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THE JOURNAL OF SYMBOLIC LoGic 
Volume 39, Number 1, March 1974 

A NEW PROOF THAT ANALYTIC SETS ARE RAMSEY 

ERIK ELLENTUCK1 

Abstract. We give a direct mathematical proof of the Mathias-Silver theorem 
that every analytic set is Ramsey. 

?I. Introduction. Use lower case Greek letters to denote subsets of w = the 
nonnegative integers. Define a < g if (Vx Ec a)(Vy E /3)x < y, (a, g) < = { c 

f c ac U /\ 
Aa < e - a A 

f 
is finite}, (cr. g)o' = {f I a c e c a U ,g A aZ < e- 

a A e is infinite}, P = (z, w)w and Q = (0, w)<0. Regard P as a topological 
space endowed with a neighborhood system consisting of sets of the form (a, e)1 
where a E Q and f E P. Since this is the topology we intend to use throughout most 
of our paper, ordinary topological words will always refer to it. On some occasions, 
however, we will want to speak about the relativization to P of the product topol- 
ogy of countably many copies of {O, 1}, each bearing the discrete topology. This 
is the classical topology which is relevant for the theories of recursion and defini- 
tion. We prefix the word classical to indicate notions that are defined for this 
topology. 

S c P is called Ramsey if there is a e E P such that (z, &) c- S or (0, e)C c 
P - S. In [1] it is shown that every classical Borel set is Ramsey and in [3], [4] it is 
shown that every classical analytic set is Ramsey. The former result is combina- 
torial, but the latter uses relatively deep metamathematical notions involving forc- 
ing. In ?2 we prove the Mathias-Silver theorem on classical analytic sets using 
nothing more than the methods of Galvin-Prikry. It easily follows from our main 
result that any set with the Baire property is Ramsey, the latter closely related to the 
fact that any meager set is nowhere dense. A word of caution: nothing could be 
falser in the classical topology. Our proof should be accessible to the general 
mathematical reader. 

Our thanks go to F. Galvin and C. Jockusch both of whom informed us of an 
error in an earlier manuscript. 

?2. The Baire property. Let S c P. If ac eQ and 7r cP we say, as in [1], 77 

accepts a if (a, 7701 ' S and that 77 rejects a if there is no f e ( o, 771) which accepts 
a. The following combinatorial results from [1] are basic to our method. 

LEMMA 1 (GALVIN-PRIKRY). There is an - e P which accepts or rejects each of its 
finite subsets. 

LEMMA 2 (GALVIN-PRIKRY). If - e P accepts or rejects each of its finite subsets 
and -q rejects 0 then there is a f e ( o, 7/)0 which rejects each of itsfinite subsets. 
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LEMMA 3. Every open set is Ramsey. 
PROOF. Take -q E P which by Lemma 1 accepts or rejects each of its finite sub- 

sets. If -q accepts 0 then ( 0, -q)0 c S. Otherwise Xq rejects 0 and by Lemma 2 we 
may assume that 71 rejects each of its finite subsets. Suppose that at e (0, -q)0 re S. 
Then there is a neighborhood (a, g)0 such that e E (a, P)0 c S. This implies that 
s accepts a and thus Xq cannot reject a, contradiction. Q.E.D. 

As in [4], S c P is called completely Ramsey if for every a E Q and q E P there is a 
c E (o, 77)01 such that (a, &) c S or (a, e)0 c P - S. 
LEMMA 4. Every open set is completely Ramsey. 
PROOF. Suppose a E Q and c- E P. Letf be a strictly increasing function mapping 

w onto q and let g(e) = a u e for each e E P. Consider any neighborhood (y, 8)0, 
where without loss of generality we may assume that y < 8. If f() E (y, 8)0 then 
(f-1(y),f -(8))0 is a neighborhood of e whose image under f is contained in 
(y, 8)@. If g(e) E (y, 8)0' then (y re e, 8)0 is a neighborhood of e whose image under 
g is contained in (y, 8)w, the latter following from y - c a. Thusf and g are con- 
tinuous. (gf) - 1(S) is open and hence, by Lemma 3, there is a C e P such that 
(0, C)@ c (gf)-1(S) or (0, 4)0 1 P - (gf)-l1(S). Setting 6 =f(4) we get 
(0, e)@1 c g-'(S) or (0, &I) c P - g-'(S) from which our result easily follows. 
Q.E.D. 

LEMMA 5. The complement of a completely Ramsey set is completely Ramsey. 
LEMMA 6. IfS is nowhere dense then for any a E Q and r E P there is a t e (O, ) 

such that (a, e)0 c p - S. 
PROOF. By Lemmas 4 and 5 the closure 3 of S is completely Ramsey. Then there 

is a {e(0, 7)'0 such that (a, {) c 3 or (a, 6) co P-3c P- S. Since 3 is 
nowhere dense the former case cannot occur. Q.E.D. 

LEMMA 7. IfS is meager then for anyaE Q andq yEPthere is a e E(0, 7)c' such 
that (a, ) c P - S. 

PROOF. Let S, be a sequence of nowhere dense sets whose union is S. Let 
a0 = a and choose 0 e (z, 77)0 so that (ao, 77o)O' c P - S0 and a0 < -ro. Suppose 
we have defined o, and rn with an < r9n. Let an be the least element of r7n. Set 
an+1 = an U{an} and choose rnn+ 1 e (0, 7 n- {an})' so that for each ao C ya an + 
we have (y, tn +i)c c P -Sn+1. Then = Uan will do. Q.E.D. 

COROLLARY 8. Every meager set is completely Ramsey and is nowhere dense. 
THEOREM 9. Every set with the Baire property is completely Ramsey. 
PROOF. Let ac e Q andy e P. Any set S with the Baire property can be expressed 

as S = SO A S, where SO is open, S1 is meager and A is symmetric difference. By 
Lemma 7 we can choose E e (0, Aq)@' so that (a, 4) c P - S1 and then by Lemma 4 
there is a 6 E (o, C)@0 such that (a, 6)Y0 c SO or (ax, f)0 P - So. In the former case 
(a, 0)' c S and in the latter (a, f)1 P - S. Q.E.D. 

A Souslin system is a class of closed sets that are indexed by finite sequences of 
nonnegative integers. A Souslin set is one which can be expressed in the form 
Uf ~e nnee Sfln where Se is a Souslin system, f/n is the restriction off to the pre- 
decessors of n, and w10 is the set of all functions mapping w into w. 

LEMMA 10. Every Souslin set is completely Ramsey. 
PROOF. It is an ancient result that the Baire property is preserved under the 

Souslin operation. We do not know who first proved this theorem, but for some 
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bibliography and a proof see p. 94 of [2]. Since closed sets have the Baire property, 
Lemma 9 gives our result. Q.E.D. 

COROLLARY 11 (MATHIAS-SILVER). Every classical analytic set is completely 
Ramsey. 

PROOF. Every classical analytic set is a classical Souslin set (cf. [2, p. 482]). 
Since classical closed sets are also closed in our topology, Lemma 10 applies 
directly. Q.E.D. 

Postscript. F. Galvin has made the following observations. It immediately 
follows by definition that if S is completely Ramsey then S minus its interior is 
nowhere dense. Thus every completely Ramsey set has the Baire property. This is 
converse to Theorem 9. By the proof of Lemma 10 the class of completely Ramsey 
sets is closed under the Souslin operation. Then Lemma 5 implies that all sets in the 
classical Lusin hierarchy are completely Ramsey (the classical Lusin hierarchy is 
the closure under complementation and the Souslin operation of the classical 
analytic sets). 
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