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This paper studies the second moment stability of a discrete-time jump linear system with real
states and the system matrix switching in a Markovian fashion. A sufficient stability condition was
proposed by Fang and Loparo (2002), which only needs to check the eigenvalues of a deterministic
matrix and is much more computationally efficient than other equivalent conditions. The proof
to the necessity of that condition, however, is a challenging problem. In the paper by Costa and
Fragoso (2004), a proof was given by extending the state domain to the complex space. This paper
proposes an alternative necessity proof, which does not need to extend the state domain. The proof
in this paper demonstrates well the essential properties of the Markov jump systems and achieves
the desired result in the real state space.

1. Introduction

1.1. Background of the Discrete-Time Markov Jump Linear Systems

This paper studies the stability condition of discrete-time jump linear systems in the real state
domain. In a jump linear system, the system parameters are subject to abrupt jumps. We are
concerned with the stability condition when these jumps are governed by a finite Markov
chain. A general model is shown as follows:

x[k + 1] = A
[

q[k]
]

x[k],

x[0] = x0, q[k] = q0,
(1.1)
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where x[k] ∈ Rn is the state and {q[k]} is a discrete-time Markov chain with a finite state
space {q1, q2, . . . , qN} and a transition matrix Q = (qij)N×N

, where qij = P(q[k+1] = qj | q[k] =
qi). x0 ∈ Rn is the initial state. q0 is the initial Markov state, whose distribution is denoted as
p = [p1 p2 · · · pN] with pi = P(q0 = qi). {q[k]} is assumed to be a time-homogeneous aperiodic
Markov chain. When q[k] = qi, A[q[k]] = Ai(i = 1, . . . ,N), that is, A[q[k]] switches among
{Ai}

N
i=1. A compound matrix is constructed from Ai as

A[2] =
(

QT ⊗ In2

)

diag (Ai ⊗Ai)
N
i=1, (1.2)

where In2 denotes an identity matrix with the order of n2 and ⊗ denotes the Kronecker product
[1]. A brief introduction on the Kronecker product will be given in Section 2.1.

For the jump linear system in (1.1), the first question to be asked is “is the system
stable?” There has been plenty of work on this topic, especially in 90s, [2–6]. Recently
this topic has caught academic interest again because of the emergence of networked
control systems [7]. Networked control systems often suffer from the network delay and
dropouts, which may be modelled as Markov chains, so that networked control systems
can be classified into discrete-time jump linear systems [8–11]. Therefore, the stability of
the networked control systems can be determined through studying the stability of the
corresponding jump linear systems. Before proceeding further, we review the related work.

1.2. Related Work

At the beginning, the definitions of stability of jump linear systems are considered. In [6],
three types of second moment stability are defined.

Definition 1.1. For the jump linear system in (1.1), the equilibrium point 0 is

(1) stochastically stable, if, for every initial condition (x[0] = x0, q[0] = q0),

E

[

∞
∑

k=0

‖x[k]‖2 | x0, q0

]

< ∞, (1.3)

where ‖ · ‖ denotes the 2-norm of a vector;

(2) mean square stable (MSS), if, for every initial condition (x0, q0),

lim
k→∞

E
[

‖x[k]‖2 | x0, q0

]

= 0; (1.4)

(3) exponentially mean square stable, if, for every initial condition (x0, q0), there exist
constants 0 < α < 1 and β > 0 such that for all k ≥ 0,

E
[

‖x[k]‖2 | x0, q0

]

< βαk‖x0‖
2, (1.5)

where α and β are independent of x0 and q0.
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In [6], the above 3 types of stabilities are proven to be equivalent. So we can study
mean square stability without loss of generality. In [6], a necessary and sufficient stability
condition is proposed.

Theorem 1.2 (see [6]). The jump linear system in (1.1) is mean square stable, if and only if, for any
given set of positive definite matrices {Wi : i = 1, . . . ,N}, the following coupled matrix equations
have unique positive definite solutions {Mi : i = 1, . . . ,N}:

N
∑

j=1

qijA
T
i MjAi −Mi = −Wi. (1.6)

Although the above condition is necessary and sufficient, it is difficult to verify because it claims
validity for any group of positive definite matrices {Wi : i = 1, . . . ,N}. A more computationally
efficient testing criterion was, therefore, pursued [3, 4, 12–15]. Theorem 1.3 gives a sufficient mean
square stability condition.

Theorem 1.3 (see [4, 12]). The jump linear system in (1.1) is mean square stable, if all eigenvalues
of the compound matrix A[2] in (1.2) lie within the unit circle.

Remark 1.4. By Theorem 1.3, the mean square stability of a jump linear system can be reduced
to the stability of a deterministic system in the form yk+1 = A[2]yk [13]. Thus the complexity
of the stability problem is greatly reduced. Theorem 1.3 only provides a sufficient condition
for stability. The condition was conjectured to be necessary as well [2, 15]. In the following,
we briefly review the research results related to Theorem 1.3.

In [14], Theorem 1.3 was proven to be necessary and sufficient for a scalar case, that is,
Ai(i = 1, . . . ,N) are scalar. In [15], the necessity of Theorem 1.3 was proven for a special case
with N = 2 and n = 2. In [4, 12], Theorem 1.3 was asserted to be necessary and sufficient
for more general jump linear systems. Specifically, Bhaurucha [12] considered a random
sampling system with the sampling intervals governed by a Markov chain while Mariton [4]
studied a continuous-time jump linear system. Although their sufficiency proof is convincing,
their necessity proof is incomplete.

The work in [3] may shed light on the proof of the necessity of Theorem 1.3. In [3], a
jump linear system model being a little different from (1.1) is considered. The difference lies
in

(i) x[k] ∈ Cn, where C stands for the set of complex numbers,

(ii) x0 ∈ Sc, where Sc is the set of complex vectors with finite second-order moments in
the complex state space.

The mean square stability in [3] is defined as

Lim
k→∞

E
[

x[k]x∗[k] | x0, q0

]

= 0, ∀x0 ∈ Sc, ∀q0, (1.7)



4 Journal of Applied Mathematics

Mean square stable

x0 ε Sc

Mean square stable

x0 ε Sj

A(2) is schur stable

Figure 1: Relationship between different senses of mean square stability.

where ∗ stands for the conjugate transpose. Corresponding to the definition in (1.7), the mean
square stability in (1.4) can be eewritten into (because x[k] ∈ Rn in (1.4), there is no difference
between xT [k] and x∗[k]),

Lim
k→∞

E
[

x[k]x∗[k] | x0, q0

]

= 0, ∀x0 ∈ Sj , ∀q0, (1.8)

where Sj is the set of all vectors in Rn. For any vector x ∈ Rn, we can treat it as a random
vector with a single element in Rn, and also a random vector in Cn. Of course, such random
vectors have finite second-order moments. Therefore, we know

Sj ⊂ Sc, Sj ∩ Sc /=Sc. (1.9)

It can be seen that the mean square stability in (1.7) requires stronger condition (x0 ∈ Sc) than
the one in (1.8) (x0 ∈ Sj). When Ai(i = 1, . . . ,N) are real matrices, a necessary and sufficient
stability condition was given in the complex state domain.

Theorem 1.5 (see [3]). The jump linear system in (1.1) (with complex states) is mean square stable
in the sense of (1.7) if and only if A[2] is Schur stable.

Due to the relationship of Sj ⊂ Sc and Theorem 1.5, we can establish the relationship diagram
in Figure 1. As it shows, the Schur stability of A[2] is a sufficient condition for mean square stability
with x0 ∈ Sj at the first look.

We are still wondering “whether the condition in Theorem 1.3 is necessary too?” the answer
is definitely “yes.” That necessity was conjectured in [2]. A proof to the necessity of that
condition was first given in [16], which extends the state domain to the complex space and
establishes the desired necessity in the stability sense of (1.7). As mentioned before, our
concerned stability (in the sense of (1.8)) is weaker than that in (1.7). This paper proves
that the weaker condition in (1.8) still yields the schur stability of A[2], that is, the necessity
of theorem 1.3 is confirmed. This paper confines the state to the real space domain and makes
the best use of the essential properties of the markov jump linear systems to reach the desired
necessity goal. In Section 2, a necessary and sufficient version of Theorem 1.3 is stated and its
necessity is strictly proven. In Section 3, final remarks are placed.



Journal of Applied Mathematics 5

2. A Necessary and Sufficient Condition for Mean Square Stability

This section will give a necessary and sufficient version of Theorem 1.3. Throughout this
section, we will define mean square stability in the sense of (1.4) (x0 ∈ Sj). At the beginning,
we will give a brief introduction to the Kronecker product and list some of its properties.
After then, the main result, a necessary and sufficient condition for the mean square stability,
is presented in Theorem 2.1 and its necessity is proven by direct matrix computations.

2.1. Mathematical Preliminaries

Some of the technical proofs in this paper make use of the Kronecker product, ⊗ [1]. The
Kronecker product of two matrices A = (aij)M×N , B = (bpq)P×Q is defined as

A ⊗ B =

⎡

⎢

⎢

⎢

⎣

a11B a12B · · · a1NB
a21B a22B · · · a2NB

...
...

. . .
...

aM1B aM2B · · · aMNB

⎤

⎥

⎥

⎥

⎦

MP×NQ

. (2.1)

For simplicity, A ⊗A is denoted as A[2] and A ⊗A[n] is denoted as A[n+1](n ≥ 2).
For two vectors x and y, x ⊗ y simply rearranges the columns of xyT into a vector.

So for two stochastic processes {x[n]} and {y[n]}, limn→∞E[x[n] ⊗ y[n]] = 0 if and only if
limn→∞E[x[n]y

T [n]] = 0. Furthermore, if limn→∞E[x
[2][n]] = 0 and limn→∞E[y

[2][n]] = 0,
then

lim
n→∞

E
[

x[n] ⊗ y[n]
]

= 0. (2.2)

The following property of the Kronecker product will be frequently used in the
technical proofs

(A1A2 · · ·An) ⊗ (B1B2 · · ·Bn) = (A1 ⊗ B1)(A2 ⊗ B2) · · · (An ⊗ Bn), (2.3)

where Ai, Bi(i = 1, 2, . . . , n) are all matrices with appropriate dimensions.
Our computations need two linear operators, vec and devec. The vec operator

transforms a matrix A = (aij)M×N into a vector as

vec(A) = [a11 · · ·aM1a12 · · ·aM2 · · ·a1N · · ·aMN]T . (2.4)

The devec operator inverts the vec operator for a square matrix, that is,

devec(vec(A)) = A, (2.5)

where A is a square matrix.
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2.2. Main Results

Theorem 2.1. The jump linear system in (1.1) is mean square stable if and only if A[2] is Schur
stable, that is, all eigenvalues of A[2] lie within the unit circle.

There are already some complete proofs for sufficiency of Theorem 2.1, [3, 12, 13]. So we will
focus on the necessity proof. Throughout this section, the following notational conventions will be
followed.

The initial condition of the jump linear system in (1.1) is denoted as x[0] = x0, q[0] = q0

and the distribution of q0 is denoted as p = [p1 p2 · · · pN] (P(q[0] = qi | q0) = pi).
The system transition matrix in (1.1) is defined as

Φ(k;m) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

k−1
∏

l=m

A
[

q[l]
]

, if m < k,

In, if m ≥ k,

(2.6)

where In is an identity matrix with the order of n. With this matrix, the system’s state at time
instant k can be expressed as

x[k] = Φ(k; 0)x0. (2.7)

A conditional expectation is defined as

Φi[k] = P
(

q[k] = qi | q0

)

E
[

(Φ(k; 0))[2] | q[k] = qi, q0

]

, (2.8)

where i = 1, 2, . . . ,N. Specially Φi[0] = piIn2 (i = 1, . . . ,N). Based on the definition of Φi[k],
we obtain

E
[

(Φ(k; 0))[2] | q0

]

=
N
∑

i=1

Φi[k]. (2.9)

By combining all Φi[k](i = 1, 2, . . . ,N) into a bigger matrix, we define

VΦ[k] =
[

ΦT
1 [k] ΦT

2 [k] · · · ΦT
N[k]

]T
. (2.10)

Thus, VΦ[0] = pT ⊗ In2 .
The necessity proof of Theorem 2.1 needs the following three preliminary Lemmas.

Lemma 2.2. If the jump linear system in (1.1) is mean square stable, then

lim
k→∞

E
[

(Φ[k; 0])[2] | q0

]

= 0, ∀q0. (2.11)
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Proof of Lemma 2.2. Because the system is mean square stable, we get

lim
k→∞

E
[

x[2][k] | x0, q0

]

= 0, ∀x0, q0. (2.12)

The expression of x[k] = Φ(k; 0)x0 yields

lim
k→∞

E
[

(Φ(k; 0)x0)
[2] | x0, q0

]

= 0. (2.13)

Φ(k; 0) is an n × n matrix. So we can denote it as Φ(k; 0) = [a1(k), a2(k), . . . , an(k)], where
ai(k) is a column vector. By choosing x0 = ei (ei is an Rn×1 vector with the ith element as 1
and the others as 0), (2.13) yields

lim
k→∞

E
[

a
[2]
i [k] | q0

]

= 0, i = 1, 2, . . . , n. (2.14)

By the definition of the Kronecker product, we know

(Φ(k; 0))[2] = [a1[k] ⊗ a1[k], . . . , a1[k] ⊗ an[k], . . . , an[k] ⊗ a1[k], . . . , an[k] ⊗ an[k]].
(2.15)

So (2.14) yields

lim
k→∞

E
[

(Φ[k; 0])[2] | q0

]

= 0, ∀q0. (2.16)

Lemma 2.3. If the jump linear system in (1.1) is mean square stable, then

lim
k→∞

Φi[k] = 0, i = 1, . . . ,N, ∀q0. (2.17)

Proof of Lemma 2.3. Choose any z0, w0 ∈ Rn. Lemma 2.2 guarantees

lim
k→∞

E

[

(

z
[2]
0

)T
(Φ(k; 0))[2]w

[2]
0 | q0

]

= 0. (2.18)

By the definition of the Kronecker product, we know

E

[

(

z
[2]
0

)T
(Φ(k; 0))[2]w

[2]
0 | q0

]

= E

[

(

zT0Φ(k; 0)w0

)2
| q0

]

. (2.19)

By (2.8), (2.9), and (2.19), we get

E

[

(

zT0Φ[k; 0]w0

)2
| q0

]

=
N
∑

i=1

P
(

q[k] = qi | q0

)

E

[

(

zT0Φ[k, 0]w0

)2
| q[k] = qi, q0

]

. (2.20)
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Because P(q[k] = qi | q0) ≥ 0 and E[(zT0Φ[k; 0]w0)
2
| q[k] = qi, q0] ≥ 0, the combination of

(2.18) and (2.20) yields

lim
k→∞

P
(

q[k] = qi | q0

)

E

[

(

zT0Φ(k; 0)w0

)2
| q[k] = qi, q0

]

= 0. (2.21)

Φ(k; 0) is an n× n matrix. So it can be denoted as Φ(k; 0) = (amj(k))m=1,...,n;j=1,...,n. In (2.21), we
choose z0 = em and w0 = ej and get

lim
k→∞

P
(

q[k] = qi | q0

)

E
[

(

amj(n)
)2

| q[k] = qi, q0

]

= 0, (2.22)

where i = 1, 2, . . . ,N, m = 1, . . . , n and j = 1, . . . , n. By the definition of Φi[k], we know the
elements of Φi[k] take the form of

P
(

q[k] = qi | q0

)

E
[

am1j1(k)am2j2(k) | q[k] = qi, q0

]

, (2.23)

where m1, m2, j1, j2 = 1, . . . , n. So (2.22) guarantees

lim
k→∞

Φi[k] = 0, ∀q0. (2.24)

Lemma 2.4. VΦ[k] is governed by the following dynamic equation

VΦ[k] = A[2] VΦ[k − 1], (2.25)

with VΦ[0] = pT ⊗ In2 .

Proof of Lemma 2.4. By the definition in (2.8), we can recursively compute Φi[k] as follows:

Φi[k] = P
(

q[k] = qi | q0

)

E
[

(

A
[

q[k − 1]
]

Φ(k − 1; 0)
)[2]

| q[k] = qi, q0

]

= P
(

q[k] = qi | q0

)

E
[

(

A
[

q[k − 1]
])[2]

(Φ(k − 1; 0))[2] | q[k] = qi, q0

]

= P
(

q[k] = qi | q0

)

N
∑

j=1

P
(

q[k − 1] = qj | q[k] = qi, q0

)

× E
[

(

A
[

q[k − 1]
])[2]

(Φ(k − 1; 0))[2] | q[k] = qi, q[k − 1] = qj , q0

]

=
N
∑

j=1

A
[2]
j P

(

q[k] = qi | q0

)

P
(

q[k − 1] = qj | q[k] = qi, q0

)

× E
[

(Φ(k − 1; 0))[2] | q[k] = qi, q[k − 1] = qj , q0

]

.

(2.26)
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Because Φ(k−1; 0) depends on only {q[k−2], q[k−3], . . . , q[0]} and the jump sequence {q[k]}
is Markovian, we know

E
[

(Φ(k − 1; 0))[2] | q[k] = qi, q[k − 1] = qj , q0

]

= E
[

(Φ(k − 1; 0))[2] | q[k − 1] = qj , q0

]

. (2.27)

P(q[k] = qi | q0)P(q[k − 1] = qj | q[k] = qi, q0) can be computed as

P
(

q[k] = qi | q0

)

P
(

q[k − 1] = qj | q[k] = qi, q0

)

= P
(

q[k − 1] = qj , q[k] = qi | q0

)

= P
(

q[k] = qi | q[k − 1] = qj , q0

)

P
(

q[k − 1] = qj | q0

)

= P
(

q[k] = qi | q[k − 1] = qj
)

P
(

q[k − 1] = qj | q0

)

= qjiP
(

q[k − 1] = qj | q0

)

.

(2.28)

Substituting (2.27) and (2.28) into the expression of Φi[k], we get

Φi[k] =
N
∑

j=1

qjiA
[2]
j Φj[k − 1]. (2.29)

After combining Φi[k](i = 1, 2, . . . ,N) into VΦ[k] as (2.10), we get

VΦ[k] = A[2]VΦ[k − 1]. (2.30)

We can trivially get VΦ[0] from Φi[0] by (2.10).

Proof of Necessity of Theorem 2.1. By Lemma 2.3, we get

lim
k→∞

VΦ[k] = 0. (2.31)

By Lemma 2.4, we get VΦ[k] = Ak
[2]
VΦ[0] and VΦ[0] = pT ⊗ In2 . Therefore, (2.31) yields

lim
k→∞

Ak
[2]

(

pT ⊗ In2

)

= 0, (2.32)

for any p (the initial distribution of q0).
Ak

[2]
is an Nn2 × Nn2 matrix. We can write Ak

[2]
as Ak

[2]
= [A1(k), A2(k), . . . , AN(k)]

where Ai(n)(i = 1, . . . ,N) is an Nn2 × n2 matrix. By taking pi = 1 and pj = 0(j = 1, . . . , i −
1, i + 1, . . . ,N), (2.32) yields

lim
k→∞

Ai(k) = 0. (2.33)

Thus we can get

lim
k→∞

Ak
[2] = 0. (2.34)

So A[2] is Schur stable. The proof is completed.
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3. Conclusion

This paper presents a necessary and sufficient condition for the second moment stability
of a discrete-time Markovian jump linear system. Specifically this paper provides proof for
the necessity part. Different from the previous necessity proof, this paper confines the state
domain to the real space. It investigates the structures of relevant matrices and make a good
use of the essential properties of Markov jump linear systems, which may guide the future
research on such systems.
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