ADDENDUM TO "A NEW PROOF OF THE EXISTENCE

 OF $\left(q^{2}-q+1\right)-$ ARCS IN $P G\left(2, q^{2}\right)$ "Antonio Cossidente

We use the same notation as in [1]. G.L. Ebert [2] pointed out to us a mistake in the proof of Theorem 2 of [1]. As a matter of fact, it not true that the Hermitian curve in $\operatorname{PG}(2, \mathcal{F})$ with equation

$$
\overline{\mathcal{H}}: Y Z^{q}+Z X^{q}+X Y^{q}=0
$$

is fixed by the collineation group G. However, the proof still works if G fixes at least one non-degenerate Hermitian curve in $P G(2, \overline{\mathcal{F}})$, since the argument does not depend on the canonical equation of $\overline{\mathcal{H}}$. To determine such a Hermitian curve in $\operatorname{PG}(2, \overline{\mathcal{F}})$, we show how to obtain a linear collineation τ in $P G(2, \overline{\mathcal{F}})$ mapping $\overline{\mathcal{H}}$ to a non-degenerate Hermitian curve $\hat{\mathcal{H}}$ fixed by G. To do this, we notice at first that the linear collineation group fixing $\overline{\mathcal{H}}$ is isomorphic to $P G U\left(3, q^{2}\right)$ and hence it has a cyclic subgroup Γ of order $q^{2}-q+1$. Actually, Γ is a subgroup of a Singer cyclic group Σ of $P G\left(2, q^{2}\right)$. We may choose a generator σ of Σ with the matrix representation

$$
C=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
a & b & c
\end{array}\right)
$$

where $x^{3}-c x^{2}-b x-a$ is an irreducible polynomial over $G F\left(q^{2}\right)$. Let τ be the linear collineation in $P G\left(2, q^{6}\right)$ associated with the matrix

$$
T=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\zeta & \zeta^{q^{2}} & \zeta^{q^{4}} \\
\zeta^{2} & \zeta^{2 q^{2}} & \zeta^{2 q^{4}}
\end{array}\right)
$$

[^0]where ζ is a primitive element in $G F\left(q^{6}\right)$. It is easy to check that $T^{-1} C T$ is the diagonal matrix $\mathcal{D}=\operatorname{diag}\left(\zeta \zeta \zeta^{q^{2}}, \zeta^{q^{4}}\right)$. By putting $\omega=\sigma^{q^{2}+q+1}$, we see that $\tau^{-1} \omega \tau$ is represented by the matrix $\mathcal{D}^{q^{2}+q+1}$ which turns out to be $\operatorname{diag}\left(\zeta^{q^{2}+q+1}, \zeta^{\left.q^{4}+q^{3}+q^{2}, \zeta^{q^{5}+q^{4}+1}\right) \text {. If we multiply }}\right.$ this last matrix by $\zeta^{-\left(q^{2}+q+1\right)}$ and put $b=\zeta^{q^{5}+q^{4}-q^{2}-q}$, this matrix may be written in the form $\operatorname{diag}\left(1, b^{-q^{2}}, b\right)$. On the other hand, the matrix $\operatorname{diag}\left(1, b^{-q^{2}}, b\right)$ is a generator of the group G. As a consequence we have that G fixes the Hermitian curve $\hat{\mathcal{H}}$ in $P G(2, \overline{\mathcal{F}})$ which is the image curve of $\overline{\mathcal{H}}$ under the linear collineation τ. For the rest of the proof of Theorem 2, it is sufficient to replace $\overline{\mathcal{H}}$ by $\hat{\mathcal{H}}$.

REFERENCES

[1] A. Cossidente, A New Proof of the existence of $\left.q^{2}-q+1\right)$-arcs in $P G\left(2, q^{2}\right)$, J. Geom. vol. 53 1-2, (1995), 37-40.
[2] G.L. Ebert, Private Communication.

Antonio Cossidente
Dipartimento di Matematica
Università della Basilicata
via N. Sauro 85
85100 Potenza (Italy)

Eingegangen am 31. Januar 1996

[^0]: Research performed within the activity of G.N.S.A.G.A. of C.N.R. with the support of the Italian Ministry for Research and Technology

