
A NEW PROOF OF A THEOREM OF SOLOMON

M. D. ATKINSON

The main purpose of this note is to give another proof and a different view of a
theorem of Solomon [3] on Coxeter groups (finite groups of symmetries of Rn

generated by reflections). A secondary purpose is to give more publicity to the
fascinating special case of symmetric groups. This case was handled by Etienne whose
recent paper [2] kindled my interest in this subject; I owe to Michelle Wachs my
awareness of Solomon's earlier and more general theorem. The new proof is shorter
and apparently more elementary than the proof of [3] (and the proof in the appendix
to [3] due to Tits); nor does it reduce to Etienne's proof in the special case of the
symmetric group.

We begin by recalling some of the terminology of Coxeter groups. By definition
they are finite groups of symmetries of n-dimensional real Euclidean space generated
by those elements which are reflections in hyperplanes. Each reflecting hyperplane has
two unit vectors r and — r orthogonal to it called roots and the set of roots has a
reasonably canonical partition into positive roots and negative roots. The set of
positive roots has a distinguished subset called the set of fundamental roots and the
associated set of fundamental reflections (the Coxeter generators) also generates the
group; with respect to this generating set the group has a very simple set of defining
relations. Suppose that {T15 T2, ..., rm} is a set of Coxeter generators for a Coxeter
group G associated with the set of fundamental roots {rx, r2,.. . , rm}. For any geG let
X(g) denote the length of a minimal word in the generators which represents g. It is
known [1, 6.1.1] that X(Zig) = X(g)± 1, with the positive sign if rtg is a positive root
and the negative sign if rtg is a negative root. If S is any subset of {1, 2, ..., m) the
signature class associated with S is the set

{g e G | X(xt g) > X(g) if and only if i e S}

- {ge G | A(T,£) = X(g)+1 if and only if ieS}

= {ge G | rtg is a positive root if and only if ie S}.

SOLOMON'S THEOREM. Let A, B, C be three signature classes (not all necessarily
distinct),
and let yeC. Then the cardinality of

{ ( a , P ) \ O L E A J E B with afi = y}

depends on A, B, C alone and not on the representative y.

The theorem is more striking when stated for the special case that G is the
symmetric group on the set {1, 2, ..., n) which has the set of n— 1 transpositions
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(/, /+1) as Coxeter generators. It is easy to verify that, in this case, X(g) is the number
of inversions in the permutation g and therefore that X(xtg) > X(g) if and only if
ig < (/+ l)g. Consequently the signature of a permutation a of 1, 2 , . . . , n is the subset
S of {1,2, . . . , « - l } defined by

/ 6 S if and only if ia < (/'+1) o.

Thus, in this case, the signature of a is the 'up-down profile' of the permutation and
the theorem states that the number of solutions (a, /?) of afi = y, with a of a fixed
profile, /? of another fixed profile depends only on the profile of y.

LEMMA 1. Let yeG, and let x be any Coxeter generator of G. Then y and yx have
the same signature if and only ifyxy~l is not a Coxeter generator of G.

Proof. Suppose that yxy~x = a is a Coxeter generator with associated funda-
mental root ra. then ray = —raoy = —rayx and so one of ray and rayx is a positive
root and the other is negative. Hence y and yx have different signatures.

Conversely, suppose that y and yx have different signatures. So, for some
fundamental root ra and associated Coxeter generator a, one of ra y and ra yx is positive
and the other is negative. However, according to [1, 4.1.9], the only positive root
mapped to a negative root by x is the root rx itself. Thus, ray = ±rx and, by [1, 4.1.1],
x = y~xay as required.

LEMMA 2. Suppose that ysG, and ox,o2, ...,ok are each Coxeter generators.
Suppose also that y andyaxo2...ok have the same signature. Then either

(i) yax a%... ok_x also has this signature, or

(ii) for some i < k, a{at+1... ak.x = ai+1 <ri+2 ...ak.

Proof. We shall suppose that (i) does not hold and derive (ii). There exists a
fundamental root rT and Coxeter generator x such that the roots rx y and rx yax... ak

are of the same sign (say, positive without loss of generality) but the root rx yax... ak_x

is of the other sign (therefore negative). In particular, using [1, 4.1.9] again,

rk = -rxyox...ok_1. (1)

The root sequence rx y, rx yax, ...,rxyalaz... ok_x begins with a positive root and ends
with a negative root. Suppose that rx yax... ai is the first negative root in this sequence.
Then rx yax... at_x is a positive root and rx yax... at_x at is a negative root. Therefore,
using [1, 4.1.9] once more, rx yax... a{_x is the root which corresponds to the reflection
at, that is, ...

ri = rxyax...ai_x. (2)
From (1) and (2) we have r ^ . . . a k _ x = — rk and so, from [1, 4.1.1], condition (ii)
holds.

COROLLARY. Ify and d each have the same signature, there is a sequence of group
elements y = y0, yx, ...,yk = S which all have the same signature and where, for each
}•> Vj+i = yjaj+ifor some Coxeter generator ai+x.

Proof. Let y~xd = ax a2... ak be a minimal word for y~1S. We apply Lemma 2
to y and S = yaxaz...ak which have the same signature. By the minimality of the
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word a1 a2...ak conclusion (ii)cannot hold and therefore yax<r2...o^ also has this
signature. Since ax a2... ok_x is also a minimal word we can repeat the argument.

LEMMA 3. Let a, fi, y be such that afi = y. Let x be any Coxeter generator such
that y and yx have the same signature. Then exactly one of the following holds:

(i) fi and fix have the same signature,

(ii) fix = afifor some Coxeter generator a, and a and our have the same signature.

Proof By Lemma 1 condition (i) fails precisely when fix = afi for some Coxeter
generator a. When this happens a and cur do indeed have the same signature; for
otherwise we would have cur = p<x for some Coxeter generator p and then py =
pctfi = ourfi = afix = yx and this contradicts that y and yx have the same signature.

If yeG, and A, B are signature classes, let NABy = {(a, fi)\aeA,fieB and afi = y}
and\etnABy = \NABy\.

LEMMA 4. Ify and y* = yx have the same signature, where x is a Coxeter generator,
then nABy = nABy,.

Proof NABy can be partitioned into subsets Nt defined as

iV0 = {(a, fi)eNABy\fix ±xrfi for any Coxeter generator xr),

Nr = {(a, fi)eNABy\fix = xrfi for some Coxeter generator rr}.

Define corresponding sets Nf as follows:

N? = {(axr,fi)\(<x,fi)eNr}.

Obviously | JV* | = | JVf | and we shall prove the lemma by showing that these latter sets
form a partition of NABy*.

Observe first of all that, because of Lemmas 1 and 3, each Nf is contained in NAByt.
Next we show that the sets Nf are disjoint. It is obvious that the sets Nf for i ^ 1 are
disjoint and if (a, fix) = (dxr, </>) e N* n N* (so that (<x,fi)eN0 and (0, <f>)eNr) then
a = 0Tr, fix = <j>, and <f>x = xr<f> and it follows that xrfi — fix which contradicts

Finally we shall show that the disjoint union of the Nf is the whole of NABy.. Let
(<x*,fi*)eNABy. and let fi*x = fi. If fix^xrfi for any Coxeter generator xr then
(<x*,fi)eN0 and (<x*,fi*)eN*. However if fix = xrfi then also fi*x = xrfi* and, by
Lemma 3, a* and a*Tr = a have the same signature; thus (a*, fi*) = (arr, fi*)eN*
as required.

Solomon's Theorem is now a direct consequence of Lemma 4 and the Corollary
to Lemma 2 which together show that nABy depends only on the signature class of
y and not on any representative y of the class.
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