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A new proof of the Aubry-Mather’s theorem

Christophe Golé †

Abstract:We present a new proof of the theorem of Aubry and Mather on the existence of quasi
periodic orbits for monotone twist maps of the cylinder. The method uses Aubry’s discrete
setting, but works directly with sequences of irrational rotation number, avoiding to take limits
of periodic orbits.

Key words: Twist maps, quasiperiodic orbits, Aubry-Mather sets.

0. Introduction

The maps that we consider here are monotone (positive) twist maps of the cylinder
A = (R/Z) × R. These maps are C1 diffeomorphisms that are area preserving and have
“zero flux”: the algebraic area enclosed between a loop and its image by the map is zero.
They also satisfy a twist condition, which enables one to set up a discrete variational
problem.

To understand such maps, according to Poincaré who first studied them, one should
first understand periodic orbits. They can be of different homotopy type, depending on
how much they turn around the circle component of A, and the length of their period. The
quotient of these two numbers gives the rotation number of the orbit which is rational. A
variation on the theorem of Poincaré and Birkhoff then asserts that there exists (at least
two) periodic orbits of all (prime) rational rotation number. In [G1], we proved an analog
to this theorem for symplectic twist maps (called monotone maps there) of Tn × Rn.

It was not until the late seventies that the existence of orbits of all rotation numbers
was proved. This was done independently by Aubry [A-L] and Mather [M], with methods
quite different from one another. Whereas Aubry had to take sequences of periodic orbits
of a “good” (“Birkhoff”) type to obtain his quasiperiodic ones, Mather worked in a certain
functional space that picked up the orbits of a chosen, rational or irrational, rotation
number.

The proof that we present here uses the sequence space in which Aubry’s variational
calculus was set, but we are able to restrict ourselves apriori to a subspace of sequences
having a prescribed rotation number.

Apart from what we think is a simplification of the existing proofs ( to the exclusion
of that of Angenent in [An 2]), we hope that this method may generalise to symplectic
twist maps, where the main problem until now was to define what Birkhoff periodic orbits
should mean in this context. Of course, we do use this notion in this paper, but some new,
key steps (section 3) are valid for higher dimensional maps. We have tried to make this
paper as self contained as we could, and included theorems on the energy flow that had
either been stated or even proved before (section 2).

Note again that we are working here in the unbounded annulus, or cylinder. Restrict-
ing oneself to a bounded annulus is quite possible with our method, but to the price of
unrewarding complications in the notation. It would also be easy to extend this method to
finite compositions of twist maps of the same sign, by adding their generating functions.

† SUNY at Stony Brook
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1.Twist maps and their energy flow.

Let F be a diffeomorphism of A = (R/Z)× R. Denote by Ω = dy ∧ dx the canonical
symplectic form on A (seen as the cotangent bundle of the circle), x being the angular
variable, y the fiber variable. Then Ω = dα, where α = ydx.

We write F (x, y) = (X,Y ). To say that F is area preserving means:

(1.1) F ∗Ω− Ω = dY ∧ dX − dy ∧ dx = 0

(i.e., F is symplectic). To say that it preserves the flux means:

(1.2) F ∗α− α = Y dX − ydx = dS

for some real function S on A (i.e., F is exact symplectic). Of course (1.2) implies (1.1).
Finally, the twist condition is given by

(1.3)
∂X

∂y
> 0

If we work in the covering space R2 of A, keeping the same notation, the twist condition
implies that ψ : (x, y)→ (x,X) is a diffeomorphism from R2 onto its image. Here, we will
suppose that ψ is a diffeomorphism onto R2 . In [G1](section 4) we gave some conditions
under which this is true. The standard family, for one , satisfies these conditions. The
method we expose can be reproduced in the general case, with appropriate restrictions on
the set of rotation numbers, and with little gain of insight. Because F (x, y) = (X,Y ) ⇒
F (x+ 1, y) = (X + 1, Y ) in the covering space, we have that ψ(x+ 1, y) = (x+ 1, X + 1).
Since ψ is a coordinate change, S can be seen as a function from R2 to R satisfying the
periodicity condition:

(1.4) S(x+ 1, X + 1) = S(x,X).

From (1.2), one can see that S is a generating function for F in the classical mechanic
sense of the term:

y = −∂1S(x,X)

Y = ∂2S(x,X)

Also, the twist condition (1.3) translates into:

∂1∂2S(x,X) > 0.

Let zk = F k(z0) = (xk, yk). The orbit {zk} is completely determined by the sequence
{xk} of (R)Z. Indeed, from (1.2), we deduce:

yk = −∂1S(xk, xk+1) = ∂2S(xk−1, xk)
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This can be written:
∂1S(xk, xk+1) + ∂2S(xk−1, xk) = 0.

This equation can be formally interpreted as:

(1.5)

∇W (x) = 0, for

W (x) =
+∞∑
−∞

S(xk, xk+1) and x ∈ (R)Z.

One can think of the above construction as a discrete version of the classical mechanics
one: the map ψ is the analog to the Legendre transformation (X − x is the discretised
velocity) and equation (1.5) is a formulation of the “least action principle”.

Of course, W is not well defined, since the sum is in general not convergent. However,
“∇W” is well defined and generates a flow on a subspace of (R)Z that we call the energy
flow.

More precisely, we endow RZ with the norm :

‖x‖ =
+∞∑
−∞

|xk|
2|k|

We let X be the subspace of RZ of elements of bounded norm, which is a Banach space.
Giving ourselves an ω in R, we define:

Yω = {x ∈ RZ | |x|ω = sup
k∈Z
|xk − kω| <∞},

on which one can either put the topology induced by the inclusion of Yω in X or the l∞

topology given by the metric:

|x− y|∞ = sup
k∈Z
|xk − yk|

It is important to notice that elements of Yω have rotation number ω, that is:

x ∈ Yω ⇒ lim
|k|→∞

xk
k

= ω,

and this definition coincides with the rotation number of an orbit of F when {xk} defines
the x coordinates of such an orbit.

On RZ, we have a Z2 action given by:

(τm,nx)k = xk+m + n

We define Yω/Z := Yω/τ0,1. This will ultimatly be the space on which we will be working.

2. Existence and monotonicity of the flow
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In this section, we prove the existence of a C1 energy flow on Yω which is monotone
with respect to the partial order on sequences, and whose rest points correspond to orbits
of F .

Proposition 1: Suppose that the generating function S is C2. The infinite system of
O.D.E’s:

(1.6) −∇W (x)k = ẋk = −[∂1S(xk, xk+1) + ∂2S(xk−1, xk)]

defines a C1 local flow ζt on Yω, for both topologies on Yω. The rest points of ζt on Yω
correspond to orbits of the map F with rotation number ω. Furthermore, when S has a
bounded second derivative, the system defines a C1 flow on X.

proof: Yω is a Banach manifold diffeomorphic to l∞: xk → xk + kω gives the diffeo-
morphism from l∞ ∼= Y0 to Yω, with obvious inverse. We want to show that the map
x → ∇W (x) is a (locally) Lipschitz vector field on Yω, and that it has one order of
differentiability less than that of S. For this we prove the following lemma:

Lemma 1: Let x ∈ Yω. Then the set {(xk, xk+1)}k∈Z/Z is bounded. Hence S and all its
(existing ) derivatives are bounded on this set.

proof: We want to show that (xk−E(kω), xk+1−E(kω)) is bounded in R2, uniformaly
in k, where E is the integer part function. But:

|xk − E(kω)| ≤ |xk − kω|+ |kω − E(kω)| ≤ |x|ω + 1.

Since |E(kω)− E((k + 1)ω)| ≤ |ω|, the same method shows:

|xk+1 − E(kω)| ≤ |x|ω + 1 + |ω|

We conclude the proof of Lemma 1 reminding the reader that S is periodic (see (1.4)). �

Coming back to the proof of the proposition, we notice that lemma 1 shows, among
other things that, when x is in Yω, ∇W (x) is in l∞, which is exactly the tangent space to
Yω since the latter is an affine manifold modeled on l∞.

To show that ∇W is Lipschitz in the norm ‖ ‖, we calculate:

‖∇W (x)−∇W (y)‖

=

∞∑
−∞

|∇W (x)k −∇W (y)k|
2|k|

≤ sup
k∈Z,t∈[0,1]

|∇2S((1− t)xk + tyk, (1− t)xk+1 + tyk+1)|
∞∑
−∞

|(xk − yk, xk+1 − yk+1)|
2|k|

≤ 2K‖x− y‖,

where K exists since by lemma 1 the second derivative of S is estimated over a bounded
set in the case where both x and y are in Yω. In the case where x and y are only assumed
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to be in X, and the second derivative is bounded, the previous computation shows both
that ∇W is in X (set y = 0 in the computation) and that it is Lipschitz.

To show the differentiability, just notice that the obvious candidate for the derivatives
of ∇W is “ HessW”, a tridiagonal, matrix operator, which is bounded, again because
of the lemma 1 or the assumption (see more on HessW in the proof of proposition 2).
This, and the theorems of existence of O.D.E.’s on Banach spaces conclude the proof of
the proposition for the first norm. To prove that ∇W is Lipschitz for the l∞ topology, one
would proceed in a similar fashion. We leave it to the reader to check this since we will
not use the l∞ norm anymore in this paper. We will not need that ζt is a flow on X either,
but want to keep it for the record. �

One of the key properties of the flow ζt is that it is strictly monotone. This important
fact, which holds in both Yω and X (when the second derivative is bounded in the latter),
was first used in [An1]. The following proof , due to Angenent, was already given in [G2],
Lemma 1.22, and we include it for the convenience of the reader. We remind the reader
that RZ is endowed with a partial order given by x < y⇔ xk ≤ yk,∀ k and x 6= y.

To say that ζt is monotone means that x < y ⇒ ζt(x) < ζt(y), ∀t > 0. It is strictly
monotone if x < y⇒ ζt(x)k < ζt(y)k,∀k ∈ Z, t > 0.

Proposition 2: The flow ζt is strictly monotone where it is defined.

proof: We let the reader show that if the operator solution of the linearised equation:

(2.2) u̇ = −HessW (x(t))u(t)

is strictly positive, then the flow is strictly monotone. One can check that −HessW (x(t))
is an infinite tridiagonal matrix with positive off diagonal terms −∂1∂2S(xk, xk+1). The
diagonal terms ∂1∂1S(xk, xk+1) + ∂2∂2S(xk−1, xk) are uniformaly bounded , either by
assumption, or on a compact time interval along an orbit, by lemma 1. In all cases, for
any T > 0 for which x(t) is defined when 0 ≤ t ≤ T , we can find a positive λ such that:

B(t) = −HessW (x(t)) + λId

is a positive matrix with strictly positive off diagonal terms. If u(t) is solution of the
equation (2.2) then eλtu(t) is solution of :

(2.3) v̇(t) = B(t)v(t),

and hence the strict positivity of the solution operator for (2.2) is equivalent to that of
(2.3). Looking at the integral equation:

v(t) = v(0) +

∫ t

0

B(s)v(s)ds,

one sees that Picard’s iteration will give positive solutions for positive vector v(0). This
will imply, assuming that vk(0) > 0, vl(0) ≥ 0, for l 6= k:

vk+1(t) ≥ vk+1(0) +

∫ t

0

Bk,k+1(s)vk(s)ds > 0
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The same holding for vk−1. By induction, vk(t) > 0,∀k ∈ Z and the operator solution is
strictly positive. This finishes the proof of proposition 2. �

3. Lyapunov functions for non rest points.

Let WN =
∑N
−N S(xk, xk+1) and d

dtWN (x) its (well defined) derivative along the flow
at t = 0. We want to prove the following :

Lemma 2: Let x ∈ Yω be not a rest point, then

∃N0 such that ∀N > N0,
d

dt
WN (x) < 0

and the same holds in a neighborhood of x for the same N0, in either topologies. It also
holds for the flow ζt induced by equivariance on Yω/Z .

proof: By chain rule:

d
dtWN (x)

= −

[
N∑
−N

∂1S(xk, xk+1)∇W (x)k + ∂2S(xk, xk+1)∇W (x)k+1

]

= −

[
N∑
−N

∂1S(xk, xk+1)∇W (x)k +
N+1∑
−N+1

∂2S(xk−1, xk)∇W (x)k

]

= −∂1S(x−N , x−N+1)∇W (x)−N − ∂2S(xN , xN+1)∇W (x)N+1 −
N∑

−N+1

(
∇W (x)k

)2
We want to show that, for an x which is not a rest point in Yω, the first 2 terms of

this expression are negligeable compared to the third for all large N ’s. As we have seen in
Lemma 1, we can assume∣∣∂iS(xk, xk+1)

∣∣ < a, for i = 1 or 2 and
∣∣∇W (x)k

∣∣ < 2a,

for some constant a depending on x but not on k. Therefore, to show that our expression
is negative, it suffices to show that:

N∑
−N+1

(
∇W (x)k

)2
> a

(∣∣∇W (x)−N
∣∣+
∣∣∇W (x)N+1

∣∣).
There are two cases:

(i)
∑+∞
−∞
(
∇W (x)k

)2
=∞. Then for all N greater than some N0,

N−1∑
−N+1

(
∇W (x)k

)2
> 4a2 > a

(∣∣∇W (x)−N
∣∣+
∣∣∇W (x)N+1

∣∣),
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which proves the lemma in this case.

(ii)
∑+∞
−∞
(
∇W (x)k

)2
= K <∞. Then we must have lim|k|→∞∇W (x)k = 0 and, for

all N greater than some N0,

N∑
−N+1

(
∇W (x)k

)2
> K/2 > a

(∣∣∇W (x)−N
∣∣+
∣∣∇W (x)N+1

∣∣).
and the lemma is proven for the case x ∈ Yω. All the terms in the computation above
being invariant under x→ τ0,1x, the lemma is also proven for x in Yω/Z. �

The next lemma will show how to use the “Lyapunov” functions WN to find rest
points for the flow.

Lemma 3: Any compact invariant set for the flow ζt ( in Yω or Yω/Z) must contain a
rest point.

proof: Let C be compact invariant for the flow ζt. Note that in particular, the flow is
defined for all time on C. Suppose there are no rest points in C. Then we can cover C
with open sets on each one of which d

dtWNi is negative for some Ni (and hence for all
N > Ni). Taking a finite subcovering and M = supNi on this covering, we find that WM

is strictly decreasing on all of C, i.e., it is a Lyapunov function on the compact C. C being
compact and S being C2, there is an a > 0 such that supx∈C

d
dtWM (x(t)) < −a. But this

implies that, for x(0) ∈ C, limt→∞WM (x(t)) = −∞, a contradiction to the compactness
of C. �

4. Aubry-Mather’s theorem.

We first state the theorem:

Theorem: Let F be a twist map of A, then F has orbits of all rotation number ω in R.
These orbits can be chosen to be ordered like orbits under a rigid rotation. When ω is
irrational, the x coordinates of the orbit may either be dense in S1, dense in a Cantor set,
or lie in the gaps of a Cantor set contained in its closure.

proof: In the following definition of Birkhoff sequences, we follow [A2]. Remember that:

(τm,nx)k = xk+m + n

We define the set B of Birkhoff sequences to be those x in RZ such that τm,nx ≥ x or
τm,nx ≤ x. This is a closed set in X. All its elements have a rotation number. In fact
one can show that B ⊂

⋃
ω∈R Yω (see Lemma 4.11 in [G2]). Since ζt is monotone, B is

invariant by the flow. Now let x be a Birkhoff sequence of rotation number ω. One can
prove:

x0 + kω ≤ xk < x0 + kω + 1

Moding out by τ0,1 (translations) the set of such sequences is equivalent to choosing x0 ∈
S1. Then one sees that one obtains a set diffeomorphic to S1× [{kω}, {kω}+ 1], the latter
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term being an order interval in RZ, diffeomorphic to a hilbert cube, hence compact: the
topology induced by the norm ‖ ‖ is equivalent to the product topology on this set. We
call this space Bω. We have Bω = (Yω

⋂
B)/Z is a compact, positively invariant subset of

Yω/Z for the quotient flow, with the norm induced by ‖ ‖ on the quotient.
The flow ζt is defined for all positive t when x(0) is in Bω. The ω-limit set of Bω

is compact, (positively and negatively) invariant by the quotient flow and hence from the
previous section it must contain a rest point. By Proposition 1, this sequence corresponds
to an orbit of the map with rotation number ω. Now to be a Birkhoff sequence is equivalent
to be an orbit of a circle homeomorphism and hence the topological structure of the orbit
is given by classical theorems on these homeomorphisms. This finishes the proof of the
theorem. �

Erratum for “A new proof of Aubry-Mather’s theorem”

Sinisa Slijepcevic pointed out an error in Section 3 of this paper. I present here
a modified version of this Section. It is greatly inspired by the paper “Aubry-Mather
Theory for Functions on Lattices” by Koch, de la Llave and Radin.

Denote by Y Kω = {x ∈ Yω; |xk − x0 − kω| < K}.

Lemma 2 Let C ⊂ Y Kω be a compact invariant set for both the flow ζt and the shift map
σ = τ0,1. Then C must contain a rest point for the flow.

Proof. Assume, by contradiction, that there are no rest points in C. We will show
that, for some large enough N , the truncated energy function WN =

∑N
−N S(xk, xk+1) is

a strict Lyapunov function for the flow ζt on C. More precisely, we find a real a > 0 such
that d

dtWN (x) < −a for all x in C. This immediately yields a contradiction since on one
hand WN decreases to −∞ on any orbit in C, on the other hand, the continuous WN is
bounded on the compact K.

To show that WN is a Lyapunov function for some N , we start with:

Lemma 3Let C be as in Lemma 2. Suppose that there are no rest points in C. Then,
there exist a real ε0 > 0, a positive integer L0 such that, for all x ∈ C

N ≥ L0 ⇒
j+N∑
j

(∇W (x)k)
2
> ε0.

Proof. Suppose by contradiction that there exist jn, Nn such that

(2.1)

jn+Nn∑
jn

(
∇W (x(n))k

)2
→ 0

. Let m(n) = −jn − E(Nn/2) where E is the integer part function, and let x′(n) =
σm(n)x(n). This new sequence x′(n) is still in C, and satisfies (2.1). By compactness of
C, a subsequence of it converges pointwise (i.e. in the product topology) to some x∞ in
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C. Clearly, ∇W (x∞)k = limn→∞∇W (′x(n))k = 0 for all k and x∞ is a rest point, a
contradiction. Q.E.D

We now show that WN is a strict Lyapunov function. By chain rule:

(2.2)

d

dt
WN (x) = −

[
N∑
−N

∂1S(xk, xk+1)∇W (x)k + ∂2S(xk, xk+1)∇W (x)k+1

]

= −

[
N∑
−N

∂1S(xk, xk+1)∇W (x)k +

N+1∑
−N+1

∂2S(xk−1, xk)∇W (x)k

]

= −∂1S(x−N , x−N+1)∇W (x)−N − ∂2S(xN , xN+1)∇W (x)N+1 −
N∑

−N+1

(
∇W (x)k

)2
For all x in Y Kω , we have |xk − xk−1| < K and hence S, its partial derivatives and

thus ∇Wk are all bounded on that set. In particular, we can find some M(K) such that

|−∂1S(x−N , x−N+1)∇W (x)−N − ∂2S(xN , xN+1)∇W (x)N+1| < M

for all x in Y Kω and all integer k. We claim that for N > (M + 2)L0/(2ε0) (where L0, ε0
are as in Lemma 2), WN is a Lyapunov function. Indeed, N ≥ (p+ 1)L0 where p > M/ε0

and we can split the sum
∑N
−N+1

(
∇W (x)k

)2
into p sums of length greater than L0. By

Lemma 2, each of these sums must be greater than ε0, and thus the total sum must be
greater than M + 2ε0, making the expression in (2.2) less than −2ε0. Q.E.D.

The end of the proof of the Aubry-Mather theorem proceeds as before. One only
needs to note that the ω-limit set of Bω is included in Y 2

ω and is σ invariant since Bω itself
has these properties.
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