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Abstract. We propose a new projection algorithm for solving the variational inequality prob-
lem, where the underlying function is continuous and satisfies a certain generalized monotonicity
assumption (e.g., it can be pseudomonotone). The method is simple and admits a nice geometric
interpretation. It consists of two steps. First, we construct an appropriate hyperplane which strictly
separates the current iterate from the solutions of the problem. This procedure requires a single
projection onto the feasible set and employs an Armijo-type linesearch along a feasible direction.
Then the next iterate is obtained as the projection of the current iterate onto the intersection of
the feasible set with the halfspace containing the solution set. Thus, in contrast with most other
projection-type methods, only two projection operations per iteration are needed. The method is
shown to be globally convergent to a solution of the variational inequality problem under minimal
assumptions. Preliminary computational experience is also reported.
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1. Introduction. We consider the classical variational inequality problem [1, 3,
7] VI(F,C), which is to find a point x∗ such that

x∗ ∈ C, 〈F (x∗), x− x∗〉 ≥ 0 for all x ∈ C,(1.1)

where C is a closed convex subset of <n, 〈·, ·〉 denotes the usual inner product in <n,
and F : <n → <n is a continuous function. Let S be the solution set of VI(F,C),
which we assume to be nonempty. Let x∗ be any element of the solution set S. We
further assume that

〈F (x), x− x∗〉 ≥ 0 for all x ∈ C.(1.2)

It is clear that (1.2) is satisfied if F (·) is monotone; i.e.,

〈F (x)− F (y), x− y〉 ≥ 0 for all x, y ∈ <n.
More generally, (1.2) also holds if F (·) is pseudomonotone (as defined in [11]); i.e., for
all x, y ∈ <n

〈F (y), x− y〉 ≥ 0 =⇒ 〈F (x), x− y〉 ≥ 0.

Moreover, it is not difficult to construct examples where (1.2) is satisfied but F (·) is
not monotone or pseudomonotone everywhere. Typically, condition (1.2) holds under
some kind of generalized monotonicity assumptions on F (·), some of which are not
difficult to check (see [26, 25]).
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In the case when F (·) is strongly monotone and/or the feasible set C has some
special structure (e.g., C is the nonnegative orthant or, more generally, a box), there
exist many efficient methods that can be used to solve those special cases of VI(F,C)
(see [4, 5, 14, 18, 19, 20, 22, 23, 34, 36, 2, 16, 29, 15, 28, 27, 31]). In some of those meth-
ods, F (·) is further assumed to be differentiable, or Lipschitz continuous, or affine.
Sometimes it is also assumed that the method starts close enough to the solution set
(i.e., only local convergence is guaranteed). In the general case when F (·) and C do
not possess any special structure, relatively few methods are applicable. In that case,
projection-type algorithms are of particular relevance (we refer the reader to [32] for
a more detailed discussion). The oldest algorithm of this class is the extragradient
method proposed in [13] and later refined and extended in [10, 12, 17, 33, 9]. Some
new projection-type algorithms that appear to be more efficient than the extragradient
method were recently introduced in [32] (see also references therein).

In this paper, we are mainly concerned with the general case when the projection
operator

PC [x] := arg min
y∈C
‖y − x‖

is computationally expensive (i.e., one has to solve an optimization problem to find
a projection). Furthermore, we make no assumptions on the problem other than
continuity of F (·) and condition (1.2). In this setting, one of the important tasks
in devising efficient algorithms is to minimize the number of projection operations
performed at each iteration. We note that in the case when F (·) is not Lipschitz
continuous or the Lipschitz constant is not known, the extragradient method, as
described in [12, 17, 10, 33], requires a linesearch procedure to compute the stepsize,
with a new projection needed for each trial point. The same holds for the modified
projection-type method in [32]. Clearly, this can be very computationally expensive.
A novel idea to get around this inefficiency was proposed in [9] for the extragradient
method. Here we will use this idea to devise a new projection algorithm that has even
better properties, both theoretically and in our computational experience.

The algorithm proposed here allows a nice geometric interpretation, which is given
in Figure 1.1 for its simplest version. Suppose we have xi, a current approximation
to the solution of VI(F,C). First, we compute the point PC [xi − F (xi)]. Next, we
search the line segment between xi and PC [xi − F (xi)] for a point zi such that the
hyperplane ∂Hi := {x ∈ <n | 〈F (zi), x − zi〉 = 0} strictly separates xi from any
solution x∗ of the problem. A computationally inexpensive Armijo-type procedure
is used to find such zi. Once the hyperplane is constructed, the next iterate xi+1

is computed by projecting xi onto the intersection of the feasible set C with the
halfspace Hi := {x ∈ <n | 〈F (zi), x − zi〉 ≤ 0}, which contains the solution set S. It
can be seen that xi+1 thus computed is closer to any solution x∗ ∈ S than xi. At
each iteration, our algorithm uses one projection onto the set C (to construct the
separating hyperplane Hi), and one projection onto the intersection C ∩ Hi, which
gives the next iterate.

Before proceeding, we emphasize the differences between the method of [9] and
our Algorithms 2.1 and 2.2. First, the second projection step in our method is onto
the intersection C ∩ Hi. In [9], xi is projected first onto the separating hyperplane
∂Hi (this point is denoted by x̄i in Figure 1.1) and then onto C (in Figure 1.1,
the resulting point is denoted by PC [x̄i]). It can be verified that our iterate xi+1 is
closer to the solution set S than the iterate computed by the method of [9]. We also
avoid the extra work of computing the point x̄i. (Even though it can be carried out
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Fig. 1.1. The new projection method.

explicitly, this is still some extra work.) Furthermore, the search direction in our
method is not the same as in [9] for the following reasons. The search directions we
use here are PC [xi − µiF (xi)] − xi, where the stepsizes µi are chosen so that they
are of the same order as the stepsizes ηi generating separating hyperplanes Hi (see
Algorithm 2.2). The important point is that we allow both of them to go to zero if
needed (but at the same rate). Coordination of the two stepsizes proves to be very
significant in our computational experience (see section 3). We point out that [9]
does not permit the stepsizes to go to zero in the first projection step even if the
stepsizes generating the hyperplanes go to zero, and the proof there does not handle
this case. The above-mentioned modifications seem to make a drastic difference in the
numerical performance when our algorithm is compared to that of [9]. Our preliminary
computational experience with the new algorithm is quite encouraging and is reported
in section 3. However, we emphasize that comprehensive numerical study is not the
primary focus of this paper.

Finally, our convergence results are stated under the assumption (1.2), which is
considerably weaker than monotonicity of F (·) used in [9].

2. The algorithm and its convergence. We first note that solutions of VI(F,C)
coincide with zeros of the following projected residual function:

r(x) := x− PC [x− F (x)];

i.e., x ∈ S if and only if r(x) = 0.

We now formally state our algorithm described in section 1.

Algorithm 2.1. Choose x0 ∈ C and two parameters γ ∈ (0, 1) and σ ∈ (0, 1).

Having xi, compute r(xi). If r(xi) = 0, stop. Otherwise, compute

zi = xi − ηir(xi),

where ηi = γki , with ki being the smallest nonnegative integer k satisfying

〈F (xi − γkr(xi)) , r(xi)〉 ≥ σ‖r(xi)‖2.(2.1)
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Compute

xi+1 = PC∩Hi [x
i],

where

Hi = {x ∈ <n | 〈F (zi), x− zi〉 ≤ 0}.
The following well-known properties of the projection operator will be used below.
Lemma 2.1. (see [35]). Let B be any nonempty closed convex set in <n. For any

x, y ∈ <n and any z ∈ B the following properties hold.
1. 〈x− PB [x], z − PB [x]〉 ≤ 0.
2. ‖PB [x]− PB [y]‖2 ≤ ‖x− y‖2 − ‖PB [x]− x+ y − PB [y]‖2.

We start with a preliminary result. For now, we assume that the linesearch proce-
dure in Algorithm 2.1 is well defined. This fact will be formally established in Theorem
2.1.

Lemma 2.2. Suppose that the linesearch procedure (2.1) of Algorithm 2.1 is well
defined. Then it holds that

xi+1 = PC∩Hi [x̄
i],

where

x̄i = PHi [x
i].

Proof. Assuming that the point zi is well defined, by (2.1) we have that

〈F (zi), xi − zi〉 > 0.

It immediately follows that xi 6∈ Hi. Also, by (1.2), 〈F (zi), x∗−zi〉 ≤ 0 for any x∗ ∈ S
because zi = (1 − ηi)xi + ηiPC [xi − F (xi)] ∈ C by the convexity of C. Therefore,
x∗ ∈ Hi. Since also x∗ ∈ C, it follows that C ∩Hi 6= ∅. Because C ∩Hi is a closed
convex set that is nonempty, xi+1 = PC∩Hi [x

i] is well defined.
It can be further verified that

x̄i = PHi [x
i] = xi − 〈F (zi), xi − zi〉

‖F (zi)‖2 F (zi)

= xi − ηi〈F (zi), r(xi)〉
‖F (zi)‖2 F (zi).

Take any y ∈ C ∩ Hi. Since xi ∈ C but xi 6∈ Hi, there exist β ∈ [0, 1] such that
x̃ = βxi + (1− β)y ∈ C ∩ ∂Hi, where ∂Hi := {x ∈ <n | 〈F (zi), x− zi〉 = 0}. We have

‖y − x̄i‖2 ≥ (1− β)‖y − x̄i‖2
= ‖x̃− βxi − (1− β)x̄i‖2
= ‖x̃− x̄i‖2 + β2‖xi − x̄i‖2 − 2β〈x̃− x̄i, xi − x̄i〉
≥ ‖x̃− x̄i‖2,(2.2)

where the last inequality follows from Lemma 2.1 applied with B = Hi, x = xi, and
z = x̃ ∈ Hi. Furthermore, we have

‖x̃− x̄i‖2 = ‖x̃− xi‖2 − ‖xi − x̄i‖2
≥ ‖xi+1 − xi‖2 − ‖xi − x̄i‖2
= ‖xi+1 − x̄i‖2,(2.3)
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where the first equality is by x̄i = P∂Hi [x
i], x̃ ∈ ∂Hi, and Pythagoras’s theorem; the

inequality is by the fact that x̃ ∈ C ∩Hi and xi+1 = PC∩Hi [x
i]; and the last equality

is again by Pythagoras’s theorem. Combining (2.2) and (2.3), we obtain

‖y − x̄i‖ ≥ ‖xi+1 − x̄i‖ for all y ∈ C ∩Hi.

Hence, xi+1 = PC∩Hi [x̄
i].

We next prove our main convergence result.
Theorem 2.1. Let F (·) be continuous. Suppose the solution set S of VI(F,C)

is nonempty and condition (1.2) is satisfied.
Then any sequence {xi} generated by Algorithm 2.1 converges to a solution of

VI(F,C).
Proof. We first show that the linesearch procedure in Algorithm 2.1 is well defined.

If r(xi) = 0, then the method terminates at a solution of the problem. Therefore,
from now on, we assume that ‖r(xi)‖ > 0. Also note that xi ∈ C for all i. Suppose
that, for some i, (2.1) is not satisfied for any integer k, i.e., that

〈F (xi − γkr(xi)) , r(xi)〉 < σ‖r(xi)‖2 for all k.(2.4)

Applying Lemma 2.1 with B = C, x = xi − F (xi), z = xi ∈ C, we obtain

0 ≥ 〈xi − F (xi)− PC [xi − F (xi)], xi − PC [xi − F (xi)]〉
= ‖r(xi)‖2 − 〈F (xi), r(xi)〉.

Hence,

〈F (xi), r(xi)〉 ≥ ‖r(xi)‖2.(2.5)

Since xi − γkr(xi)→ xi as k →∞, and F (·) is continuous, passing onto the limit as
k →∞ in (2.4), we obtain

〈F (xi), r(xi)〉 ≤ σ‖r(xi)‖2.
But the latter relation contradicts (2.5) because σ < 1 and ‖r(xi)‖ > 0. Hence (2.1)
is satisfied for some integer ki.

Thus the linesearch step is well defined, and by Lemma 2.2 we know that the rest
of the method is as well. In particular, xi+1 = PC∩Hi [x̄

i], where x̄i = PHi [x
i]. By

Lemma 2.1 applied with B = C ∩Hi, x = x̄i, and z = x∗ ∈ S ⊂ C ∩Hi, we obtain

0 ≥ 〈x̄i − xi+1, x∗ − xi+1〉
= ‖xi+1 − x̄i‖2 + 〈x̄i − xi+1, x∗ − x̄i〉.

Hence,

〈x∗ − x̄i, xi+1 − x̄i〉 ≥ ‖xi+1 − x̄i‖2.
Therefore,

‖xi+1 − x∗‖2 = ‖x̄i − x∗‖2 + ‖xi+1 − x̄i‖2 + 2〈x̄i − x∗, xi+1 − x̄i〉
≤ ‖x̄i − x∗‖2 − ‖xi+1 − x̄i‖2
= ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2
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+

(
ηi〈F (zi), r(xi)〉
‖F (zi)‖

)2

− 2ηi〈F (zi), r(xi)〉
‖F (zi)‖2 〈F (zi), xi − x∗〉

= ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 −
(
ηi〈F (zi), r(xi)〉
‖F (zi)‖

)2

−2ηi〈F (zi), r(xi)〉
‖F (zi)‖2 〈F (zi), zi − x∗〉

≤ ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 −
(

ηiσ

‖F (zi)‖
)2

‖r(xi)‖4,(2.6)

where the last inequality follows from (2.1) and (1.2).
Now (2.6) implies that the sequence {‖xi − x∗‖} is nonincreasing. Therefore, it

converges. We further deduce that the sequence {xi} is bounded, and so is {zi}. Thus
there exists a constant M > 0 such that ‖F (zi)‖ ≤M for all i. Hence, from (2.6),

‖xi+1 − x∗‖2 ≤ ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 − (σ/M)2η2
i ‖r(xi)‖4.(2.7)

From convergence of {‖xi − x∗‖}, it follows from (2.7) that

lim
i→∞

ηi‖r(xi)‖ = 0.(2.8)

We consider the two possible cases. Suppose first that lim supi→∞ ηi > 0. For (2.8)
to hold it must then be the case that lim infi→∞ ‖r(xi)‖ = 0. Since r(·) is contin-
uous and {xi} is bounded, there exists x̂, an accumulation point of {xi}, such that
r(x̂) = 0. It follows that x̂ ∈ S and we can take x∗ = x̂ in the preceding arguments
and, in particular, in (2.7). Thus the sequence {‖xi − x̂‖} converges. Since x̂ is an
accumulation point of {xi}, it easily follows that {‖xi − x̂‖} converges to zero, i.e.,
that {xi} converges to x̂ ∈ S.

Suppose now that limi→∞ ηi = 0. By the choice of ηi we know that (2.1) was not
satisfied for ki − 1 (at least for i large enough, so that ηi < 1); i.e.,

〈F (xi − γ−1ηir(x
i)
)
, r(xi)〉 < σ‖r(xi)‖2 for all i ≥ i0.(2.9)

Let x̂ be any accumulation point of {xi} and {xij} be the corresponding subsequence
converging to x̂. Passing onto the limit in (2.9) along this subsequence, and using
(2.5), we obtain

σ‖r(x̂)‖2 ≥ 〈F (x̂), r(x̂)〉 ≥ ‖r(x̂)‖2,

implying that r(x̂) = 0, i.e., that x̂ ∈ S. Setting x∗ = x̂ in (2.7) and repeating the
previous arguments, we conclude that the whole sequence {xi} converges to x̂ ∈ S.
This completes the proof.

We next propose a modification of Algorithm 2.1 that is motivated by our com-
putational experience and appears to be more practical. For µ > 0, define

r(x, µ) := x− PC [x− µF (x)].

With this definition, we have r(x, 1) = r(x).
The idea is to use, for the first projection step at the current iteration, the stepsize

that is not too different from the stepsize computed at the previous iteration (a similar
technique was also used in [32, Algorithm 3.2]). Note that Algorithm 2.2 has a certain
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coordination between the stepsizes µi in the first projection step and ηi in the step
computing the separating hyperplane. For example, both of them can go to zero if
needed. This is in contrast with the method of [9], where the stepsize in the first
projection step can never go to zero, even when ηi does. We found this coordination
mechanism important in our computational results, reported in section 3. Note also
that both stepsizes can increase from one iteration to the next.

Algorithm 2.2. Choose x0 ∈ C, η−1 > 0, and three parameters γ ∈ (0, 1),
σ ∈ (0, 1), and θ > 1.

Having xi, compute r(xi, µi), where µi := min{θηi−1, 1}. If r(xi, µi) = 0, stop.
Otherwise, compute

zi = xi − ηir(xi, µi),
where ηi = γkiµi with ki being the smallest nonnegative integer k satisfying

〈F (xi − γkµir(xi, µi)) , r(xi, µi)〉 ≥ σ

µi
‖r(xi, µi)‖2.

Compute

xi+1 = PC∩Hi [x
i],

where

Hi = {x ∈ <n | 〈F (zi), x− zi〉 ≤ 0}.

Theorem 2.2. Let F (·) be continuous. Suppose that the solution set S of VI(F,C)
is nonempty and (1.2) is satisfied.

Then any sequence {xi} generated by Algorithm 2.2 converges to a solution of
VI(F,C).

Proof. The proof of convergence uses the same ideas as the proof for Algorithm
2.1, so we supply only a sketch.

As with (2.5), it can be established that

〈F (xi), r(xi, µi)〉 ≥ 1

µi
‖r(xi, µi)‖2.

In particular, it follows that the linesearch procedure is well defined.
The proof then follows the pattern of the proof of Theorem 2.1, with (2.7) replaced

by

‖xi+1 − x∗‖2 ≤ ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 − (σηi/M)2µ−2
i ‖r(xi, µi)‖4.

We next use the fact (see [6, Lemma 1]) that

‖r(xi, µi)‖ ≥ min{1, µi}‖r(xi)‖.
It follows that

‖xi+1 − x∗‖2 ≤ ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 − (σηi/M)2µ2
i ‖r(xi)‖4.

Taking into account that ηi = γkiµi ≤ µi, we further obtain

‖xi+1 − x∗‖2 ≤ ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 − (σ/M)2η4
i ‖r(xi)‖4,

and the rest of the convergence proof is identical to that of Theorem 2.1.
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3. Computational experience. To give some insight into the behavior of the
new projection algorithm (Algorithm 2.2), we implemented it in Matlab to solve lin-
early constrained variational inequality problems (using the quadratic-program solver
qp.m from the Matlab optimization toolbox to perform the projection). For a bench-
mark, we compared the performance of this implementation with analogous imple-
mentations of two versions of the extragradient method (as described in [17] and [33])
and with the modified projection algorithm as given in [32, Algorithm 3.2]. We also
implemented the algorithm of [9] and tested it on the same problems as the other four
methods. We do not report here the full results for the method of [9], mainly because
they were rather poor. In particular, like the extragradient method, the method of [9]
failed on the first two problems, and was by far the worst among all the methods on
the remaining test problems. Thus we found it to be not useful for a benchmark com-
parison (unfortunately, no computational experience was reported in [9]). By contrast,
our algorithm seems to perform better than the alternatives in most cases.

The choice of linearly constrained variational inequalities for our experiments is
not incidental. It is clear that the new method should be especially effective when
feasible sets are “no simpler” than general polyhedra (so that an optimization problem
has to be solved to find a projection). In that case, adding one more linear constraint
to perform a projection onto C∩Hi does not increase the cost compared to projecting
onto the feasible set C. Actually, if the constraints are nonlinear, projecting onto C∩Hi

can sometimes turn easier than onto C. On the other hand, when C has some special
structure (for example, C is a box), adding a linear constraint would require solving
an optimization problem, while projecting onto C can be carried out explicitly. In
that case, the extragradient methods may be more attractive than our new method.
However, in the case when C is a box (or the nonnegative orthant), there are many
other efficient methods available (as discussed in section 1), so we will not focus on
this case.

Though our experience is limited in scope, it suggests that the new projection
method is a valuable alternative to the extragradient [17, 33] and modified projection
[32] methods. We describe the test details below.

All Matlab codes were run on the Sun UltraSPARCstation 1 under Matlab
version 5.0.0.4064. Our test problems are the same as those used in [32] to test the
modified projection method in the nonlinear case. The first test problem, used first
by Mathiesen [21], and later in [24, 36], has

F (x1, x2, x3) =

 .9(5x2 + 3x3)/x1

.1(5x2 + 3x3)/x2 − 5
−3

 ,
C =

{
(x1, x2, x3) ∈ <3

+ | x1 + x2 + x3 = 1, x1 − x2 − x3 ≤ 0
}
.

For the other test problems, the feasible set is the simplex

C = {x ∈ <n+ | x1 + · · ·+ xn = n},
and F (·) and n are specified as follows. For the third to fifth problems, F (·) is the
function from, respectively, the Kojima–Shindo Nonlinear Complementarity Problem
(NCP) (with n = 4) and the Nash–Cournot NCP (with n = 5 and n = 10) [24, pp.
321–322]. For the sixth problem, n = 20 and F (·) is affine, i.e.,

F (x) = Mx+ q,
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with the matrix M randomly generated as suggested in [8]:

M = AA> +B +D,

where every entry of the n× n matrix A and of the n× n skew-symmetric matrix B
is uniformly generated from (−5, 5), and every diagonal entry of the n × n diagonal
B is uniformly generated from (0, 0.3) (so M is positive definite), with every entry of
q uniformly generated from (−500, 0). For the last problem, we took the F from the
sixth problem and added to its ith component the linear-quadratic term max{0, xi}2
for i = 1, . . . , bn/2c.

In the implementation of our Algorithm 2.2, we choose σ = .3, η−1 = 1, γ = .5,
and θ = 4. Implementations of the modified projection method and the extragradient
method of [17] are the same as those reported in [32]. In particular, the parameters
for both algorithms were tuned to optimize the performance. In the implementation
of the other version of the extragradient method [33, Algorithm C], we set parameters
as follows: η = .1, α = .3, and γ = 1.7. On the Mathiesen problem, we used the
same x0 as in [36]; on the other problems, we used x0 = (1, . . . , 1). (The F (·) from
the Mathiesen problem and from the Nash–Cournot NCP are defined on the positive
orthant only.) The test results are summarized in Tables 3.1 and 3.2. In most cases,
Algorithm 2.2 requires fewer iterations, function evaluations, and projections, and
takes less CPU time than the other methods considered. Also note that our method
solves problems, such as the Kojima–Shindo problem, even when F (·) is not monotone.
We caution, however, that this study is very preliminary.

To investigate the effect of different starting points, we tested the methods on the
problem Nash5, using as starting points the mesh points of the uniform triangulation
of the simplex x ∈ <5 | x ≥ 0,

5∑
j=1

xj = 5

 .

The triangulation is obtained by cutting the simplex by equally spaced hyperplanes
parallel to the faces of the simplex, with four cuts per face (the first cut is the face of
the simplex, and the last is the opposing vertex). We have chosen the problem Nash5
because its function is defined on the positive orthant only, so that the boundary effect
can also be studied. The modified projection method of [32] had trouble when starting
at points with many zero components (such as, e.g., the point (5, 0, 0, 0, 0)). This is
not very surprising, since the modified projection is actually an infeasible method;
i.e., the iterates generated need not belong to the feasible set. Therefore, in principle,
we may need to evaluate F at points outside of the nonnegative orthant, which gives
trouble for problems like Nash5.However, the modified projection algorithm managed
to solve the problem in most cases, with the average of 95 iterations (note that this
is quite a bit more than the 74 iterations reported in Table 3.1 as needed for the
starting point x0 = (1, 1, 1, 1, 1)). In general, the more positive components x0 has,
the fewer iterations the modified projection method needs to solve the problem. The
extragradient method of Marcotte [17] managed to solve the problem for all starting
points, with the average of 62 iterations (which is again considerably higher than
the 43 iterations needed when starting at the unit vector). Finally, Algorithm 2.2
managed to solve the problem from all the starting points, except from a few points
for which the second and fourth components are both zero. On average, 32 iterations
were required for convergence, which is fewer than for the modified projection or the
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-
Table 3.1

Results for Algorithm 2.2 and the modified projection method on linearly constrained variational
inequality problems.

Algorithm 2.21 Modified Projection [32] 2

Name n iter.(nf/np)3 CPU iter.(nf/np)3 CPU

Mathiesen 3 14(53/28) 0.5 30(68/38) 0.9
14(55/28) 0.5 25(56/31) 0.7

KojimaSh 4 7(16/14) 0.3 38(84/46) 0.7
Nash5 5 24(100/48) 1.5 74(155/81) 1.9
Nash10 10 34(140/68) 3 93(192/99) 2.7
HPHard 20 379(1520/758) 196 692(1391/699) 128
qHPHard 20 317(1272/634) 154 562(1131/569) 98
1Algorithm 2.2 with σ = .3, η−1 = 1, γ = .5, and θ = 4.
2Modified projection method as described in [32, Algorithm 3.2] and parameters set as

reported in that reference (P = I, α−1 = 1, θ = 1.5, ρ = .1, and β = .3).
3For all methods, the termination criterion is ‖r(x)‖ ≤ 10−4. (nf denotes the total

number of times F (·) is evaluated and np denotes the total number of times a projection

is performed.) CPU denotes time (in seconds) obtained using the intrinsic Matlab function

etime and with the codes run on a Sun UltraSPARCstation 1; does not include time to read

problem data. On the Mathiesen problem, we ran each method twice with x0 = (.1, .8, .1)

and x0 = (.4, .3, .3) respectively; on the other problems, we used x0 = (1, ..., 1).

Table 3.2
Results for the two versions of extragradient method on linearly constrained variational inequal-

ity problems.

Extragradient [17]4 Extragradient [33]5

Name n iter.(nf/np)3 CPU iter.(nf/np)3 CPU

Mathiesen 3 — — — —
— — — —

KojimaSh 4 16(36/36) 0.5 78(157/79) 2.5
Nash5 5 43(89/89) 1.8 92(184/93) 2.8
Nash10 10 84(172/172) 3.4 103(191/172) 5.5
HPHard 20 532(1067/1067) 163 1003(2607/1607) 562
qHPHard 20 461(926/925) 162 892(2536/1536) 503
4The extragradient method as described in [17], with β = .7 and initial α = 1. Dash—

indicates that the method did not converge.
5The extragradient method as described in [33, Algorithm C], with η = .1, α = .3, γ = 1.7.

Dash—indicates that the method did not converge.

extragradient methods. However, the extragradient method appeared to be somewhat
more robust for this problem.

4. Concluding remarks. A new projection algorithm for solving variational
inequality problems was proposed. Under minimal assumptions of continuity of the
underlying function and generalized monotonicity (for example, pseudomonotonicity),
it was established that the iterates converge to a solution of the problem. The new
method has some clear theoretical advantages over most of existing projection meth-
ods for general variational inequality problems with no special structure. Preliminary
computational experience is also encouraging.

Some of the projection ideas presented here also proved to be useful in devising
truly globally convergent (i.e., the whole sequence of iterates is globally convergent to
a solution without any regularity assumptions) and locally superlinearly convergent
inexact Newton methods for solving systems of monotone equations [30] and monotone
NCPs [31].
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