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Abstract

Morrow [9] classified all weighted dual graphs of the boundary of the
minimal normal compactifications of the affine plane A2 by using a result
of Ramanujam [10] that any minimal normal compactification of A2 has
a linear chain as the graph of the boundary divisor. In this article, we
give a new proof of the above-mentioned results of Ramanujam-Morrow
[9] from a different point of view and by the purely algebro-geometric
arguments. Moreover, we show that the affine plane A2 is characterized
by the weighted dual graph of the boundary divisor.

1. Introduction

All algebraic varieties considered in the present article are defined over the
field of complex numbers C. For any nonsingular quasi-projective variety X, a
normal compactification of X is a nonsingular projective variety X such that
X contains X as a Zariski open subset and the boundary D = X − X is a
divisor with simple normal crossings. In the two-dimensional case, we say that
X is a minimal normal compactification (or m.n.c. for short) of X if X is a
normal compactification of X and, moreover, if any (−1)-curve in D meets at
least three other irreducible components of D. A normal compactification of
the affine line A1 is unique, and it a smooth rational curve P1. But there exist
infinitely many normal compactifications of the affine plane A2. Let A2 ↪→ V
be any (minimal) normal compactification of A2 and D := V − A2 be the
boundary divisor. Let C1, . . . , Cr denote the irreducible components of D.
Then it is easy to see that H1(∪r

i=1Ci;Z) = 0, namely,
(i) each irreducible component Ci of D is isomorphic to P1 and D contains

no cycles.
The R-vector space F := ⊕r

i=1R ·Ci with basis C1, . . . , Cr has a quadratic form
on it defined by intersection multiplicity. Let b+ be the number of positive
eigenvalues of this quadratic form on F . Note that the Picard group Pic (V )
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of V is a free abelian group generated by the classes of C1, . . . , Cr because
the coordinate ring Γ(OA2) of A2 is factorial and Γ(OA2)∗ = C∗. Therefore,
NS(V )⊗Z R is isomorphic to F , where NS(V ) is the Néron-Severi group of V .
Thus, by Hodge Index Theorem, we have:

(ii) b+ = 1.
In the course of the proof of the main result in the famous paper of Ramanujam
[10] which gives a topological characterization of the affine plane A2, he shows
that for any m.n.c. of A2 the dual graph of the boundary divisor D is a linear
chain. Ramanujam, in fact, proved this result using the properties (i), (ii) and
the following topological condition:

(iii) the fundamental group of the boundary of a tubular neighborhood of
D is trivial.
(The fact that any m.n.c. of A2 has a linear chain as the graph of the boundary
divisor is obtained by a more general result of Daigle [2, Lemma 5.11] which
asserts that the weighted graph equivalent to a linear chain contracts to a linear
chain. But we can not find a printed proof for this result in [2].) Ramanujam
showed, moreover, that there exist at least one and at most two irreducible
components of D having non-negative self-intersection number and that if D
contains exactly two components having non-negative self-intersection number,
then they meet each other and at least one of them has self-intersection number
zero. Using these results of Ramanujam concerning the algebro-topological
properties of the boundary of A2, Morrow [9] gave a complete classification
of all wighted dual graphs of the boundary divisor for m.n.c.’s of A2. Once
we admit the results of Ramanujam, Morrow’s argument in [9] is a detailed
observation for the weighted linear chain to be equivalent to a graph consisting
of only one vertex with weight 1.

In this article, we shall reprove a theorem of Morrow as to the classification
of the boundary of m.n.c.’s of A2 from a different point of view. Our method is
purely algebro-geometric. Our argument is, roughly speaking, stated as follows:
Let A2 ↪→ V be any m.n.c. of the affine plane A2. Since A2 has a structure
of an A1-fibration over A1, the closures in V of the fibers of this A1-fibration
generate an irreducible linear pencil Λ on V . If Λ is already base point free,
then the observation is considerably simple and we can easily determine the
weighted dual graph of the boundary. Whereas, if Bs Λ is not empty, then it
consists of only a single point, say p0. We then consider the shortest succession
of blowing-ups σ : Ṽ → V with center p0 including its infinitely near points
such that the proper transform Λ̃ := σ′(Λ) of Λ is base point free. This process
σ is, in fact, a composite of Euclidean transformations and equi-multiplicity
transformations (see Section 2) determined by the datum at the singularity p0

of a general member of Λ. (In order to determine the weighted dual graph of the
boundary, essential is an explicit description of the shortest process σ to resolve
BsΛ. In fact, the heart of this paper is devoted to a concrete description of the
process σ as a composite of Euclidean transformations and equi-multiplicity
transformations. This is done in Section 3.) The base point free linear pencil
Λ̃ defines a P1-fibration on Ṽ . By observing the singular fibers of this P1-
fibration, we obtain the result of Morrow. As a result, we prove also the result
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of Ramanujam as to the linearity of the boundary graph. To state the results
of Ramanujam and Morrow, we have the following result:

Theorem 1.1. Let A2 ↪→ V be a minimal normal compactification of
the affine plane. Then the weighted dual graph of the boundary D := V −
A2 is given by one of the graphs (a)–(f ) in Figure 1, where n, m1, . . . , mβ−1

are arbitrary positive integers and every vertex stands for a smooth rational
curve. These graphs actually occur as the boundary graphs of minimal normal
compactifications of A2.

Furthermore, we shall prove that the converse of Theorem 1.1 holds. In
fact, we have the following result:

Theorem 1.2. Let X be a smooth affine surface and let X ↪→ V be a
normal compactification of X. (This compactification is not necessarily mini-
mal.) Suppose that each irreducible component of the boundary D = V − X is
a rational curve and the weighted dual graph of D is the same as that of the
boundary divisor of a suitable normal compactification of the affine plane A2.
Then X is isomorphic to A2.

Theorem 1.2 means that an affine plane A2 is determined by the weighted
dual graph of the boundary divisor. But, as remarked in Section 4, if we replace
the affine plane A2 by another Q-homology plane in the statement of Theorem
1.2, then a similar result fails to hold in general. Here, a Q-homology plane
is, by definition, a smooth affine surface S with Hi(S;Q) = 0 for i > 0 (see
Miyanishi and Sugie [8] for the relevant results of Q-homology planes).

In view of the importance of the result of Ramanujam-Morrow in affine al-
gebraic geometry, or more specifically, in the theory of open algebraic surfaces,
it is useful to reprove the result of Ramanujam-Morrow by a purely algebro-
geometric method and from a different point of view. In Section 2, we give some
preliminary results with respect to the singular fibers of a P1-fibration. Further,
we define the notions of Euclidean transformations and equi-multiplicity trans-
formations which will replace the topological and combinatorial arguments of
Ramanujam-Morrow. In Section 3, we prove Theorem 1.1 by making use of the
theory of an A1-fibration and a P1-fibration and the notions of an Euclidean
transformation and an equi-multiplicity transformation. We prove Theorem
1.2 in Section 4. The author would like to express his hearty thanks to Prof.
M. Miyanishi for helpful discussions.

2. Preliminaries

We denote by An the affine space of dimension n. A smooth projective,
rational curve with self-intersection number −n on a smooth algebraic surface
is called a (−n)-curve. A morphism ϕ from a smooth algebraic surface V to
a smooth algebraic curve B is called a P1-fibration if a general fiber of ϕ is
isomorphic to P1. Similarly, an A1-fibration is defined.
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L2,f : � � � � � � �

β is even and β ≥ 4

L1,f : � � � � � � �

L2,e : � � � � � � �

β is odd and β ≥ 3

L1,e : � � � � � � �

(e) L1,e �
m1

�
0

L2,e (f) L1,f �
m1

�
0

L2,f

(c) �
m

�
0

�
−(1+m)

� �︸ ︷︷ ︸
(−2)

(m>0)

(d) � � � � �︸ ︷︷ ︸
(−2)

m 0 −(1+m)

(m>0)

︷ ︸︸ ︷n−times ︷ ︸︸ ︷n−times

(a) �
1

(b) �
m

�
0

(m �=−1)

−(1+m1) ︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷(m2−1)−times

−(2+m3) −(2+mβ−1)︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷n−times

︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷(mβ−1−1)−times

−(2+mβ−2) −(2+m4) ︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷(m3−1)−times

−(1+m2)

−(1+m1) ︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷(m2−1)−times

−(2+m3) −(2+mβ−2)︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷(mβ−1−1)−times

︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷n−times

−(2+mβ−1) −(2+m4) ︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷(m3−1)−times

−(1+m2)

Figure 1
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The following elementary result about singular fibers of a P1-fibration on
a smooth projective surface is useful in the various situations (cf. Miyanishi [7,
Chapter I, 4.4.1]).

Lemma 2.1. Let f : V → B be a P1-fibration on a smooth projective
surface, where B is a smooth complete algebraic curve. Let F be a singular
fiber of f , i.e., F is not isomorphic to P1. Then the following assertions are
true.

(1) The reduced curve Fred is a divisor with simple normal crossings and
each irreducible component of Fred is isomorphic to P1. Furthermore, the dual
graph of F is a tree.

(2) At least one of the irreducible components of F is a (−1)-curve.
(3) If a (−1)-curve E occurs with multiplicity 1 in the fiber F , then F

contains another (−1)-curve.
(4) Any (−1)-curve in F meets at most two other irreducible components

in F .

Remark 2.2. Suppose that the support of a fiber F of f is written as

Supp (F ) = C + Γ1 + Γ2 + Γ3,

where C is an irreducible component, Supp (F ) − C is a disjoint union of
three connected parts Γi’s and Γ1, Γ2 contain no (−1) components. Then Γ3 is
contractible to a smooth point. For otherwise, after the contraction, say τ , of
all possible contractible components in Γ3, the part τ (F ) − τ (C) contains no
(−1)-curves. So, τ (C) is a unique (−1)-curve in the fiber τ (F ) by Lemma 2.1
(2). Then τ (C) meets three distinct fiber components. This is a contradiction
to Lemma 2.1 (4).

We shall recall the definitions of Euclidean transformation and EM-trans-
formation, which will play very important roles in the subsequent arguments
of Section 3 to prove Theorem 1.1. Let V0 be a smooth projective surface, let
p0 be a point on V0 and let l0 be an irreducible curve on V0 such that p0 is
a simple point of l0. Let d0 and d1 be positive integers such that d1 < d0.
By the Euclidean algorithm with respect to d1 < d0, we find positive integers
d2, . . . , dα and q1, . . . , qα:

d0 = q1d1 + d2, d2 < d1,
d1 = q2d2 + d3, d3 < d2,
. . . . . . . . . . . . . . . . . .

dα−2 = qα−1dα−1 + dα, dα < dα−1,
dα−1 = qαdα, qα > 1.

Set N :=
∑α

s=1 qs. Define the infinitely near points pi’s of p0 for 1 ≤ i < N and
the blowing-up σi : Vi → Vi−1 with center at pi−1 for 1 ≤ i ≤ N inductively as
follows:

(i) pi is an infinitely near point of order one of pi−1 for 1 ≤ i < N .
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� � � � � � � �E2 :
−(1+qα)

E(α−1,qα−1)
E(α−1,qα−1−1)︸ ︷︷ ︸

(−2)

E(α−1,1)
E(α−3,qα−3)

−(2+qα−2)

E(3,1)
E(1,q1)

−(2+q2)

E(1,q1−1)︸ ︷︷ ︸
(−2)

E(1,1)

� � � � � � �E1 : E(2,1)︸ ︷︷ ︸
(−2)

E(2,q2−1)
E(2,q2)

−(2+q3)

E(4,1) E(α−2,qα−2)

−(2+qα−1)

E(α,1)︸ ︷︷ ︸
(−2)

E(α,qα−1)

α : even

� � � � � � �E2 :E(α,qα−1)︸ ︷︷ ︸
(−2)

E(α,1)
E(α−2,qα−2)

−(2+qα−1)

E(3,1)
E(1,q1)

−(2+q2)

E(1,q1−1)︸ ︷︷ ︸
(−2)

E(1,1)

� � � � � � � �E1 : E(2,1)︸ ︷︷ ︸
(−2)

E(2,q2−1)
E(2,q2)

−(2+q3)

E(4,1) E(α−3,qα−3)

−(2+qα−2)

E(α−1,1)︸ ︷︷ ︸
(−2)

E(α−1,qα−1−1)
E(α−1,qα−1)

−(1+qα)

α : odd

�
��
�� �

��
��

E0
E1

E(α,qα)
E2

(l0
2)−(1+q1) (−1)

Figure 2

(ii) Let Ei := σ−1
i (pi−1) for 1 ≤ i ≤ N and let E(s, t) := Ei if i =

q1 + · · · + qs−1 + t with 1 ≤ s ≤ α and 1 ≤ t ≤ qs, where we set q0 := 0 and
E(0, 0) := l0. The point pi is an intersection point of the proper transform of
E(s− 1, qs−1) on Vi and the exceptional curve E(s, t) if i = q1 + · · ·+ qs−1 + t
with 1 ≤ s ≤ α and 1 ≤ t ≤ qs (1 ≤ t < qα if s = α).

Then a composite σ := σ1 · · ·σN is called an Euclidean transformation
associated with the datum {p0, l0, d0, d1} (cf. Miyanishi [5], [6, p. 92]). The
weighted dual graph of Supp (σ−1(l0)) is given in Figure 2, where E0 := σ′(l0)
which denotes the proper transform of l0 by σ and where we denote the proper
transform of E(s, t) on VN by the same notation. Let C0 be an irreducible curve
on V0 such that p0 is a one-place point of C0, let d0 be the local intersection
number i(C0 · l0; p0) of C0 and l0 at p0 and let d1 be the multiplicity multp0(C0)
of C0 at p0. Assume that d0 > d1. The proper transform Ci := (σ1 · · ·σi)′(C0)
passes through pi so that (Ci · E(s, t)) = ds and the intersection number of
Ci with the proper transform of E(s − 1, qs−1) on Vi is ds−1 − tds, where
i = q1 + · · ·+ qs−1 + t. The smaller one of ds and ds−1 − tds is the multiplicity
of Ci at pi for pi is a one-place point of Ci. Note that the proper transform
σ′(C0) on VN meets the last exceptional curve E(α, qα) with order dα and does
not meet E0 := σ′(l0) and other exceptional curves arising in the blowing-up
process σ.
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We now explain EM-transformations, which is called an (e, i)-transforma-
tion in Miyanishi [5] and [6, p. 100]. Let V0, p0 and l0 be the same as above.
Let r > 0 be a positive integer. An equi-multiplicity transformation (or EM-
transformation, for short) of length r with center at p0 is a composite τ =
τ1 · · · τr of blowing-ups defined as follows. For 1 ≤ i ≤ r, τi : Vi → Vi−1 is
defined inductively as the blowing-up with center at pi−1 and pi is a point on
τ−1
i (pi−1) other than the intersection point τ ′

i(τ
−1
i−1(pi−2))∩ τ−1

i (pi−1) (τ ′
1(l0)∩

τ−1
1 (p0) if i = 1). Let C0 be an irreducible curve on V0 such that p0 is a one-

place point of C0. Suppose d0 := i(C0 · l0; p0) is equal to d1 := mult p0(C0).
Let τ1 : V1 → V0 be the blowing-up with center p0, and set E1 := τ−1

1 (p0)
and C1 := τ ′

1(C0). Then the point p1 := C1 ∩ E1 differs from τ ′
1(l0) ∩ E1. Set

d
(1)
0 := i(C1 · E1; p1) = d1 and d

(1)
1 := mult p1(C1). Suppose d

(1)
0 = d

(1)
1 . As

above, let τ2 : V2 → V1 be the blowing-up with center p1, let E2 := τ−1
2 (p1) and

let C2 := τ ′
2(C1). Then p2 := C2 ∩E2 differs from the point τ ′

2(E1)∩E2. Thus
this process can be repeated as long as the intersection number of the proper
transform of C0 with the last exceptional curve is equal to the multiplicity of
the proper transform of C0 at the intersection point. If we perform the blowing-
ups r times, the composite of r blowing-ups is an EM-transformation of length
r.

3. Proof of Theorem 1.1

In this section, we shall determine all the boundary graphs for m.n.c.’s of
A2. So, let A2 ↪→ V be an m.n.c. and D := V − A2 denote the boundary
divisor. Let C0

∼= A1 be an affine line in A2 and let g be an irreducible
polynomial of Γ(OA2) defining the curve C0. This polynomial g defines a
polynomial map:

ϕ : A2 → A1 = Spec (C[g]), P 	→ g(P ).

By the Abhyankar-Moh Embedding Theorem (cf. [1]), all the fibers of ϕ are
isomorphic to A1 scheme-theoretically. Since the base curve A1 of ϕ is rational,
the closures of fibers of ϕ in V generate an irreducible linear pencil Λ on V
such that ΦΛ|A2 coincides with ϕ, where ΦΛ is the rational mapping defined
by Λ. We consider two cases according as Λ has base points or not.

Case I. Λ has no base points.
Then Λ defines a P1-fibration ΦΛ : V → P1. The boundary D contains a

cross-section S of ΦΛ and all other irreducible components of D are contained
in the fibers of it. We write D − S as a disjoint union:

D − S = B1 + · · · + Br,

where Bi is a connected component of D − S for 1 ≤ i ≤ r. Then we have the
following result:

Lemma 3.1. r = 1 and B1 is an irreducible component with self-inter-
section number zero.
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Proof. Since the A1-fibration ϕ is parametrized by the affine line A1,
one of B1, . . . , Br, say B1, supports a unique full fiber of ΦΛ lying outside A2.
Suppose that r > 1. Let Q := ΦΛ(B2) and C the closure of ϕ∗(Q) in V . Let
F be the member of Λ containing B2. The support of F is a union of B2 and
C. Note that C is contained in F with multiplicity one because all the fibers
of ϕ are irreducible and reduced. Hence there exists a (−1)-curve E in B2

by Lemma 2.1 (3). But the minimality of D and Lemma 2.1 imply that the
(−1)-curve E meets the cross-section S and two distinct components in B2.
Then the contraction of E leads to a contradiction. Hence r = 1. If the fiber
B1 is reducible, it contains a (−1)-curve. Then we get a contradiction by the
same argumemt as above. Thus B1 is irreducible and (B1

2) = 0.

Thus we have that if BsΛ = ∅ the dual graph of D is of type (b) in Figure
1.

Case II. Λ has a base point.
Since G ∩ A2 ∼= A1 for a general member G of Λ, Bs Λ consists only

of one point, say p0, which is a one-place point of G and is located on D.
Let σ : Ṽ → V be the shortest succession of blowing-ups with centers at p0

and its infinitely near points such that the proper transform Λ̃ := σ′(Λ) of Λ
has no base points. Then Λ̃ defines a P1-fibration Φ

Λ̃
: Ṽ → P1 on Ṽ such

that Φ
Λ̃
|A2 coincides with ϕ, where we identify σ−1(A2) with A2. Among the

components of Ṽ − A2 = Supp (σ−1(D)), the last exceptional curve of σ is a
cross-section and all the others are contained in some members of Λ̃. Since ϕ is
parametrized by A1, exactly one member of Λ̃, say F∞, lies outside A2. Note
that the process σ is written as a composite of Euclidean transformations and
EM-transformations (cf. Section 2 for the definitions) since a general member
of Λ has the point p0 as a one-place point. According to the location of the
point p0, we need to consider two cases:

Case II-(1). p0 lies on only one component, say A, of D.

We then prove the following result with respect to the process σ:

Lemma 3.2. The process σ ends with an EM-transformation.

Proof. Otherwise σ ends with an Euclidean transformation. Let S be
the last exceptional component of σ. Then Supp (σ−1(D)) − S consists of two
connected components, say B1 and B2. One of B1 and B2, say B1, contains the
proper transform of D and the other B2 consists of a part of the exceptional
components arising from the last Euclidean transformation. Hence the self-
intersection number of each component of B2 is less than or equal to −2. Note
that one of B1 and B2 supports the member F∞ of Λ̃ lying outside A2 and
the other plus one irreducible component C such that C ∩ A2 is a fiber of ϕ
supports a member F of Λ̃ different from F∞. It is clear that B2 cannot support
F∞ because there are no (−1) components contained in it. Meanwhile, it is
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also impossible that B2 + C supports F . Indeed, otherwise, by Lemma 2.1 (3),
there exists a (−1)-curve in B2 since the multiplicity of C in F is one (see the
argument at the beginning of this section). This is a contradiction.

We write σ as:

σ = τ1 · σ1 · · · τn−1 · σn−1 · τn with n ≥ 1,

where σj (resp. τj) is the j-th Euclidean transformation (resp. EM-transfor-
mation) in σ. Although τj for 1 ≤ j < n might be the identity morphism, τn

is not so by Lemma 3.2. For 1 ≤ j < n, let Dj = {p(j)
0 , l

(j)
0 , d

(j)
0 , d

(j)
1 } be the

datum of σj , let d
(j)
2 , . . . , d

(j)
αj and q

(j)
1 , . . . , q

(j)
αj be positive integers obtained by

the Euclidean algorithm with respect to d
(j)
0 > d

(j)
1 and let E(j)(s, t) denote the

proper transform on Ṽ of the exceptional component arising from the (q(j)
1 +

· · ·+ q
(j)
s−1 + t)-th blowing-up in σj for 1 ≤ s ≤ αj and 1 ≤ t ≤ q

(j)
s . To simplify

the notations we put Cj := E(j)(αj , q
(j)
αj ) for 1 ≤ j ≤ n, that is, Cj is the

proper transform on Ṽ of the last exceptional component arising from σj . Let
lj be the length of τj and E(j)(k) the proper transform on Ṽ of the exceptional
component from the k-th blowing-up in τj for 1 ≤ k ≤ lj and 1 ≤ j ≤ n.
Note that the last exceptional component E(n)(ln) is a cross-section of Λ̃ and
Supp (σ−1(D)) − E(n)(ln) supports F∞. We can specify σj and τj as follows:

Lemma 3.3. With the notations as above, the following hold :
(1) For 2 ≤ j ≤ n, we have lj > 0, i.e., τj is not the identity. But τ1

might be the identity.
(2) For 1 ≤ j < n, τj+1 determines the foregoing σj as follows :

{
αj = 1 and q

(j)
1 = 2 if lj+1 = 1

αj = 2, q
(j)
1 = 1 and q

(j)
2 = lj+1 if lj+1 > 1

(j �= n − 1),

{
αn−1 = 1 and q

(n−1)
1 = 2 if ln = 2

αn−1 = 2, q
(n−1)
1 = 1 and q

(n−1)
2 = ln − 1 if ln > 2.

Proof. Near the cross-section E(n)(ln), the fiber F∞ lying outside A2 has
the configuration as in Figure 3, where Sn−1(+) (resp. Sn−1(−)) consists of
E(n−1)(s, t) with s even (resp. odd) except for the last component Cn−1 from
σn−1, Tn is a linear chain supported by the (−2)-curves E(n)(1), . . . , E(n)(ln −
1). Note that Sn−1(−) and Tn contain no (−1)-curves, so the leftside of Cn−1

in Figure 3 is contractible by Remark 2.2.

After the contraction of it, the image of F∞ has the configuration as described
in Figure 4, where the (−1)-curve is the image of Cn−1. Hence Sn−1(−) consists
only of one component E(n−1)(1, 1) with self-intersection number −ln.
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Sn−1(+) �
Sn−1(−)

Tn
�Cn−1 E(n)(ln)

Figure 3

Sn−1(−) �
(−1)

Tn

E(n)(ln)�

Figure 4

Since (E(n−1)(1, 1)
2
) ≤ −2, we have ln ≥ 2. Since Sn−1(−) consists only

of E(n−1)(1, 1) it follows that αn−1 ≤ 2. If ln = 2 we have αn−1 = 1 and
q
(n−1)
1 = 2. Indeed, if αn−1 = 2 the self-intersection number of E(n−1)(1, 1) is

less than −2. Meanwhile, if ln > 2 then it is not hard to show that αn−1 =
2. If q

(n−1)
1 > 1 then Sn−1(−) contains at least two components, which is a

contradiction. Hence q
(n−1)
1 = 1. Since (E(n−1)(1, 1)

2
) = −(1 + q

(n−1)
2 ) = −ln,

we have that q
(n−1)
2 = ln −1. Note that Sn−1(+) is void if αn−1 = 1 or a linear

chain of (−2)-curves if αn−1 = 2. We prove the following claim:

Claim. τn−1 is not the identity if n ≥ 3.

Proof. Assume the contrary that τn−1 = id. Then the fiber F∞ has
the configuration as in Figure 5, where Sn−2(+) (resp. Sn−2(−)) consists of
E(n−2)(s, t) with s even (resp. odd) except for the last component Cn−2 from
σn−2. Note that Sn−2(−) and the rightside of Cn−2 contain no (−1)-curves.
Hence the leftside of Cn−2 is contractible (Remark 2.2). After the contraction of
it, we contract Cn−2 and the components in Sn−1(+). Then the image of Cn−1

is a (−1)-curve meeting three other fiber components. This is a contradiction
to Lemma 2.1 (4). Hence we obtain that τn−1 is not the identity.

By repeating the above arguments downward n, n − 1, . . ., we can prove
the assertions of Lemma 3.3.

Note that the process σ to resolve Bs Λ = {p0} does not affect on the
components of the boundary D other than A, and that the proper transform
of D is contained in a member F∞ of Λ̃. Every component in F∞ other than
the proper transform A′ := σ′(A) of A has self-intersection number less than

Sn−2(+) �Cn−2

Sn−2(−)

Sn−1(+) �Cn−1

�
−ln

Tn
�E(n)(ln)

Figure 5
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L �A′
T (l1) S(l2) T (l2) S(ln−1) T (ln−1) S(ln−1) Tn

�E(n)(ln)

Figure 6

or equal to −2 by the minimality of D and the constructions of Euclidean and
EM-transformations. Hence, unless A′ itself is the fiber F∞, A′ is a unique
(−1)-curve in F∞. Note that the case A′ = F∞ occurs only if D = A and σ
is a single blowing-up. In this case the dual graph of the boundary D is (a) in
Figure 1. We exclude the case A′ = F∞ in the subsequent arguments. If D−A
consists of two or more other connected parts, the (−1)-curve A′ meets three
or more other fiber components of F∞ including an exceptional component of
σ. This is a contradiction to Lemma 2.1 (4). Thus D is written as

D = A + L,

where L is connected (L might be void). By Lemma 3.3, the dual graph of
the fiber F∞ is given as in Figure 6, where the notations S(l) and T (l) are
those defined in Figure 7, Tn is a linear chain supported by the (−2)-curves
E(n)(1), . . . , E(n)(ln − 1) and where the part T (l1) may be empty.

We then prove the following result:

Lemma 3.4.
(1) The self-intersection number (A′2) of A′ is written in terms of (A2)

as follows :

(A′2) =
{

(A2) − 2 if T (l1) = ∅,
(A2) − 1 if T (l1) �= ∅.

(2) The part L is determined by T (l1) as follows :

(i) If T (l1) = ∅, L is empty.

(ii) If T (l1) �= ∅, L consists only of one component with self-inter
section number −(1 + l1) if n ≥ 2 (resp. −l1 if n = 1).

Proof. (1) If T (l1) = ∅, the process σ starts with an Euclidean trans-
formation σ1. The datum of σ1 is {p0, A, d

(1)
0 , d

(1)
1 }, where d

(1)
0 := i(G ·

A; p0), d
(1)
1 := mult p0G for a general member G of Λ. By Lemma 3.3, we

have either d
(1)
0 = 2d

(1)
1 or d

(1)
0 = d

(1)
1 + d

(1)
2 with d

(1)
2 < d

(1)
1 . Hence, we blow

up in σ two points p0 and its infinitely near point on A. Thus (A′2) = (A2)−2.
On the other hand, if T (l1) �= ∅ then we blow up only one point p0 on A in σ.
Hence (A′2) = (A2) − 1.

(2) The dual graph of F∞ (cf. Figure 6) determines the part L as given
in the statement in such a way that F∞ is brought to a smooth fiber by con-
tractions of successive (−1)-curves starting with A′.
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In view of Lemma 3.4 and (A′2) = −1, the dual graph of the boundary D
is of type either (a) or (b) with m ≤ −2 in Figure 1.

Case II-(2). p0 is an intersection point of two components of D.

Let A and B be the components of D such that A ∩ B = {p0}. We write
D as

D = A + B + L1 + L2,

where L1 (resp. L2) is the union of all connected components of D − (A + B)
which are linked to A (resp. B). For a general member G of Λ, we put
d1 := mult p0G. Since p0 is a one-place point of G, at least one of i(G · A; p0)
and i(G · B; p0) is equal to d1. We need to consider three subcases according
as how G intersects A and B at p0.

Case II-(2)-(i). i(G · A; p0) > i(G · B; p0) = d1.

We put d0 := i(G · A; p0) and obtain positive integers d2, . . . , dα and
q1, . . . , qα by the Euclidean algorithm with respect to d0 > d1 as performed
in Section 2. The shortest process σ to resolve the base points of Λ starts with
the Euclidean transformation σ1 associated with the datum D1 = {p0, A, d0,

d1}. Let E(s, t) denote the proper transform on Ṽ of the exceptional compo-
nents arising from the (q1 + · · · + qs−1 + t)-th blowing-up in σ1 for 1 ≤ s ≤ α
and 1 ≤ t ≤ qs. With the indexing slightly changed, we write σ as

σ = σ1 · τ1 · · ·σn · τn with n ≥ 1,

where σj (resp. τj) is the j-th Euclidean transformation (resp. EM-transfor-
mation) in σ and τj might be the identity. The same argument as in the proof
of Lemma 3.2 shows that the following result holds:

Lemma 3.5. If n ≥ 2, the process σ ends with an EM-transformation.

We suppose, for the moment, that n ≥ 2. Let Dj = {p(j)
0 , l

(j)
0 , d

(j)
0 , d

(j)
1 }

be the datum of σj and let d
(j)
2 , . . . , d

(j)
αj and q

(j)
1 , . . . , q

(j)
αj be positive integers

obtained by the Euclidean algorithm with respect to d
(j)
0 > d

(j)
1 for 2 ≤ j ≤ n.

Let lj be the length of τj for 1 ≤ j ≤ n. Let E(j)(s, t) for 1 ≤ s ≤ αj , 1 ≤
t ≤ q

(j)
s and E(j)(k) for 1 ≤ k ≤ lj have the same meaning as defined after

the proof of Lemma 3.2. We have the following result concerning σj and τj for
2 ≤ j ≤ n:

Lemma 3.6. Let the notations be the same as above. If n ≥ 2, we have:
(1) For 2 ≤ j ≤ n, lj > 0, i.e., τj is not the identity. But τ1 might be the

identity.
(2) For 2 ≤ j ≤ n, τj determines the foregoing σj as follows :

{
αj = 1 and q

(j)
1 = 2 if lj = 1

αj = 2, q
(j)
1 = 1 and q

(j)
2 = lj if lj > 1

for 2 ≤ j < n,
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S(l) : � � �︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷l−times

�
−(1+l)

T (l) : � � �︸ ︷︷ ︸
(−2)

(−3)

︷ ︸︸ ︷l−times

Figure 7

L2
� E2

L1
� E1

B′

A′

��
�� �E(α,qα)

T (l1) S(l2) S(ln−1) T (ln−1) S(ln−1) Tn
�E(n)(ln)

Figure 8

{
αn = 1 and q

(n)
1 = 2 if ln = 2,

αn = 2, q
(n)
1 = 1 and q

(n)
2 = ln − 1 if ln > 2.

Proof. The proof of the present lemma is the same as the one for Lemma
3.3 except for a slight difference of indices.

Let F∞ be the member of Λ̃ lying outside A2. With the notations preceding
Lemma 3.6, the last exceptional curve E(n)(ln) is a cross-section of Λ̃ and the
support of F∞ is Supp (σ−1(D)) − E(n)(ln). By Lemma 3.6, the dual graph
of F∞ is given as in Figure 8, where A′ (resp. B′) is the proper transform
of A (resp. B), the notations S(l), T (l) are those defined in Figure 7, Tn is a
linear chain supported by the (−2)-curves E(n)(1), . . . , E(n)(ln − 1) and where
T (l1) may be empty. The dual graph of E1 + E(α, qα) + E2 is the same as
given in Figure 2 with replaced the self-intersection number of E(α, qα) by −3
if T (l1) = ∅ (resp. −2 if T (l1) �= ∅). Note that the process σ does not affect on
the components of L1 + L2.

We prove the following result:

Lemma 3.7. With the notations as above, let M1 := L1 + A′ + E1 and
M2 := L2 + B′ + E2 (see Figure 8). If n ≥ 2 we have the following :

(1) Let C2 be the last exceptional component of σ2. (The component C2

corresponds to the rightmost vertex of S(l2) in Figure 8.) Then the part lying
on the leftside of C2 in Figure 8 is contractible.

(2) Suppose T (l1) = ∅. Then E(α, qα) becomes a (−1)-curve after the
parts M1 and M2 are contracted to smooth points. Moreover, the contractions
of the parts M1 and M2 start with the contractions of A′ and B′ and end with
the contractions of the components meeting E(α, qα).

(3) Suppose T (l1) �= ∅. If α is odd (resp. if α is even) then M2 (resp.
M1) is contractible and the contraction of M2 (resp. M1) starts with B′ (resp.
A′) and ends with E(α, qα − 1) (cf. Figure 2).

Proof. (1) F∞ − C2 consists of three connected parts. Among them
E(2)(1, 1), which corresponds to a vertex with weight −(1 + l2) of S(l2) in
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Figure 8, and the rightside of C2 contains no (−1)-curves. Hence, the leftside
of C2 is contractible by Remark 2.2.

(2) Suppose that E(α, qα) becomes a (−1)-curve before M1 and M2 are
contracted. Then we contract all components between E(α, qα) and C2. After
this contraction the image of C2 is a (−1)-curve meeting three or more other
irreducible fiber components. This is a contradiction to Lemma 2.1 (4). Thus
E(α, qα) becomes a (−1)-curve after the contractions of M1 and M2. Since each
component in M1 and M2 other than A′ and B′ has self-intersection number
less than or equal to −2 and E(α, qα) is a (−3)-curve, the contractions of M1

and M2 start with A′ and B′ and end with the components meeting E(α, qα).
(3) Since E(α, qα) meets three other fiber components and the rightside

of E(α, qα) in Figure 8 contains no (−1)-curve, at least one of M1 and M2 is
contractible (see Remark 2.2). But since E(α, qα) is a (−2)-curve, exactly one
of M1 and M2 is contractible, and this contraction ends with the contraction of
the component meeting E(α, qα). Suppose that α is odd and M1 is contractible.
After the contraction of M1, the image of F∞ contains at least four components
and one of them, which is the image of E(α, qα), is a (−1)-curve. If l1 > 1
then the image of E(α, qα) meets two (−2)-curves, one in M2 and the other in
T (l1). This is a contradiction. If l1 = 1 then T (l1) consists only of a (−3)-curve
E(1)(1). After the contraction of M1, we contract E(α, qα), E(α, qα−1), E(1)(1)
and the components in the linear chain between E(1)(1) and C2 (cf. Figure
8). But it contradicts the assertion (1) of the present lemma. Thus M2 is
contractible if α is odd. Similarly M1 is contractible if α is even.

Lemma 3.8. With the notations as above, suppose that n ≥ 2. Then
we have the following :

(1) The self-intersection number of A is determined as follows:

(A2) =
{

q1 if α > 1,
q1 − l1 − 1 if α = 1,

where we put l1 = 0 when τ1 = id.
(2) (B2) = 0.
(3) If α > 1 and τ1 = id (resp. if α > 1 and τ1 �= id, resp. if α = 1) then

the dual graphs of L1 and L2 are given as in Figure 9 (resp. as in Figure 9 with
(−2) components counted (qα − l1 − 2)-times instead of (qα − 2)-times, resp.
L1 = L2 = ∅), where the −(1+q2)-curve in L1 meets A and the −(1+q1)-curve
in L2 meets B.

Proof. Suppose that τ1 = id, i.e., T (l1) = ∅. Then by Lemma 3.7, M1 and
M2 are contractible and these contractions start with A′ and B′ and end with
the contractions of the components meeting E(α, qα). Hence A′ and B′ are
(−1)-curves and L1 and L2 are uniquely determined by the parts A′ + E1 and
B′+E2. Noting that (A′2) = (A2)−(1+q1) if α > 1 (resp. (A′2) = (A2)−q1 if
α = 1) and (B′2) = (B2)−1, we then easily prove the assertions. Next suppose
that τ1 �= id, i.e., T (l1) �= ∅. We consider only the case α is odd because the
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L2 : � � � � � � �

L2 :L2 : � � � � � � �

L1 : � � � � � � �

L1 : � � � � � � �

−(1+q1)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q2−1)−times

−(2+q3) −(2+qα−1)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(qα−2)−times

−(1+q1)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q2−1)−times

−(2+q3) −(2+qα−2)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(qα−1−1)−times

︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷(qα−1−1)−times

−(2+qα−2) −(2+q4)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q3−1)−times

−(1+q2)

︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷(qα−2)−times

−(2+qα−1) −(2+q4)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q3−1)−times

−(1+q2)

α : even

α : odd

Figure 9

case α is even can be treated similarly. By Lemma 3.7 (3), M2 is contractible
and this contraction starts with B′ and ends with E(α, qα − 1). Hence, B′ is
a (−1)-curve and L2 is determined by B′ + E2 as described in Figure 9. We
contract E(α, qα), E(1)(1), . . . , E(1)(l1−1) in this order after the contraction of
M2. Let M ′

1 be the image of M1 after the above contraction and let C be the
image of the component meeting E(α, qα) in M1. The self-intersection number
of C increases by l1. Lemma 3.7 (1) then says that M ′

1 is contractible and
that the contraction of M ′

1 starts with A′ and ends with C. These observations
imply the assertions. Note that if α = 1, the part E1 is empty and C is the
image of A′ satisfying −1 = (C2) = (A′2) + l1 = (A2) − q1 + l1.

By Lemma 3.8 we can determine the dual graph of the boundary D as
follows. At first, let us suppose α = 1. Then L1 = L2 = ∅ and the graph of D
is of type (b) in Figure 1. Secondly, suppose α = 2. Then (A2) = q1, (B2) =
0, L1 = ∅ and L2 consists of −(1 + q1)-curve plus several (−2) components, so
the graph of D is of type (c) in Figure 1. Finally, suppose α > 2. Then the
graph of D is of type either (e) or (f) in Figure 1 according as α is odd or even
by Lemma 3.8.

From now on we consider the case where σ is written as σ = σ1 · τ1.
Let l1 be the length of τ1 and let E(k) be the proper transform on Ṽ of the
exceptional component arising from the k-th blowing-up in τ1 for 1 ≤ k ≤ l1
(if τ1 �= id). If τ1 is not the identity, the dual graph of the fiber F∞ is given
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L2

L1

�
�

E2

E1

��

�� �E(α,qα) � � �
B′

A′

E(1) E(l1−1) E(l1)︸ ︷︷ ︸
(−2)

Figure 10

as in Figure 10, where the component E(l1) is a cross-section of Λ̃, the dual
graph of E1 + E(α, qα) + E2 is the same as given in Figure 2 with the self-
intersection number of E(α, qα) replaced by −2 and A′, B′ are respectively the
proper transforms of A, B on Ṽ .

We prove then the following result:

Lemma 3.9. Suppose that the shortest process σ to resolve the base
points of Λ is written as σ = σ1 · τ1 with τ1 �= id. Let M1 := L1 + A′ + E1 and
let M2 := L2 + B′ + E2 (see Figure 10). Then we have:

(1) If l1 = 1 then both of M1 and M2 are contractible to smooth points.
(2) If l1 > 1 and α is odd (resp. if l1 > 1 and α is even) then M2 (resp.

M1) is contractible to a smooth point.
(3) The contractions of M1, M2 stated in (1) (resp. (2)) start with A′, B′

(resp. one of A′, B′) and end with the components meeting E(α, qα).

Proof. (1) If l1 = 1 then E(α, qα) meets a cross-section E(1) of Λ̃. So,
the multiplicity of E(α, qα) in F∞ is one, and we can obtain from F∞ a smooth
fiber which is the image of E(α, qα). Therefore M1 and M2 are contractible
to smooth points. Note that all possible (−1)-curves in F∞ are only A′ and
B′, and that E(α, qα) is a (−2)-curve. Thus the contraction of M1 (resp. M2)
starts with A′ (resp. B′) and ends with the components meeting E(α, qα).

(2) In the case l1 > 1 we can show the assertion (2) by the same argument
as in Lemma 3.7 (3). Moreover, by the same argument there, the contraction
of M2 if α is odd (resp. M1 if α is even) starts with B′ (resp. A′) and ends
with the contraction of E(α, qα − 1). The last assertion (3) is thus proved.

Lemma 3.10. With the notations and assumptions as in Lemma 3.9,
the following assertions hold :

(1)

(A2) =
{

q1 if α > 1,
q1 − l1 if α = 1.

(2) (B2) = 0.
(3) If α > 1 (resp. if α = 1) then the dual graphs of L1 and L2 are given

as in Figure 9 with (−2) components counted (qα − l1 − 1)-times instead of
(qα − 2)-times (resp. L1 = L2 = ∅).

Proof. We can prove the assertions from Lemma 3.9 by the same fashion
as we proved Lemma 3.8 from Lemma 3.7.
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L1
�A′

E1
� E2

�B′
L2

E(α,qα)

Figure 11

As we determined the dual graph of the boundary D from Lemma 3.8 in
the previous case, we can also do the same in the present case from Lemma
3.10. Namely, the graph of D is of type (b) if α = 1, of type (c) if α = 2 and
of type (e) or (f) if α > 2 in Figure 1.

We next consider the case where the process σ to resolve Bs Λ consists of
a single Euclidean transformation σ1. The configuration of Supp (σ−1(D)) is
then given as in Figure 11, where E(α, qα) is a cross-section of Λ̃ and the dual
graph of E1+E(α, qα)+E2 is the same as given in Figure 2. The component A′

(resp. B′) is the proper transform of A (resp. B). We then prove the following
result:

Lemma 3.11. Let the notations and assumptions be the same as above.
Then one of M1 := L1 + A′ + E1 and M2 := L2 + B′ + E2 (see Figure 11)
supports F∞ and the other is contractible to a smooth point, starting with the
contraction of A′ or B′.

Proof. Supp (σ−1(D)) − E(α, qα) consists of two connected components
M1 and M2. Since the fibration ϕ is parametrized by the affine line A1, one of
M1 and M2 supports the member F∞ of Λ̃ lying outside A2 and the other is
contained in a member F of Λ̃ different from F∞. Since all the fibers of ϕ are
isomorphic to A1 scheme-theoretically (see the argument at the beginning of
this section), it follows that C0 := F ∩ A2 ∼= A1 scheme-theoretically. Hence
the closure C of C0 in Ṽ is contained in F with multiplicity one. So, the fiber F
can be reduced to a smooth fiber which is the image of C. Thus one of M1 and
M2 supports F∞ and the other is contracted to a smooth point. Note that by
the minimality of D and the construction of an Euclidean transformation, every
component of M1 and M2 other than A′ and B′ has self-intersection number
less than or equal to −2. Hence the contraction of M1 or M2 starts with A′ or
B′.

For each case stated in Lemma 3.11 we can easily determine the dual graph
of the boundary D since we know the dual graphs of A′ + E1 and B′ + E2

concretely (see Figure 11). Namely, we have the following:

Lemma 3.12. With the notations and assumptions as in Lemma 3.11,
the following assertions hold :

(1)

(A2) =
{

q1 − 1 if α = 1 and M1 is contractible,
q1 otherwise.

(2) (B2) = 0.
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L2 : � � � � � � � � � �︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷n−times

−(1+q1)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q2−1)−times

−(2+q3) −(2+qα−1)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(qα−2)−times

(−3)

L1 : � � � � � � � �
−(1+qα)

︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷(qα−1−1)−times

−(2+qα−2) −(2+q4)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q3−1)−times

−(1+q2)

L2 : � � � � � � � � � �︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷n−times

−(1+q1)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q2−1)−times

−(2+q3) −(2+qα−2)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(qα−1−1)−times

−(2+qα)

L1 : � � � � � � �︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷(qα−1)−times

−(2+qα−1) −(2+q4)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q3−1)−times

−(1+q2)

α : even

α : odd

Figure 12

(3) Suppose that α > 1. If M1 (resp. M2) supports F∞ and M2 (resp.
M1) is contractible, the dual graphs of L1 and L2 are given as in Figure 12
(resp. Figure 13), where the linear chains in the dotted frames might be empty,
n is an arbitrary non-negative integer and where the −(1+ q2)-curve in L1 and
the −(1 + q1)-curve in L2 meet A and B, respectively.

(4) Suppose that α = 1. If M1 (resp. M2) supports F∞ and M2 (resp.
M1) is contractible, the dual graph of D is given by (i) (resp. (ii)) in Figure
14, where the linear chains in the dotted frames might be empty and n is an
arbitrary non-negative integer.

Case II-(2)-(i′). i(G · B; p0) > i(G · A; p0) = d1; see the argument after the
proof of Lemma 3.4 for the notations.

This case can be treated in the same fashion as in Case II-(2)-(i) and
consequently all possible weighted dual graphs of the boundary D are the same
as those obtained in Case II-(2)-(i).

Case II-(2)-(ii). i(G · A; p0) = i(G · B; p0) = d1.

Then the process σ to resolve the base point Bs Λ = {p0} starts with an
EM-transformation. Suppose that σ consists only of a single blowing-up. This
case can be treated in the same fashion as in Lemmas 3.11 and 3.12 with E1

and E2 empty. As a consequence, the dual graph of D is given by 1) in Figure
14 with q1 = 1, that is, of type (b) or (c) in Figure 1 with m = 1. In the
subsequent we exclude this case. Then the same argument as in Lemma 3.2
shows that the following result holds:

Lemma 3.13. The process σ ends with an EM-transformation.
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L2 : � � � � � � �

L2 : � � � � � � � �

L1 : � � � � � � � � � �

L1 : � � � � � � � � � �

−(1+q1)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q2−1)−times

−(2+q3) −(2+qα−1)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(qα−1)−times

−(1+q1)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q2−1)−times

−(2+q3) −(2+qα−1)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(qα−1)−times

−(1+qα)

︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷n−times

−(2+qα)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(qα−1−1)−times

−(2+qα−2) −(2+q4)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q3−1)−times

−(1+q2)

︸ ︷︷ ︸
(−2)

︷ ︸︸ ︷n−times

(−3)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(qα−2)−times

−(2+qα−1) −(2+q4)
︸ ︷︷ ︸

(−2)

︷ ︸︸ ︷(q3−1)−times

−(1+q2)

α : even

α : odd

Figure 13

(i)

� � � � �

(ii)

� � � � �
q1 0 −(1+q1)

︸ ︷︷ ︸
(−2)

A B ︸ ︷︷ ︸
(−2)

q1−1

A

0

B

−q1

︷ ︸︸ ︷n−times ︷ ︸︸ ︷n−times

Figure 14
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L2
�

L1
�
��
�� T (l1) S(l2) T (l2) S(ln−1) T (ln−1) S(ln−1) Tn

�E(n)(ln)

B′

A′

Figure 15

We write σ as

σ = τ1 · σ1 · · · τn−1 · σn−1 · τn with n ≥ 1,

where σj (resp. τj) is the j-th Euclidean transformation (resp. EM-transfor-
mation) in σ. Let the notations Dj = {p(j)

0 , l
(j)
0 , d

(j)
0 , d

(j)
1 }, d(j)

2 , . . . , d
(j)
αj , q

(j)
1 , . . . ,

q
(j)
αj , lj , E

(j)(s, t) and E(j)(k) be the same as those defined after the proof of
Lemma 3.2. With these notations, the same assertions as in Lemma 3.3 hold
by the same argument there. The last component E(n)(ln) is a cross-section of
Λ̃ and Supp (σ−1(D)) − E(n)(ln) supports the member F∞ of Λ̃ lying outside
A2. The dual graph of F∞ is given as in Figure 15, where the notations S(l)
and T (l) are those defined in Figure 7 and A′, B′ are the proper transforms on
Ṽ of A, B, respectively.

The part Tn is a linear chain supported by the (−2)-curves E(n)(1), . . . , E(n)(ln−
1). We assume for the moment that n ≥ 2. Then we have the following result:

Lemma 3.14. With the notations as above, suppose that n ≥ 2. Then
E(1)(l1), which is the rightmost component of T (l1) in Figure 15, becomes a
(−1)-curve after the leftside of E(1)(l1) in Figure 15 is contracted to a smooth
point.

Proof. Assume the contrary that E(1)(l1) becomes a (−1)-curve before
the leftside of it is contracted. Then we contract the components in the linear
chain between E(1)(l1) and the last exceptional component C1 from σ1, which is
the rightmost component of S(l2). Then the image of C1 is a (−1)-curve meet-
ing three or more other fiber components. This is a contradiction to Lemma
2.1 (4).

By Lemma 3.14 we can determine the dual graph of D. Namely, we have
the following:

Lemma 3.15. With the notations and assumptions as above, the dual
graph of D is given by (b) in Figure 1 with m = −l1 + 1.

Proof. Since E(1)(1), which is the leftmost component of T (l1), meets
three other fiber components and the rightside of E(1)(1) in Figure 15 contains
no (−1)-curve, at least one of A′ + L1 and B′ + L2 is contractible (see Remark
2.2). Let us suppose that A′ + L1 is contractible. Then A′ is a (−1)-curve and
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L1 is empty. Assume the contrary that L1 is not empty. In the case l1 = 1 (resp.
l1 > 1), when we contract A′ + L1 the image of E(1)(1) has self-intersection
number greater than or equal to −1 (resp. 0). This contradicts Lemma 3.14,
so L1 is empty. We contract the components A′, E(1)(1), . . . , E(1)(l1 − 1) in
this order. Then the images of B′ and E(1)(l1) have self-intersection number
(B′2)+l1−1 and −2, respectively. Lemma 3.14 then implies that (B′2)+l1−1 =
−1 and L2 is empty. Noting that (A′2) = (A2) − 1 and (B′2) = (B2) − 1, we
proved the assertion. In the case where B′+L2 is contracted instead of A′+L1,
we can also prove the assertion by the same fashion.

Finally we consider the case where the process σ consists of a single EM-
transformation τ1. By assumption before Lemma 3.13, the length l1 of τ1 is
greater than 1. The last component E(1)(l1) is a cross-section of Λ̃ and the
fiber F∞ is supported by

J := A′ + L1 + B′ + L2 + E(1)(1) + · · · + E(1)(l1 − 1).

The configuration of F∞ is described as in Figure 15 with the rightside of T (l1)
excluded.

We prove the following result:

Lemma 3.16. With the notations and assumptions as above, the dual
graph of the boundary D is (b) in Figure 1 with m = −l1 + 2.

Proof. The proof is somewhat similar to the one of Lemma 3.15. Note
that E(1)(1) is a (−2)-curve meeting three other fiber components or two fiber
components and a cross-section. In order to obtain a smooth fiber from F∞, one
of A′ and B′, say A′, is a (−1)-curve and L1 is accordingly empty. We contract
A′, E(1)(1), . . . , E(1)(l1 − 1) in this order. Let B′′ be the image of B′ after this
contraction. Since B′′ meets a cross-section, we can reduce B′′+L2 to a smooth
fiber retaining B′′ as a final component. So, if L2 is not empty it contains a
(−1)-curve. But this is impossible by the minimality of D. Thus we know that
L2 is empty and B′′ itself is a smooth fiber. Noting that (A′2) = (A2)− 1 and
(B′′2) = (B2) + l1 − 2, we proved the assertion.

We thus obtain that for any m.n.c. of A2 the dual graph of the boundary
is given by the one of (a)–(f) in Figure 1.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. So, suppose that a smooth affine
surface X has a normal compactification X ↪→ V such that each irreducible
component of the boundary divisor D := V − X is rational and the weighted
dual graph of D is the same as that of the boundary of a suitable normal
compactification of the affine plane A2. Then D can be brought to a smooth
rational curve D with the self-intersection number 1 on a smooth projective
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surface V after suitable blowing-ups and blowing-downs with centers outside
X, because any boundary divisor with respect to the normal compactification of
an affine plane A2 can be brought to a line on a projective plane P2 via suitable
blowing-ups and blowing-downs with centers outside A2. Now we prepare the
following lemma by which we know that V is a rational surface:

Lemma 4.1. Let W be a smooth projective surface. Suppose that there
exists a smooth rational curve C on W with positive self-intersection number.
Then W is a rational surface.

Proof. Since (C · KW ) = −(C2) − 2 < 0 and (C2) > 0, it is easy to see
that W has negative Kodaira dimension, i.e., W is ruled. Suppose that W has
the positive irregularity q(W ) > 0. Then there is a P1-fibration

f : W → B,

where B is a smooth projective curve with genus q(W ). Since (C2) > 0, the
curve C is not contained in a fiber of f . Hence C is a quasi-section of f . But
this is impossible by Lüroth theorem because C is rational. Thus we have that
q(W ) = 0 and consequently W is rational.

We blow-up V at a point of D. Let V ′ be the resulting surface, let D′ be
the proper transform of D on V ′ and let E′ be the exceptional curve. Since
D′ ∼= P1 and (D′2) = 0, we have OD′(D′) ∼= OP1 . Consider an exact sequence:

0 → OV ′ → OV ′(D′) → OP1 → 0.

Noting that H1(V ′,OV ′) = 0 because of the rationality of V ′ (see Lemma 4.1),
the induced cohomology exact sequence implies that h0(V ′,OV ′(D′)) = 2. The
linear pencil |D′| defines a P1-fibration h : V ′ → P1 and E′ is a cross-section
of h. All the fibers of h are irreducible since X = V ′ − (D′ ∪ E′) is affine and
E′ is a cross-section of h. Thus we know that h|X is an A1-bundle over A1.
Hence X ∼= A1 × A1 ∼= A2. This completes the proof of Theorem 1.2.

Remark 4.2. In the statement of Theorem 1.2, if we replace the affine
plane A2 by another Q-homology plane then a similar result does not hold in
general. For instance, H. Flenner-M. Zaidenberg constructed a family (Vt, Dt); t
∈ A1, of smooth projective surfaces Vt and divisors Dt on Vt such that, for
t �= t′, the affine surfaces Xt := Vt−Dt and Xt′ := Vt′ −Dt′ are non-isomorphic
Q-homology planes, whereas the boundaries Dt, Dt′ are isomorphic with weight
(cf. [3, Example 4.16]).
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