J. geom. 59 (1997) 32 - 33 0047-2468/97/020032-02 \$ 1.50+0.20/0 © Birkhäuser Verlag, Basel, 1997

Journal of Geometry

ADDENDUM TO "A NEW PROOF OF THE EXISTENCE OF $(q^2 - q + 1)$ -ARCS IN $PG(2, q^2)$ "

Antonio Cossidente

We use the same notation as in [1]. G.L. Ebert [2] pointed out to us a mistake in the proof of Theorem 2 of [1]. As a matter of fact, it not true that the Hermitian curve in $PG(2, \mathcal{F})$ with equation

$$\bar{\mathcal{H}}: YZ^q + ZX^q + XY^q = 0$$

is fixed by the collineation group G. However, the proof still works if G fixes at least one non-degenerate Hermitian curve in $PG(2, \bar{\mathcal{F}})$, since the argument does not depend on the canonical equation of $\bar{\mathcal{H}}$. To determine such a Hermitian curve in $PG(2, \bar{\mathcal{F}})$, we show how to obtain a linear collineation τ in $PG(2, \bar{\mathcal{F}})$ mapping $\bar{\mathcal{H}}$ to a non-degenerate Hermitian curve $\hat{\mathcal{H}}$ fixed by G. To do this, we notice at first that the linear collineation group fixing $\bar{\mathcal{H}}$ is isomorphic to $PGU(3, q^2)$ and hence it has a cyclic subgroup Γ of order $q^2 - q + 1$. Actually, Γ is a subgroup of a Singer cyclic group Σ of $PG(2, q^2)$. We may choose a generator σ of Σ with the matrix representation

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{pmatrix}$$

where $x^3 - cx^2 - bx - a$ is an irreducible polynomial over $GF(q^2)$. Let τ be the linear collineation in $PG(2, q^6)$ associated with the matrix

$$T = \begin{pmatrix} 1 & 1 & 1\\ \zeta & \zeta^{q^2} & \zeta^{q^4}\\ \zeta^2 & \zeta^{2q^2} & \zeta^{2q^4} \end{pmatrix}$$

Research performed within the activity of G.N.S.A.G.A. of C.N.R. with the support of the Italian Ministry for Research and Technology

Cossidente

where ζ is a primitive element in $GF(q^6)$. It is easy to check that $T^{-1}CT$ is the diagonal matrix $\mathcal{D} = \operatorname{diag}(\zeta, \zeta^{q^2}, \zeta^{q^4})$. By putting $\omega = \sigma^{q^2+q+1}$, we see that $\tau^{-1}\omega\tau$ is represented by the matrix \mathcal{D}^{q^2+q+1} which turns out to be $\operatorname{diag}(\zeta^{q^2+q+1}, \zeta^{q^4+q^3+q^2}, \zeta^{q^5+q^4+1})$. If we multiply this last matrix by $\zeta^{-(q^2+q+1)}$ and put $b = \zeta^{q^5+q^4-q^2-q}$, this matrix may be written in the form $\operatorname{diag}(1, b^{-q^2}, b)$. On the other hand, the matrix $\operatorname{diag}(1, b^{-q^2}, b)$ is a generator of the group G. As a consequence we have that G fixes the Hermitian curve $\hat{\mathcal{H}}$ in $PG(2, \bar{\mathcal{F}})$ which is the image curve of $\bar{\mathcal{H}}$ under the linear collineation τ . For the rest of the proof of Theorem 2, it is sufficient to replace $\bar{\mathcal{H}}$ by $\hat{\mathcal{H}}$.

REFERENCES

- A. COSSIDENTE, A New Proof of the existence of q²-q+1)-arcs in PG(2, q²), J. Geom. vol. 53 1-2, (1995), 37-40.
- [2] G.L. EBERT, Private Communication.

Antonio Cossidente Dipartimento di Matematica Università della Basilicata via N. Sauro 85 85100 Potenza (Italy)

Eingegangen am 31. Januar 1996