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A NEW PROOF OF THE BAHADUR REPRESENTATION OF
QUANTILES AND AN APPLICATION

By J. K. GHOSH
Indian Statistical Institute

1. Introduction and summary. Let {X;} be a sequence of independent random
variables with the same distribution function F(x) = Pr {X; < x}. Let F(M,) =
P> 0 < p < 1. Suppose F has two derivatives in a neighborhood of M,, F"(x) is
bounded there and F'(M,) is positive. Let Y, , be a sample p-quantile based on
Xy, -+, X,. Let nG,(x) be the number of X;’s among (X, -+, X,) which are >x.
Bahadur (1966) has proved

(0 Y,, = M,+[G(M,)—(1-p)|/F'(M,)+R,

where the remainder term R, becomes negligible as n — c0. More precisely, he has
shown R, = O(n"*logn) a.s. as n — 0. The best result of this type is due to
Kiefer (1967) who has calculated the exact order of R,. Sen (1968) has extended
Bahadur’s result to random variables which are neither independent nor identically
distributed.

We shall give a new and much simpler proof of a weaker version of Bahadur’s
result which suffices for many statistical applications. Our proof involves fewer
assumptions than Bahadur’s.

For arbitrary p, let M, be defined as M,+(p,—p)/F'(M,). Consider

&) Ypun = My, +[G(M,)—(1—p)[F'(M,) + R,

where Y, . is a sample p,-quantile.
In Section 2 we have proved the following result about R,

THEOREM 1. Suppose F'(M,) exists and is strictly positive and p,—p = O(1/n?).
Then R, as defined in (2) (and, a fortiori, R, as defined in (1) satisfies

3) n*R, — 0 in probability.

(After writing this paper the author discovered that the result for p, = p is stated
without proof in Chernoff et al (1967).)

It is easy to extend this result as in Sen (1968). An outline is sketched in one of
the remarks. Once again it is possible to achieve some economy in assumptions.

The representation (1) is not new. Its use in deriving the asymptotic moments of
Y, . goes back to Karl Pearson. See, for example, (1) in Hojo (1931). But the
formulation therein is very imprecise and lacks a rigorous justification.

We next consider an application of Theorem 1. Let X, = ()1 X))/n and P, =
proportion of X;’s above X,. David (1962) proved the asymptotic normality of P,
when F is a normal distribution function. Using the same elegant trick, Mustafi
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(1968) has proved a similar result for bivariate normal distributions. We shall
extend these results considerably by providing alternative proofs based on Theorem
1, which dispense with the normality assumption on F. Moreover, in our proof we
may consider—though we shall not do so for purposes of simplicity—instead of the
sample mean X, an U-statistic to which the central limit theorem of Hoeffding

(1948) applies.

2. Proof of Theorem 1. Let Q, 4, P be the probability space on which all the
random variables are defined.

LemMMA 1. Let {V,}, {W,} be two sequences of random variables satisfying the
Jollowing conditions.
0] Forall 6 >0 thereexists A (depending on "8) s.t. P(| W,,| > 1) < 4.

) Forall k andall ¢ >0
lim,,, PV, =k, W, Z k+e) =0
lim,,, P(V, = k+e, W, = k) =0.
Then V,— W, — 0 in probability as n — .
The lemma is quite easy to prove but for the sake of completeness we include a
proof.
ProoF OF LEMMA 1. It follows from (5) that

(6) limPla< W,<b, V,=b+eor V,<a—e) =0 forall a<b, e¢>0.
Choose A asin (4). Let I, =1[a;, b;],j=1, -, m be m intervals
such that a; = —A4,b, =4 and b;—a; <e. Then

P(|V,—W,| > 28) £ 5+Y P(a; £ W, £ b;, |V,— W,| > 2e).
The lemma is an immediate consequence of this inequality and (6).
Let F,(x) = 1—G,(x) be the sample distribution function and G(x) = 1—F(x).

We first prove the theorem when Y, , is the smallest sample p,-quantile, i.e.
Y, . is the smallest y for which F,(y—0) < p, < F,(y). Then for any real number ¢,

{w; n‘zL(Yp,.,n(W)—Mp") St}={w;p, = Fn(Mpn+t/n%)}
™ - {w; 3 1G(My, + tfn) = G(M,, + o)} _

F'(M,) = ”}
where 1, = n*(F(M,, +t/n*)—p,)|[F'(M,).
Clearly t, = n*{F(M,)+{t/n* +(p,—p)|F' (M) }(F'(M,) + 0o(1)) — p,}/F'(M,) and so
tends to t as n — oo.
Let Z,, = nH{G,(M,, +t/n*)— G(M,,, +1[n*)}[F'(M,).
Let W, = n¥{G(M,)— G(M,)}/F'(M,).
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Easy calculation shows E(Z, ,— W,)* = p,(1—p,){F(M,)}*

where p, = |F(M,) —F(M,, +t/n*| - 0.
So,
8) E(Z,,— W,)* - 0.
It follows that
©) Z,,—W,— 0 in probability.

Also W, has an asymptotic normal distribution. So if welet ¥, = n*(Y,, ,—M,),
then by (7) and (9) V, and W, satisfy the conditions of the lemma. Thus V,— W, - 0
in probability and the theorem is proved when Y, , is the smallest p,-quantile.

Let Y, , denote an arbitrary p,-quantile and Y, , the smallest, as above. Then
Ypn < Ypon < Y, Where p,/ = p,+1/n also satisfies the hypothesis of the
theorem. Then )

W (Y, —M,)— W, < n¥’(Y, —M,)-W,

< n¥ (Y, —M,)—W,.

The theorem follows from the special case proved since n*(M,, — M,,.) — 0.

nsh

REMARKS. (i) If F'(M,) > 0and Fhas a continuous first derivative in a neighbor-
hood around M, then the theorem is true for all p, — p. The proof is exactly
similar but M, is redefined so that F(M,,) = p,.

(ii) To see how we may extend as in Sen (1968) and weaken his assumptions,
suppose X;’s are independent but not necessarily identically distributed random
variables. Let F,(x) = 1/n Y7y P{X; £ x} and G,(x) = 1—F,(x). Suppose
F,/(M,,) = p V¥ nand the following two conditions hold.

Fn(Mp,n'l' t/n%) _Fn(Mp,n)

CONDITION 1. .
t/n*

—y: ¢ >0 (independent of #).

ConbpITioN 2. T, = n*{G,(M, ,)—(1—p)} is asymptotically normal.

Then, taking Y, , to be the smallest p-quantile, we have n3( Y,,—M,,)—T,/c >0
in probability. The proof is quite similar. (For the step corresponding to (8) note
that 1/n Y p(1—p,) < p(1—p) where p = 1/n )} p,). If we further assume F, is
continuous in (M, ,—¢, M, ,+¢), ¢ > 0 then the previous assertion holds for all
p-quantiles. To see this consider the biggest p-quantile Y, ,, the set {w; n*(Y, ,—
M, ,) < t}and construct the proof as before through steps similar to (7), (8) and (9).

3. An application of Theorem 1. Let {X;} be a sequence of i.i.d. random variables
with common distribution function F(x). We make the following assumptions on F.
The first two moments of F exist and without loss of generality E(X;) = 0. F'(0)
exists and is positive. We shall say F satisfies Assumption A if all the preceding
conditions hold.

Let p = F(0),g = 1—p. Let

u;=1 if X; =0;
=0 if X;>0.
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Then F,(0) = 1/n) u;. Let T; = (p—U;)— X;F'(0). Then the T}’s are ii.d. with
mean 0 and finite variance. Let T, = (}] T,)/n. We recall that P, = 1 —F,(X,).

THEOREM 2. Let F satisfy Assumption A. Then n*(P,—q)—n*T, converges to zero
in probability and hence n*(P,—q) is asymptotically normal with zero mean and
variance equal to E(T?).

Before proving Theorem 2 we observe that since n* X, is asymptotically normal,
plim n*[P,—q—T,] = 0 is equivalent to plim [(F,(X,)— F,(0))/X,—F'(0)] = 0.
This should make clear the intuitive content of Theorem 2.

PROOF OF THEOREM 2. Now
{w;n(P(W)—q) < t} = {w; p—t/n* < F(X,)}
=W Yy = X}
where p, = p—t/n* and Y, , is the smallest pn-QUantile,

(10) = {w; n'F'(0)(Y,, .~ M,)-X,) < 1}

nsh

since M, = M,+(p,—p)/F'(0) = t/(n*F'(0)).

But by Theorem 1, n*{F'(0)( Y, .—M,)—(G,(0)—q)} converges in probability to
zero. Using (10) and applying the lemma (with V, = n*(P,—q) and W, = n*T,) we
get Theorem 2.

If (X;, Y)) are i.i.d. random vectors and their marginal distribution functions
F(x), F,(y) satisfy Assumption A then Theorem 1 may be applied to both P, and
Q, = proportion of Y;’s above Y,. This shows the asymptotic joint distribution of
P,, 0, is bivariate normal. It is easy to give a sufficient condition for the non-
singularity of this normal distribution. If we define V; similarly to U, in terms of Y,
then it is easy to show that if there exists a linear relation between u;— X,F,’(0) and
V;— Y, F,’(0) then the joint distribution function F(x, y) of (X,, Y,) is concentrated
on at most four lines. Thus if in particular, F(x, y) is not singular with respect to the
two dimensional Lebesgue measure then the asymptotic joint distribution of P, and
0, is a non-singular normal distribution. Mustafi’s theorem (1968) is a special case
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