TA,B,α,β(w
⋆) = w⋆ ⇔ TA−y,B−y,α,β(w

⋆ − z⋆) + z⋆ = w⋆

⇔ w⋆ − z⋆ ∈ FixTA−y,B−y,α,β ,

which implies (20).
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4 New projection scheme for finding the closest point in the

intersection

In the main result of this section we show that the iterative methods defined by the AAMR
operators in (3) are weakly convergent to a fixed point of the operators, and the shadow
sequences (PA(q + xn))

∞
n=0 are strongly convergent to the solution to problem (1).

Theorem 4.1. Let A,B ⊆ H be nonempty closed and convex sets. Fix any α, β ∈ ]0, 1[.
Given q ∈ H, choose any x0 ∈ H and consider the sequence defined by

xn+1 = TA−q,B−q,α,β(xn), n = 0, 1, 2 . . . (21)

Then, if A ∩B 6= ∅ and q − PA∩B(q) ∈ (NA +NB) (PA∩B(q)), the following assertions hold

(i) the sequence (xn)
∞
n=0 is weakly convergent to a point x⋆ ∈ FixTA−q,B−q,α,β such that

PA(q + x⋆) = PA∩B(q); (22)

(ii) the sequence (xn+1 − xn)
∞
n=0 is strongly convergent to 0;

(iii) the sequence (PA(q + xn))
∞
n=0 is strongly convergent to PA∩B(q).

Otherwise, ‖xn‖ → ∞.
Furthermore, if both A and B are closed affine subspaces with nonempty intersection and

q − PA∩B(q) ∈ (A − A)⊥ + (B − B)⊥, then the sequence (xn)
∞
n=0 is strongly convergent to

PFixTA−q,B−q,α,β
(x0).

Proof. By Corollary 3.1, we know that FixTA−q,B−q,α,β 6= ∅. The projector operators PA−q

and PB−q are firmly nonexpansive by Fact 2.3. Then, as β ∈ ]0, 1[, the operators T1 := βPA−q

and T2 := βPB−q are also firmly nonexpansive, and moreover 1
β
-cocoercive (with 1

β
> 1).

Observe that TA−q,B−q,α,β = (1−α)I +α(2T2 − I)(2T1 − I), with Fix((2T2 − I)(2T1 − I)) =
FixTA−q,B−q,α,β 6= ∅. Hence, we can use Fact 2.5 with λn := α to show that the operator
TA−q,B−q,α,β has a fixed point x⋆ such that the sequence defined by (21) satisfies

xn ⇀ x⋆ ∈ FixTA−q,B−q,α,β , xn+1 − xn → 0 and βPA−q(xn) → βPA−q(x
⋆).

Moreover, by Proposition 3.4, we have

PA−q(x
⋆) = P(A−q)∩(B−q)(0),

which, by Fact 2.1(iv), is equivalent to

PA(q + x⋆) = PA∩B(q),

and thus PA(q + xn) → PA∩B(q). This concludes the proof of statements (i)–(iii).
The case where FixTA−q,B−q,α,β = ∅ easily follows from Corollary 3.1 and Fact 2.7, since

TA−q,B−q,α,β is α-averaged, according to Proposition 3.3.
Finally, assume that both A and B are closed affine subspaces. By Fact 2.10(i), we have

NA(x) = NA−x(0) = (A− x)⊥ = (A−A)⊥, for all x ∈ A.

Hence, NA(x) = (A−A)⊥ for all x ∈ A, and likewise, NB(x) = (B−B)⊥ for all x ∈ B. There-
fore, we have q − PA∩B(q) ∈ (NA +NB)(PA∩B(q)), which implies that FixTA−q,B−q,α,β 6= ∅.
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Thus, taking y ∈ A ∩ B and z∗ ∈ FixTA−q,B−q,α,β , since y − q ∈ (A − q) ∩ (B − q), we can
apply Proposition 3.6 recursively to get

xn = Tn
A−q,B−q,α,β(x0) = Tn

A−y,B−y,α,β(x0 − z∗) + z∗.

By assertion (ii), we know that

Tn+1
A−y,B−y,α,β(x0 − z⋆)− Tn

A−y,B−y,α,β(x0 − z⋆) = xn+1 − xn → 0.

Since TA−y,B−y,α,β is linear, by Fact 2.6, we deduce

Tn
A−y,B−y,α,β(x0 − z∗) → PFixTA−y,B−y,α,β

(x0 − z∗).

Consequently,

xn = Tn
A−q,B−q,α,β(x0) → PFixTA−y,B−y,α,β

(x0 − z∗) + z∗ = PFixTA−q,B−q,α,β
(x0),

where the last equality holds by Fact 2.1(iv) and Proposition 3.6.

Remark 4.1. If any of the conditions given in Fact 2.9 or in Fact 2.11 hold, then the
constraint qualification q−PA∩B(q) ∈ (NA+NB) (PA∩B(q)) holds at every point q ∈ H, and
the convergence of the sequence defined by (21) is guaranteed.

Remark 4.2. (i) Observe that Theorem 4.1(iii) still holds for α = 1, since Corollary 3.1
remains valid for α = 1 and λn := 1 satisfies the hypothesis of Fact 2.5(b).
(ii) It is straightforward to construct a version of the AAMR algorithm where the value
of α may vary across the iterations. Specifically, Theorem 4.1(i)–(iii) still holds if one
replaces (21) by the iterative method

xn+1 = TA−q,B−q,αn,β(xn) = (1− αn)xn + αn(2βPB − I)(2βPA − I)(xn), n = 0, 1, 2 . . .

where {αn}n≥0 ⊂ ]0, 1[ satisfies
∑∞

n=0 αn(1− αn) = +∞ and infn≥0 αn > 0.
(iii) Similarly, it is easy to include errors in the AAMR scheme as in [30], by using in the
proof of Theorem 4.1 a version of Fact 2.5 with errors (see [30, Theorem 2.1]).

In [34, Theorem 3.2] and [32, Theorem 10.13], the existence of a point x⋆ satisfying (22)
for every q ∈ H is proved to be equivalent to the strong CHIP, for the particular case
where B = L−1(b), for some bounded linear operator L from H into a finite-dimensional
Hilbert space Y and b ∈ Y . In addition, Deutsch an Ward propose in [34] a steepest descent
method with line search for finding the point x⋆, whose linear convergence is proved under
the additional assumption that C is polyhedral.

If the sets A and B, with nonempty intersection, have the strong CHIP at the point
PA∩B(q), then trivially q − PA∩B(q) ∈ (NA + NB) (PA∩B(q)) and the scheme converges.
However, in the following example we show that the strong CHIP is not a necessary condition
for the AAMR method to converge for a particular point q ∈ H.

Example 4.1. Consider the setting H = R2, A := (1, 1) + B and B := (−1, 1) + B. The
pair of sets {A,B} does not have strong CHIP at any point, since A ∩B = {(0, 1)} and

(NA +NB)((0, 1)) = R× {0} 6= R2 = NA∩B((0, 1)).

If we take any q ∈ R× {1}, then

q − PA∩B(q) = q − (0, 1) ∈ R× {0} = (NA +NB)(PA∩B(q)),

and by Theorem 4.1, the AAMR method defined by (21) will generate a sequence that con-
verges to a point x⋆ such that PA(x

⋆+ q) = {(0, 1)}. On the other hand, if q 6∈ R×{1}, then
q − PA∩B(q) 6∈ (NA + NB)(PA∩B(q)), and the sequence (xn)

∞
n=0 generated by (21) will not

converge, having ‖xn‖ → ∞.
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We have seen that even when the strong CHIP does not hold, the method can converge
for a particular point q ∈ H. However, the following result says that if we want the method
to converge for every point in H, the strong CHIP will have to be required.

Proposition 4.1. Let A,B ⊆ H be nonempty, closed and convex subsets with nonempty
intersection. Then the following are equivalent:

(i) {A,B} has the strong CHIP;

(ii) for all q ∈ H,
q − PA∩B(q) ∈ (NA +NB)(PA∩B(q)).

Proof. Assume (ii). Take x ∈ A ∩ B and let y ∈ NA∩B(x). By Fact 2.8, PA∩B(x + y) = x.
Hence, by (ii), we have

y = x+ y − PA∩B(x+ y) ∈ (NA +NB)(PA∩B(x+ y)).

Therefore NA∩B(x) ⊆ (NA+NB)(x). Since x is arbitrary in A∩B and the reverse inclusion
always holds, then {A,B} has the strong CHIP, which proves that (ii)⇒(i). The opposite
implication clearly holds by Fact 2.8.

We finish this section with the following consequence of Theorem 3.2, which holds even
when A ∩B = ∅.

Corollary 4.1. Let A,B ⊆ H nonempty closed and convex, let α, β ∈ ]0, 1[ and let x0 ∈ H.
For any q ∈ H, consider the iterated sequence defined by

xn+1 = TA−q,B−q,α,β(xn), n = 0, 1, 2, . . .

Suppose that one of the following holds:

(i) H is finite-dimensonal;

(ii) intA 6= ∅ or intB 6= ∅.

Then, the sequence (xn − xn+1)
∞
n=0 converges in norm to 2αβPA−B(0).

Proof. Use Fact 2.7 together with Theorem 3.2.

5 Finitely many sets

In this section we show how to apply the AAMR method to the case of finitely many sets.
Let C1, . . . , Cr ⊂ H be nonempty, closed and convex subsets of H. Given any q ∈ H, we are
interested in solving the problem

Find p = P⋂r
i=1 Ci

(q). (23)

To solve problem (23) with the AAMR method, we use the following well-known Pierra’s
product-space reformulation [52]. Consider the product space Hr and define the sets

C :=
r
∏

i=1

Ci, D := {(x, x, . . . , x) ∈ Hr : x ∈ H}.
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While the set D, sometimes called the diagonal, is always a closed subspace, the properties
of C are largely inherited. For instance, C is nonempty, closed and convex. Since

p ∈
r
⋂

i=1

Ci ⇔ (p, p, . . . , p) ∈ C ∩D,

by Fact 2.1(ii), we have the following equivalent reformulation of problem (23):

Find p such that (p, p, . . . , p) = PC∩D(q, q, . . . , q).

Moreover, knowing the projections onto C1, . . . , Cr, the projections onto C and D can be
easily computed. Indeed, for any x = (x1, . . . , xr) ∈ Hr, we have

PC(x) = (PC1(x1), . . . , PCr(xr)) ,

and,

PD(x) =

(

1

r

r
∑

i=1

xi, . . . ,
1

r

r
∑

i=1

xi

)

,

see [52, Lemma 1.1]. For further details see, for example, [3, Section 3].
Therefore, the AAMR operators

TD,C,α,β = (1− α)I + α(2βPC − I)(2βPD − I)

can be readily computed whenever PC1 , PC2 , . . . , PCr can be.
To derive our main result regarding the convergence of the AAMR method for finitely

many sets, we will use the following characterization to rewrite the constraint qualification
in the product space.

Lemma 5.1. For every x = (x, x, . . . , x) ∈ C ∩D,

(NC(x) +ND(x)) ∩D =

(

r
∑

i=1

NCi
(x)

)r

∩D.

Proof. Let x = (x, x, . . . , x) ∈ C ∩ D. Since C is the product of r sets and D is a closed
subspace of Hr, we have

NC(x) = NC1(x)×NC2(x)× · · · ×NCr(x),

ND(x) = D⊥ =

{

u ∈ Hr :

r
∑

i=1

ui = 0

}

.

To prove the direct inclusion, pick any y = (y, y, . . . , y) ∈ (NC(x) +ND(x)) ∩D. Then,

y ∈ NCi
(x) + ui, for i = 1, . . . , r,

with
∑r

i=1 ui = 0. Thus, as NCi
(x) are all cones, we have y ∈

∑r
i=1NCi

(x), which yields
y ∈ (

∑r
i=1NCi

(x))r.
To prove the reverse inclusion, pick any y = (y, y, . . . , y) ∈ (

∑r
i=1NCi

(x))r. Then, there
exists di ∈ NCi

(x), for each i = 1, . . . , r, such that y =
∑r

i=1 di. Let d := (d1, d2, . . . , dr) ∈
NC(x) and u := (u1, u2, . . . , ur), where ui := y − rdi, for each i = 1, . . . , r. Since

r
∑

i=1

ui =
r
∑

i=1

(y − rdi) = ry − r
n
∑

i=1

di = 0,

we have u ∈ D⊥. Hence, y = rd+ u ∈ NC(x) +ND(x).
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We are now ready to derive the following theorem of convergence of the AAMR method
for the case of finitely many sets.

Theorem 5.1. Let C1, C2, . . . , Cr ⊆ H be nonempty closed and convex sets. Fix any
α, β ∈ ]0, 1[. Given q ∈ H, choose any x0 ∈ Hr and consider the sequence (xn)

∞
n=0 =

(xn,1, . . . , xn,r)
∞
n=0, defined by

xn+1 = TD,
∏r

i=1(Ci−q),α,β(xn), n = 0, 1, 2, . . . (24)

Then, if
⋂r

i=1Ci 6= ∅ and q− P⋂r
i=1 Ci

(q) ∈
∑r

i=1NCi

(

P⋂r
i=1 Ci

(q)
)

, the following assertions

hold:

(i) the sequence (xn)
∞
n=0 is weakly convergent to a point x⋆ = (x⋆1, . . . , x

⋆
r) ∈ FixTD,

∏r
i=1(Ci−q),α,β

such that

P⋂r
i=1 Ci

(q) = q +
1

r

r
∑

j=1

x⋆j ;

(ii) the sequence
(

q + 1
r

∑r
j=1 xn,j

)∞

n=0
is strongly convergent to P⋂r

i=1 Ci
(q).

Otherwise, ‖xn‖ → ∞.
Furthermore, if C1, C2, . . . , Cr are closed affine subspaces with nonempty intersection

satisfying q−P⋂r
i=1 Ci

(q) ∈
∑r

i=1(Ci−Ci)
⊥, then the sequence (xn)

∞
n=0 is strongly convergent

to PFixTD,
∏r

i=1
(Ci−q),α,β

(x0).

Proof. Let q := (q, q, . . . , q) ∈ Hr. Observe that C−q =
∏r

i=1(Ci−q) and D−q = D, since
D is a subspace containing q. Therefore, the operator defining the iteration (24) is simply
TD−q,C−q,α,β . Observe also that

⋂r
i=1Ci 6= ∅ if and only if C ∩D 6= ∅.

Let p := P⋂r
i=1 Ci

(q). Then, p := (p, p, . . . , p) = PC∩D(q). Moreover, by Lemma 5.1, we
have

q− p ∈ NC(p) +ND(p) ⇔ q − p ∈
r
∑

i=1

NCi
(p).

The result thus follows from Theorem 4.1.

Remark 5.1. (i) The order of action of the projections onto D and C chosen in Theorem 5.1
makes the shadow sequence PD(xn+q) to lay in the diagonal. In this way, it can be identified
with a sequence in the original space to be monitored; concretely, the sequence



q +
1

r

r
∑

j=1

xn,j





∞

n=0

→ P⋂r
i=1 Ci

(q).

(ii) Thanks to Lemma 5.1, it is straightforward to prove an analogous result to Proposi-
tion 4.1, showing that strong CHIP of {C1, . . . , Cn} characterizes the weak convergence of
the iterative method (24) for every point q ∈ H.

Let us now show some similarities (and differences) between AAMR and a method in-
troduced by Combettes in [30]. In this work, the author proposed a strongly convergent
algorithm for computing the resolvent of a finite sum of maximally monotone operators.
When these operators are chosen as the normal cones of closed and convex sets and the
strong CHIP holds, the resolvent of the sum of the operators is nothing but the projection
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onto the intersection of the sets. The algorithm introduced in [30, Theorem 2.8] also relies
on the product space Hr and is defined by the recurrence

zn+1 =

(

1−
λn

2

)

zn +
λn

2
RD

(

2PC

(

zn + γq

γ + 1

)

− zn

)

, (25)

xn+1 = PDPC(zn+1), (26)

for γ > 0, and (λn)n≥0 ∈ ]0, 2] such that infn≥0 λn > 0. Observe that, by the dilatation
formula in Fact 2.1(v) and the linearity of RD given by Fact 2.3, we have

RD

(

2PC

(

zn + γq

γ + 1

)

− zn

)

= RD

(

2
1

γ + 1

(

P(γ+1)C−γq (zn) + γq
)

− zn

)

= RD

(

2
1

γ + 1
P(γ+1)C−γq (zn)− zn

)

+RD

(

2
γ

γ + 1
q

)

= RD

(

2
1

γ + 1
P(γ+1)C−γq (zn)− zn

)

+ 2
γ

γ + 1
q.

Thus, setting β := 1
1+γ

and αn := λn

2 , the recurrence in (25) can be expressed as

zn+1 = (1− αn) zn + αnRD

(

2βP 1
β
C−

1−β
β

q
(zn)− zn

)

+ 2αn(1− β)q; (27)

or equivalently, in terms of the AAMR operator (5),

zn+1 = T∏r
i=1

(

1
β
Ci−

1−β
β

q
)

,D,αn,β
(zn) + 2(1− β)αnPD

(

2βP 1
β
C−

1−β
β

q
(zn)− zn + q

)

, (28)

with β ∈ ]0, 1[ and αn ∈ ]0, 1]. The latter scheme clearly differs from AAMR, even when
q = 0.

6 Numerical Experiments

In this section we show the results of four different numerical experiments with the common
setting of finding the projection of an arbitrary point onto the intersection of two closed
subspaces U and V in the Euclidean space H = R50 such that U ∩ V 6= {0}. We compare
the new AAMR method with Combettes’ method (CM) given by (26)–(27), the method
of alternating projections (MAP), the Douglas–Rachford method (DRM) and Haugazeau’s
method in its basic form (see, e.g., [13, equation (18)]), and we test the influence of the
parameter β in the behavior of the AAMRmethod to see which value gives better convergence
results. We have also tested the HLWB method with parameters λn := 1/(n + 1) (see [7]),
but we only show the results obtained in Figure 7, as the method was clearly outperformed
by all the other algorithms in our experiments.

The rate of linear convergence of DRM for subspaces is known to be the cosine of the
Friedrichs angle [14, 15] (see Definition 2.3), while the rate of convergence of MAP is the
squared cosine, see [5, 31, 33]. It was then compulsory to take the Friedrichs angle into
consideration in our numerical experiments. In our tests we computed Friedrichs angles
from principal angles, see [15] for further information.

Observe that, for DRM and AAMR, the sequences of interest to be monitored are, re-
spectively,

(

PU (DRn
U,V (x0))

)∞

n=0
and

(

PU (T
n
U−x0,V−x0,α,β

(x0) + x0)
)∞

n=0
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as these are the sequences that converge to the desired point PU∩V (x0), while for MAP, CM
and Haugazeau’s method, the sequence (xi)

∞
n=0 given by the respective algorithm is directly

the sequence of interest. We used a stopping criterion based on the true error; that is,
we terminated the algorithms when the current iterate of the monitored sequence (zn)

∞
n=0

satisfies
dU∩V (zn) < ε

for the first time (in real situations this information is not usually available). As in the
numerical experiments in [14], the tolerance was set to ε := 10−3.

The purpose of our first experiment was to find out which value of α is optimal for AAMR
when it is applied to subspaces. To this aim, we randomly generated 1000 pairs of subspaces
and run AAMR with a random starting point for each value of α ∈ {0.01, 0.02, . . . , 0.99, 1}
and β ∈ {0.6, 0.7, 0.8, 0.9}. In Figure 2 we have plotted the best value α against the Friedrichs
angle, that is, the value of α for which AAMR was faster. For a fair comparison in the
subsequent tests, we performed the same experiment with CM.
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Figure 2: Best value of α with respect to the Friedrichs angle for 1000 pairs of random
subspaces for AAMR (left) and CM (right). For each β, the average value of the best α is
represented by a dashed line.

In Figure 3 we have plotted four prototypical examples of the number of iterations re-
quired by AAMR to find a solution for four different values of the Friedrichs angle. It can
be clearly seen in this figure that the optimal value of α for the DRM in (4) is 0.5, as it was
expected (see [15, Remark 3.11(i)]). For this reason, we set the value of α for the DRM to
0.5 in our subsequent experiments, and the value of α to 0.9 for AAMR, based on the results
shown in Figures 2 and 3. For CM, the best value of α seems to be more influenced by both
the value of β and the Friedrichs angle. Nonetheless, we set it to α = 0.9, as it appears to
be a sensible choice as well.

Our second experiment consisted in replicating some of the tests performed in [14] to
compare DRM and MAP, adding this time the results of the new AAMR method, CM and
Haugazeau’s method. We randomly generated 100 pairs of subspaces U and V in R50. For
each pair of subspaces, 10 random starting points (with Euclidean norm 10) were chosen
and each of the four methods were applied. As we realized that the parameter β had a big
influence in the behavior of the AAMR scheme, as can be observed in Figure 3, we computed
the sequences generated by the AAMR method for six different values of β (these values were
0.5, 0.6, 0.7, 0.8, 0.9 and 0.99). We did the same with CM, setting also the value of αn to
0.9 in (27). Although there is a freedom of choice for the initial point in the AAMR method
and CM, we took it as the point to be projected, as this is the starting point that needs to
be used by DRM, MAP and Haugazeau’s method. The results are shown in Figures 4 and
5. For each pair of subspaces, the horizontal axis represents the Friedrichs angle, and the
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(a) Friedrichs angle: 0.041 radians.

0.0 0.2 0.4 0.6 0.8 1.0
0

25

50

75

100

125

150

175

200

nu
m

be
r o

f i
te

ra
tio

ns

(b) Friedrichs angle: 0.283 radians.
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(c) Friedrichs angle: 0.61 radians.
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(d) Friedrichs angle: 1.001 radians.

Figure 3: Number of required iterations with respect to the value of α of DRM and AAMR
for three different values of the parameter β.

vertical axis represents the median (Fig. 4) or the standard deviation (Fig. 5) of the number
of iterations required to converge for 10 random initializations.

On one hand, we can deduce from Figure 4 that the rate of convergence of the AAMR
method depends on both the angle and the parameter β. For values of β above 0.7, there
exists an interval of small angles for which AAMR is the fastest method. For large angles,
MAP and Haugazeau’s method clearly outperforms DRM and AAMR. A simple example
showing this behavior is depicted in Figure 6.

We observe that MAP, DRM and Haugazeau’s method satisfy a decrease in the number
of iterations when the angle increases. Unfortunately, while the number of iterations in these
three methods keep on decreasing for large values of the angle, the AAMR method and CM
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Figure 4: Median of the required number of iterations with respect to the Friedrichs angle of
MAP, DRM, Haugazeau’s method, CM and AAMR for six different values of the parameter β.
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Figure 5: Standard deviation of the required number of iterations with respect to the
Friedrichs angle of MAP, DRM, Haugazeau’s method, CM and AAMR for six different
values of the parameter β.
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(a) Small angle. (b) Large angle.

Figure 6: Behavior of the AAMR (in green) and alternating projections (in red) algorithms
when applied to two lines in R2 for two different Friedrichs angles. We see that AAMR
outperforms MAP for small angles, while MAP is faster for large angles.

seem to have an asymptotic behavior around a horizontal line. That is, they need a minimum
number of iterations to converge whatever the angle is (although this number is not very
big). On the other hand, Figure 5 shows that the AAMR method is more robust in terms
of the standard deviation of the number of iterations. In fact, it seems that the larger the
value of β is, the more robust it becomes.

With the purpose of additionally comparing the rate of convergence of the methods, we
computed the distance of the first 100 iterates of the sequences to be monitored to the real
solution. We show the results of four instances with well-differentiated Friedrichs angles in
Figure 7. To improve the clarity and comprehensibility of the plots, we have not included
the results of CM as it was outperformed by AAMR. One might expect the AAMR method
to inherit the “rippling” behavior of the DRM, specially when β is large, which is when the
definition of the iterations of both methods are more similar. This is not entirely truth:
although the AAMR method indeed shows these “waves” in Figure 7, this behavior depends
on both the Friedrichs angle and the parameter β. Additionally, we see in this figure that the
AAMR method with a large parameter β clearly outperforms the other schemes when the
Friedrichs angle is small. The larger the angle becomes, the better MAP and Haugazeau’s
method behave. As pointed out by Bauschke et al. in [14], it is expected that MAP performs
better than DRM when the Friedrichs angle is large, as the rates of convergence of these
two methods when applied to subspaces U and V are, respectively, cF (U, V )2 and cF (U, V ).
Finally, we clearly observe in Figure 7 that HLWB is the slowest algorithm for solving this
problem.

In our third numerical experiment, we continued investigating how the parameter β
affects the number of iterations depending on the angle. In this experiment, 1000 pairs of
subspaces were generated. Then, for 10 random starting points, we ran the AAMR method
for every value of β in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. The results are shown in
Figure 8. One can see that values of β ≤ 0.4 are an inefficient choice, since β = 0.5 appears
to dominate them for every angle. Larger values of β work better for small angles, but the
performance of the method is worse for large angles for these large values of β.

In order to further analyze the influence of the parameter β, we decided to test which β
suits best each angle. In this fourth experiment we randomly generated 100 pairs of sub-
spaces in R50, choosing them so that their Friedrichs angles were approximately equally
distributed in

[

0, π2
]

(to this aim, we divided the interval
[

0, π2
]

into 100 subintervals and
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(a) Friedrichs angle: 0.074 radians.
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(b) Friedrichs angle: 0.314 radians.
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(c) Friedrichs angle: 0.751 radians.
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(d) Friedrichs angle: 1.367 radians.

Figure 7: Distance of the 100 first iterations of the monitored sequences of MAP, DRM,
HLWB, Haugazeau’s method and AAMR for five different values of the parameter β to the
real solution.

then we randomly chose one pair of subspaces whose Friedrichs angle belongs to each subin-
terval). To reduce the possible influence of any outlier, we randomly generated 100 starting
points (instead of 10) for each pair of subspaces and run the AAMR method for every β in
{0.4, 0.405, 0.41, . . . , 0.985, 0.99, 0.995}. Then, for each pair of subspaces, we selected the β
in the latter set that minimizes the median number of iterations for the 100 starting points.
Observe that this makes a total of 1.2 million runs of the AAMR method. Figure 9 con-
tains the results, where the optimal value of β is represented in the vertical axis, while the
Friedrichs angle of each pair of subspaces is represented in the horizontal axis. Additionally,
we represented in the same figure the least squares quadratic and exponential fitting curves.

25



0.0 0.2 0.4 0.6 0.8 1.0 1.2

Friedrichs angle (in radians)

100

101

102

103

104

105

106

N
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

β = 0.1

β = 0.2

β = 0.3

β = 0.4

β = 0.5

β = 0.6

β = 0.7

β = 0.8

β = 0.9

β = 0.99

Figure 8: Median number of iterations for 10 random starting points required by the AAMR
method for different values of the parameter β with respect to the Friedrichs angle.
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Figure 9: Optimal β with respect to the median number of iterations of the AAMR method
for 100 subspaces with different Friedrichs angles.

Finally, in Figure 10, we repeated the experiment shown in Figure 4. This time we used
the Friedrichs angle θ between each pair of subspaces to choose the value of the parameter β
in AAMR by using the exponential fitting curve obtained in Figure 9. For a more fair com-
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parison with the alternating projection method, we used the relaxed alternating projection
method (RAP)

Tµ := (1− µ)I + µPV PU ,

with µ = 2
1+sin2 θ

, which was shown in [15, Theorem 3.6] to be the parameter attaining the
smallest convergence rate of the latter scheme. For Douglas–Rachford, the optimal parameter
for every angle is always the classical one α = 1

2 (see [15, Remark 3.11]). Clearly, with the
exception of some very large angles, AAMR outperforms the other methods.
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Figure 10: Median of the required number of iterations with respect to the Friedrichs angle
of the relaxed alternating projection method with optimal parameter µ = 2

1+sin2 θ
, Douglas–

Rachford, Haugazeau’s method and AAMR for α = 0.9 and β = g(θ) = 0.596e−1.387θ+0.393,
where θ is the Friedrichs angle between each pair of subspaces.

All these experiments led us to recommend a choice of α = 0.9 and β ∈ [0.7, 0.8] for
general problems, as it seems to give good convergence results for both small and large
angles. Probably, a scheme adapting the value of the parameter β would be the best option.

7 Conclusions and future work

A new projection scheme for solving the best approximation problem, the averaged alter-
nating modified reflections (AAMR) method, was introduced and studied. Even though
each iteration of a AAMR method is very similar to the classical Douglas–Rachford method
(DRM), the AAMR scheme yields a solution to the best approximation problem, unlike
the DRM, which only gives a point in the intersection of the sets. Under a constraint
qualification, the method was proved to be strongly convergent to the solution to the best
approximation problem. The numerical experiments performed to find the closest point in
the intersection of two subspaces show that the new AAMR method outperforms the classical
method of alternating projections, the Douglas–Rachford method and Haugazeau’s method,
when the Friedrichs angle between the subspaces is small. These experiments also show that
a choice of the parameter α = 0.9 and β between 0.7 and 0.8 might be adequate for general
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purposes. Although the numerical tests we performed are promising, they are far from a
complete computational study. This motivate us to further analyze the rate of convergence
of the AAMR method in a future work, both numerically and analytically.

All the results in this work were done for closed and convex sets. Over the past decade,
the Douglas–Rachford method has proven to be very effective in some highly non-convex
settings [1, 2, 3, 4, 16, 19, 20, 22, 41, 51]. Because of the similarity of the AAMR scheme
and the Douglas–Rachford method, it would be interesting to explore whether it would be
possible to use the AAMR method as heuristic on non-convex feasibility problems, either
alone, or combined with the DRM to avoid possible cycles. We believe that the best choice
would be to use a scheme where the parameter β ∈ ]0, 1] is changed when the method does
not give an adequate progress.
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[48] Matoušková, E., Reich, S.: The Hundal example revisited. J. Nonlinear Convex Anal.
4(3), 411–427 (2003)

[49] Von Neumann, J.: Functional operators II: The geometry of orthogonal spaces. Prince-
ton University Press (1950). (Reprint of mimeographed lecture notes first distributed in
1933.)

[50] Pazy, A.: Asymptotic behavior of contractions in Hilbert space. Israel J. Math. 9,
235–240 (1971)

[51] Phan, H.M.: Linear convergence of the Douglas–Rachford method for two closed sets.
Optim. 65(2), 369–385 (2016)

[52] Pierra, G.: Decomposition through formalization in a product space. Math. Program.
28, 96–115 (1984)

[53] Reich, S., Zalas, R.: A modular string averaging procedure for solving the common
fixed point problem for quasi-nonexpansive mappings in Hilbert space. Numer. Algor.
72(2), 297–323 (2016)

[54] Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton, N.J. (1970)

[55] Svaiter, B. F.: On weak convergence of the Douglas–Rachford method. SIAM J. Control
Optim. 49(1), 280–287 (2011)

31


	1 Introduction
	2 Preliminaries
	3 The averaged alternating modified reflections operator
	4 New projection scheme for finding the closest point in the intersection
	5 Finitely many sets
	6 Numerical Experiments
	7 Conclusions and future work

