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Let / be a real-valued Lebesque integrable function on a
domain Ω in Euclidean space E2m, and let / be doubly-harmonic
on Ω so that it satisfies

for

In this paper, a new proof of the maximum principle is given
for nonconstant functions / satisfying the preceding conditions.

The proof depends on the fact that the associated forms

φ(-H,f)= Σ h? • h> / d*f

where A e Ω9 are either indefinite or identically 0 for each p^l .
The authors previously proved this under weaker hypotheses
on /, but the proof used the strong form of the maximum
principle for solutions of linear elliptic partial differential
equations of the second order with constant coefficients. By
means of the theory of distributions, the authors now prove
that the φp(H; f) have the stated property without using the
maximum principle. Consequently, they obtain a new proof
of this principle.

l Introduction* We say that / is doubly-harmonic on a domain

Ω c E2m if it is a real-valued function defined on Ω such that the equations

(1 ϊ d2/ , d2f _ Q 1 . - 1 o ,,, w

hold for all (x19 , x2m) e Ω. Such a function / is necessarily harmonic
on Ω since on adding the m equations (1) we see that / satisfies the
Laplace equation

( 2 ) ϋ / L ̂ ^ L J ^
ax\ σx2 d#2m-i dx\m

Moreover, the class of doubly-harmonic functions contains each function
that is the real part of a function of m complex variables which is holo-
morphic on Ω; this can be seen from the Cauchy-Riemann equations
applied to each complex variable α;2A;_1 + ix2k separately. Obviously,
if m = 1, the class of doubly-harmonic functions coincides with the
class of harmonic functions.

2 Two lemmas* Throughout, we use the notation of our earlier
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paper [3]. In particular, <pp(H; / ) , which depends also on a point
AeΩ, is defined in (2) of [3], and θ = (0, , 0) denotes the origin.

LEMMA 1. If f is a homogeneous polynomial of degree q defined
on En and if A = θ, then

Proof. First, consider the special case

fo(X) = ex? xϊ

where s1 + + sn = q. On applying the definition of Dψι in (1) of
[3], we get

Dψf0 = n! . . . rn\ c

so that DψιfQ = 0 if rά > s3- for some j . And if rά < s3- for some j r

then (DψιfQ)x=e = 0. In the remaining case in which r3- = s, for all jf

i.e., R = S, we have JD^'/ 0 = S!c. Hence, from (2) of [3], we obtain
φ P ( H ; f 0 ) = 0 i f p Φ q a n d

Second, consider the case of a general homogeneous polynomial /
of degree q. Then / is a linear combination of terms of the kind /0.
Since φq(H; f) is linear in the last argument, the result for / follows
from the result for each of the /0.

LEMMA 2. // P(x, y) is a harmonic polynomial, then it is either
a constant or is an indefinite function.

Proof. Suppose P is not a constant so that it is of exact degree
p ^ 1. Then

P(x, y) = Jp(x, y) + Jp^(x9 y) + + J0(x, y) ,

where Jk(x, y) is a homogeneous polynomial of degree k and Jp is not
identically 0. If p = 1, then P is clearly indefinite. We therefore as-
sume that p ^ 2, Then

0 =

where, for 0 ̂  k ^ p — 2,
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\ dor d?/ /

is a homogeneous form of degree k. If not all /fc are identically 0,
then there is a largest index r ^ 0 such that I r is not identically 0.
Then

0 = Ir(x, y) + Ir^(x, #)+•••+ J0(α, i/)

with Ir{a, b) Φ 0 for some α, 6. Hence, for all real t9

0 - Ir{ta, tb) + /^(ία, ίδ) + + J0(fα, ίδ)

= ίr/r(α,δ) + Γ^/^^α, δ) + + /0(α, δ) .

Since Jr(α, δ) ^ 0, this equation can hold for at most r ^ p — 2 values
of t and we have a contradiction. Consequently, each Ik is identically
0 so that each Jά is harmonic. Since Jp is harmonic, we can apply
Mann's result [2] (with A — θ) to deduce that <pp(h, k; Jp) is either an
indefinite form in A, k or is a constant (actually 0). By Lemma 1
above, φp(h, k; Jp) is just Jp(h, k) which has exact degree p ^ 2; con-
sequently, it is not a constant and hence is indefinite. Therefore, for
suitable h0, k0 and hu k1 we have Jp(h0, k0) < 0 < Jp(^i, fc^. Hence

if t is positive and large enough. Likewise, P{thu tkt) > 0 if ί is
positive and large enough. Thus P is indefinite.

3* The main results* We begin with the following result which
extends Theorem 2 of [3].

THEOREM 1. If f is a Lebesgue integrable doubly-harmonic func-
tion on a domain ΩaE2m, then f is analytic on Ω. And if AeΩ,
then the forms φp(H; f) are doubly-harmonic functions on E2m such
that for each p ^ 1 either the form is indefinite or is identically
zero.

Proof. As remarked earlier, / satisfies the Laplace equation (2).

Since it is integrable, the expression \ f(X)ψ(X)dX, for a test func-
}Ω

tion ψ, defines a distribution as we remarked in the proof of Theorem 1
of [3]. This distribution also satisfies the elliptic equation (2). By
Corollary 4.4.1 on p. 114 of Hδrmander [1], it follows that the func-
tion / is analytic on Ω.

Consequently, the forms φp(H; f) are defined; and by the corollary
of the lemma in [3], these forms are doubly-harmonic on E2m. Sup-
pose that for some p ;> 1, φp(H;f) is not indefinite; then we may as-
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sume it is always nonnegative. If we fix h3, , h2m then φp(H; f)
becomes a harmonic polynomial in hu h2. By Lemma 2, it is either
indefinite or is independent of hlfh2; since it is nonnegative, it cannot
be indefinite and hence must be independent of hu h2. That is, φp(H; f)
depends only (hs, , h2m). Similarly, it is independent of Λ3, h^ so that
it depends only on (hδ, , h2m). Continuing in this way, we see that
φp(H;f) depends only on {h2m_u h2m); finally, it is independent of
(h2m-i, h2m) as well so that φp(H; f) is actually a constant. This con-
stant is φp(θ; f) = 0 since p ^1. This completes the proof.

THEOREM 2. If f is a nonconstant Lebesgue ίntegrable doubly-
harmonic function on a domain ΩaE2m, then it does not assume a
maximum at a point in Ω.

Proof. Suppose, on the contrary, that / assumes a maximum at
a point A e Ω. The preceding theorem shows that / is analytic in Ω;
it therefore has a Taylor expansion about A given by

Since / is not a constant, there is some integer p ^ 1 such that
φr(H;f) is identically 0 for each r = 1, 2, , p - 1, but <pp(H; f) is
not identically 0. Inasmuch as the previous theorem shows that
φp(H; f) is indefinite, there is some C = (cu , c2m) such that
<PP(C; f) > 0. Then C Φ θ SO that c = \\ C \\ > 0. Applying Taylor's
theorem with remainder, we have for all B in some neighborhood of A

f(B) - f(A) = ΣV.CB - A; f) + φ*(B - A; f) = φ*(B - A; /)
r — l

where, on putting n — 2m,

ψt(H; f) = Σ -irh? hHDψ>f)x=D
\R\=Q III

and D = A + #(J? - A ) , O < # < 1 , is a suitable point on the line seg-
ment joining A and B. If we define

then there is a 3 > 0 such that, for all R with \R\ = p,

whenever \\Y — A\\ < δ. Consequently, on taking B — A + λC and
0 < λ < δ/c, we find
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\R\=P K\

^ -V(λ I ct I + + λ I c. I)' ̂  -i-(λ«c)» = i-λ

Since /(Λ) is maximal,

XC) - f(A) = φ*p(XC; f) Ξ> Ψp(XC; f) - ±X<°φP(C; f)

= \'φ,(C;f) - ±.

for all sufficiently small λ > 0. This contradiction proves the theorem.
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