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SUMMARY

We analyse the e�ect of using prevalence rates based on populations with di�erent sizes in the power of spatial
independence tests. We compare the well known spatial correlation Moran’s index to three indexes obtained
after adjusting for population density, one proposed by Oden, another proposed by Waldh�or, and a third
proposed by us in this paper. We �nd an e�ect of spatially correlated populations in the type I error probability
on the test based on Moran’s and Waldh�or’s indexes. We conclude also that the test proposed by Oden is
powerful to test risk heterogeneity, but it has disadvantages when the interest is solely on the spatial correlation
of morbidity risks. In this latter case, we recommend using our proposed test which is more powerful than
the usual Moran’s index applied directly to the rates. Copyright ? 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

In epidemiological studies it is frequently of interest to know whether the occurrence rate of a
certain event is spatially correlated in a given area. Usually, one tests whether rates of geograph-
ically contiguous areas are more similar or more dissimilar than expected under the hypothesis
that risk distribution is unrelated to the spatial location of the areas. The similarity degree is
usually measured through spatial autocorrelation indexes, the most popular being Moran’s index,
denoted by I (see Moran1) with distributional properties studied by Cli� and Ord.2 Examples of
applications of the indexes to disease distribution studies include Able and Becker,3 Ohno et al.,4

Grimson et al.5 and Kemp et al.6 Recently, Jacqmin-Gadda et al.7 proposed an adjustment to
Moran’s I for covariate e�ects.
Consider a region divided in m areas and let ni and xi be the number of cases and the risk

population in area i, respectively, with i=1; : : : ; m. The observed rate in area i is de�ned as
pi= ni=xi. Moran’s I is given by

I =
m

∑
ij wij

∑
ij wij(pi − p)(pj − p)∑

i(pi − p)2
(1)
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where the value wij is the weight assigned to areas i and j, and p=
∑

i pi=m. Usually, wij will
re
ect the geographical distance between areas i and j, being de�ned, for example, as wij =1
if i 6= j and the areas are adjacent, and by wij =0, otherwise. However, weights can be more
general depending, for example, on functions of distances between areas (for example, Whittemore
et al.8 and Tango9). Moran’s I usually ranges between −1 and 1, with large positive values
indicating neighbourhood similarity of the rates and values close to zero indicating absence of
spatial autocorrelation.
The null hypothesis probability distribution of Moran’s I has been calculated under two di�erent

assumptions. The �rst assumes that the rates are independently and identically distributed (i.i.d.)
random variables with a normal distribution. This implies that the expected value of the rates is
constant in all areas which in turn seems to con
ict with the common situation of unequal but
spatially uncorrelated underlying rates.
A less restrictive assumption is used in association with a permutation test. In this case, the

rates are considered random variables with an exchangeable distribution and the null distribution
is obtained by calculating the empirical distribution of Moran’s I resulting either from all or from
a large sample of the permutations of the rates among the areas. Therefore, with the permutation
approach, it can be tested if potentially di�erent rates’ distributions are spatially uncorrelated.

1.1. E�ects of varying population sizes

In practice, however, both assumptions underlying Moran’s I null distribution are violated. Con-
sider, for example, a region partitioned on areas with di�erent sized populations, such as a state
and its counties. Hence, when estimating the underlying rate in each area through the observed
prevalence or incidence rate (number of cases divided by the number of person-years at risk), we
are using measures with di�erent variances in the calculation of the indexes.
As Besag and Newell10 pointed out, in the case of the permutation test it is assumed under the

null hypothesis that any permutation of the observed pi among the m areas is equally probable.
However, when the populations are di�erent, areas with small population have more variable rates
and hence they are more likely to assume an extreme value. Additionally, since population density
tends to display a spatial structure, so do the pi.
Only recently did researchers start to study the e�ects of deviations from the i.i.d. or exchange-

able case on the spatial autocorrelation tests. Walter11; 12 shows that the probability of a type I error
in tests based on some spatial autocorrelation measures is larger than the nominal value when the
populations in the areas are heterogeneous and the underlying risk is constant. In his simulations,
Walter does not �nd this e�ect in the test based on Moran’s I. However, he does not study the
e�ect of heterogeneous populations on the power of the test. That is, he does not evaluate the
impact of population variation when there is spatial correlation between the underlying risks.
Oden13 proposes a way to adjust Moran’s I accounting for the di�erences among populations.

His most powerful test statistic is de�ned as

I∗pop =
n2

∑
ij M

∗
ij (ei − di)(ej − dj)− n(1− 2�b)

∑
i M

∗
ii ei − n�b

∑
ii M

∗
ii di

�b(1− �b)(x2
∑

ij didjM
∗
ij − x

∑
i diM

∗
ii )

(2)

where n=
∑
ni, x=

∑
xi, �b= x=n, ei= ni=n, di= xi=x and M∗

ij =Mij=
√
(didj). The value of Mij

can be interpreted as a spatial weight assigned to a pair of individual cases located in areas i and
j. Generally, Mii 6=0.
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In his simulations, Oden shows that his proposed test statistic is much more powerful than
Moran’s I when variation is present in the risk populations. He attributes the superiority of his
index to its interpretation of variability of rates between areas as evidence of aggregation, even
in the absence of spatial correlation. This capacity of capturing variability is due to the �rst term
in the numerator which is a spatial version of the conventional chi-squared test for rates
heterogeneity.
We consider inappropriate the comparison between Moran’s I and I∗pop presented by Oden

13

because the statistics are not testing the same pair of null and alternative hypothesis. Consider
three states concerning the spatial con�guration of the areas’ risks:
A. spatially constant risk;
B. heterogeneous risks without spatial correlation;
C. heterogeneous risks with spatial correlation.
As we will show, Moran’s I tests the null hypothesis H0 :A∪B against the alternative H1 :C while
Oden’s statistics considers H0 :A against H1 :B∪C. Therefore, the tests disagree with respect to the
status of B as a null hypothesis. It is not surprising therefore that I∗pop has larger power especially
at states like B, against which Moran’s I should have at most power �, the type I error probability.
Waldh�or14 proposes another test to deal with the heteroscedasticity implied by di�erent popula-

tion sizes. He assumes that, under the null hypothesis, the rates pi are independent and they have
a normal distribution with a �xed mean but a variance �2i which di�ers between the areas. In the
applications, he uses �2i inversely proportional to the population xi. His test statistic is still Moran’s
I and its null distribution is assumed to be normal. Allowing for di�erent �2i , he then proposes
a new estimate for the moments of I by applying theorems due to Pitman15 and Koopmans.16

The hypothesis of these theorems are invalid in this heteroscedastic situation but he proposes to
apply them anyway, subsequently checking through simulations that the bias introduced is small.
However, we show that, with a more realistic larger class of patterns, this last conclusion is not
correct.

1.2. Objectives of the paper

We have three aims in this paper. The �rst is to re-evaluate the comparison between the tests based
on Moran’s I and those based on I∗pop and Waldh�or’s I for the underlying risk and risk populations
under a large variety of situations. We consider the in
uence of a number of possible factors
on the probability of type I error and the tests’ power. Three di�erent structures for the areas’
populations comprise this simulation: constant; variable without spatial correlation; and variable
with spatial correlation. We also consider high and low risk level with spatial independence or
spatial correlation.
In the course of the re-evaluation we show that Oden’s I∗pop and Waldh�or I have disadvantages

compared to Moran’s I as tests for spatial autocorrelation even though they have very large power.
In particular, Oden’s great power seems to be concentrated on detecting heterogeneity of the rates,
irrespective of spatial autocorrelation. This can be useful if the researcher is not interested in
distinguishing between states B and C but, in general, it is more likely that the researcher would
prefer to distinguish between them. In addition, we show that Waldh�or’s I tends to have type I
error probability much larger than the nominal value when the population is not constant.
The second objective is to evaluate the e�ect of heterogeneous populations, with and without

spatial structure, in the type I error probability and the power of Moran’s I when using the
heteroscedastic rates.

Copyright ? 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2147–2162 (1999)
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As a third objective, using an empirical Bayes approach, we propose a new test statistic
which has larger power than Moran’s I and does not present the shortcomings of Oden’s I∗pop
or Waldh�or’s I .
The remainder of this paper is organized as follows : Section 2 deals with the �rst and second

objectives described above while in Section 3 we introduce our proposal to adjust Moran’s I . We
present an example in Section 4 and in Section 5 we present our conclusions.

2. COMPARISON OF I∗pop, WALDH �OR I , AND MORAN’S I

The simulation study to evaluate the behaviour of the tests is based on the spatial structure of the
municipality of Belo Horizonte, in the state of Minas Gerais, Brazil. The total population in 1994
was 2,125,422 and was divided into 81 areas, called planning units (UP) (see Figure 1). The UP
populations vary from 31 to 70,870 persons, with an average size of 26,240. First, second and
third quartiles correspond to 9720, 26,140 and 40,480, respectively.
The neighbourhood structure of the UPs is kept constant in all simulations. For Moran’s I , the

weight wij is the adjacency indicator between areas i and j, with wii=0. For the index I∗pop, we
follow Oden13 and set Mij =wij if i 6= j and Mii=2. In this way, the contribution to detect disease
clustering of a pair of cases occurring in the same area is larger than that of a pair occurring in
neighbouring areas. For Waldh�or’s I , we let var(pi) be inversely proportional to the population
xi.
The p-value of the test based on Moran’s I is determined using 1000 permutations of the

observed rates. The tests using I∗pop and Waldh�or’s I are based on the normal approximation with
mean and variance as given by Oden13 and Waldh�or.14 The three tests are one-sided and they test
against positive spatial autocorrelation, the most common case in practice.
In the simulations, the number of cases for the rates in each UP is generated according to the

Poisson distribution with mean equal to the product of the population times the assumed risk of
the UP. The UP population followed three structures:

(i) constant population size equal to 25,000, close to the actual average of Belo Horizonte UPs;
(ii) a pattern of area populations without spatial correlation. This pattern is obtained through a

single permutation of the actual population sizes. The lack of spatial correlation is determined
by Moran’s I p-value of the generated pattern being equal to 0·18;

(iii) a spatially correlated population pattern given by the actual population distribution in the UPs
which has Moran’s I p-value equal to 0·02.

The simulated risk vector has a mean value � at three levels representing a situation of low risk
(�=4·75 cases per 100,000 thousand inhabitants), another of high risk level (�=4·75 cases per
1000 inhabitants), and an intermediate situation (�=4·75 cases per 10,000 inhabitants).
The spatial structure of the risks is generated according to twelve situations, two of which have

the condition of spatial independence. These two correspond to constant risk � for all UPs and
to risks generated by a log-normal distribution with mean � and a coe�cient of variation equal
to 0·4. The remaining ten represent situations of increasing spatial correlation, with risks gener-
ated according to the simultaneous autoregressive model (SAR) (Whittle17). Denoting by Y the
logarithm of the risk vector of the 81 UPs, the values of Y follow the model

Y = �+ �G(Y − �) + �

Copyright ? 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2147–2162 (1999)
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Figure 1. Map of homicide rates (per 100,000). Geographical units are the 81 planning units (UP) of Belo Horizonte, MG,
Brazil, in 1994. The data were obtained from the Pol��cia Militar de Minas Gerais

where 0¡�¡1 and � is a vector with i.i.d. normal random variables with mean zero and variance
�2. The logarithm of the risks has a mean equal to the vector � and covariance matrix �2 (I −
�G)−1 ((I − �G)−1)T. The parameter � measures the degree of spatial association between the
risks. The range of this correlation is given by the asymmetric matrix G, which is a matrix with

Copyright ? 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2147–2162 (1999)



2152 R. M. ASSUN �CÃO AND E. A. REIS

Table I. Type I error probability estimate (and 95 per cent con�dence interval in parentheses) of one-sided
tests (� = 0·05) based on 1000 simulations of constant risk or independently generated risks according to a

log-normal distribution with mean � and coe�cient of variation equal to 0·4
Real risks Constant population Variable populations Variable populations

without spatial structure with spatial structure

Moran’s I
Constant = �
� = 4·75=105 4·1 (2·7; 5·5) 4·1 (2·7; 5·5) 5·5 (4·1; 6·9)
� = 4·75=104 4·4 (3·0; 5·8) 2·9 (1·5; 4·3) 7·4 (6·0; 8·8)
� = 4·75=103 5·3 (3·9; 6·7) 1·8 (0·4; 3·2) 7·7 (6·3; 9·1)
Log-normal, mean = �
� = 4·75=105 5·6 (4·2; 7·0) 3·8 (2·4; 5·2) 5·7 (4·3; 7·1)
� = 4·75=104 4·5 (3·1; 5·9) 4·2 (2·8; 5·6) 6·2 (4·8; 7·6)
� = 4·75=103 5·9 (4·5; 7·3) 4·0 (2·6; 5·4) 5·8 (4·4; 7·2)

Oden’s I∗pop
Constant = �
� = 4·75=105 8·5 (7·1; 9·9) 8·1 (6·7; 9·5) 8·1 (6·7; 9·5)
� = 4·75=104 9·7 (8·3; 11·1) 10·2 (8·8; 11·6) 8·6 (7·2; 10·0)
� = 4·75=103 9·5 (8·1; 10·9) 10·6 (9·2; 12·0) 9·0 (7·6; 10·4)

Log-normal, mean = �
� = 4·75=105 15·4 15·2 16·3
� = 4·75=104 91·1 91·4 91·5
� = 4·75=103 100 100 100

Waldh�or’s test
Constant = �
� = 4·75=105 5·0 (3·6; 6·4) 18·6 12·6
� = 4·75=104 5·8 (4·4; 7·2) 16·0 11·7
� = 4·75=103 4·4 (3·0; 5·8) 14·9 14·6

Log-normal, mean = �
� = 4·75=105 5·6 (4·2; 7·0) 17·1 15·9
� = 4·75=104 5·4 (4·0; 6·8) 17·4 13·7
� = 4·75=103 4·7 (3·3; 6·1) 23·3 14·4

normalized weights positive wij, summing 1 along the rows. In the simulations, we choose the
parameters � and �2 such that exp(Y ) is normally distributed with mean � and coe�cient of
variation 0·4. The correlation parameter � assumes the values 0·1; 0·2; : : : ; 0·9 and 0·95.

2.1. Simulation results

The three tests present problems with respect to the type I error probability. Table I shows the
proportion of signi�cant results in 1000 simulations when tests are carried out with nominal sig-
ni�cance level equal to 0·05. The tables express proportions multiplied by 100. The values in
parentheses give a 95 per cent con�dence interval for the actual type I error probability.
Moran’s I is the least a�ected among the three tests. When the population is constant, the

actual type I error probability is close to 5 per cent. However, it presents values di�erent from the

Copyright ? 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2147–2162 (1999)
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nominal value for variable populations such that it is smaller than nominal when populations are
spatially independent and larger when populations are spatially correlated. However, the di�erence
from the nominal value is at most 0·03.
We �nd much larger di�erences with the other two tests. Waldh�or’s I behaves well when the

population is constant but it has error type I probability much larger than the nominal 0·05 when
populations di�er. It varies between approximately 15 per cent and 23 per cent when populations
have no spatial structure and between 13 per cent and 15 per cent when they have spatial correla-
tion. Hence, in contrast with the simulations in Waldh�or,14 we �nd a type I error uncontrolled at
the nominal value. The reason for that is the di�erent simulation scheme we adopted. In particular,
it seems to matter considerably the fact that Waldh�or14 assumes a normal distribution for the rates,
an implausible approximation in the case of most diseases.
The type I error probability of Oden’s I∗pop does not change much with the population pattern.

When the risks are the same for all areas, irrespective of the population pattern, I∗pop has a type
I error probability almost twice as large as the nominal value. In the case of the heterogeneous
but spatially uncorrelated risks, Oden’s test is very powerful with its power increasing quickly as
the risk level increases. Oden13 sees this result as a good aspect of his test while we interpret it
di�erently. Consider again the three states A, B and C of Section 1.1. Since Moran’s I tests for
spatial correlation, we have the pair of null hypotheses H0 :A or B against the alternative H1 :C.
Oden’s statistics consider the pair H0 :A against H1 :B or C. Therefore, the tests are di�erent with
respect to the role of B, a pattern of heterogeneous but spatially independent risks; it is part of the
null hypothesis for Moran’s I but it is an alternative hypothesis for I∗pop. This explains the type I
error probability behaviour of Oden’s test in this case.
Table II shows the power of the one-sided tests based on Moran’s I , Waldh�or’s I and Oden’s

I∗pop with nominal signi�cance level 0·05. Each value is calculated with 500 simulations. Figure 2
displays the results for �=4·75=104, the intermediate risk situation, the other two situations being
similar. Note that the vertical scales are not the same for all three plots.
We can observe in Table II that power decreases as the risk level decreases, probably because

we tend to observe many areas with null rates making di�erentiation among their underlying rates
more di�cult. Incidentally, we note the drop in the power of all three tests when � increases from
0·9 to 0·95. This happens because an extremely high spatial autocorrelation generates very similar
risks if the region is not large enough to allow for su�cient variation in the risks to appear.
When populations are heterogeneous, Moran’s I power is approximately the same, irrespective of

population spatial structure. However, we con�rm the in
uence of the population heterogeneity on
the test’s power since it is smaller when the populations are variable. Compared to the case when
population is constant, the heterogeneous population situation is about 50 per cent smaller unless
the disease is very frequent, in which case the power is about 80 per cent smaller. In general, the
power is moderately high if � and � are not very small.
Waldh�or’s I is similar to Moran’s I when the population is constant. Although the test statistic

is the same on both tests in this case, Moran’s I test is based on the permutation distribution
while Waldh�or’s test is based on the normal approximation. Waldh�or’s test has larger power than
Moran’s I when the populations are heterogeneous or spatially structured. However, as we showed
in Table I, part of this larger power is due to a larger than nominal type I error probability.
As we would expect from its motivation, I∗pop does not have its power a�ected by the population

heterogeneity. This test has very high power in the intermediate and high risk situations and higher
power in the low risk situation than Moran’s I and Oden’s test.

Copyright ? 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2147–2162 (1999)
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Table II. Power estimate of one-sided tests (�=0·05) based on 500 simulations of SAR generated risks with
expected value �, coe�cient of variation equal to 0·4, and spatial correlation �. The risk population of the

areas are chosen to be constant or di�erent, with or without spatial correlation

Real risks Constant population Variable populations Variable populations
without spatial structure with spatial structure

� Moran’s Oden’s Waldh�or’s Moran’s Oden’s Waldh�or’s Moran’s Oden’s Waldh�or’s
I I∗pop test I I∗pop test I I∗pop test

�=4·75=105
0·1 6·2 17·2 5·4 4·8 13·6 21·2 6·6 16·8 13·0
0·2 7·6 18·4 8·4 4·4 19·4 22·4 4·4 16·4 15·8
0·3 8·0 16·0 7·8 7·0 17·0 26·6 6·4 21·6 16·4
0·4 8·8 19·0 8·8 4·4 19·2 26·2 6·4 18·8 21·0
0·5 11·6 21·0 9·8 7·2 21·8 24·2 5·6 20·2 20·0
0·6 12·2 23·6 13·8 7·0 24·4 25·6 7·8 23·0 20·4
0·7 13·6 24·8 17·2 7·2 25·2 27·4 10·6 22·6 18·0
0·8 17·2 28·0 19·4 9·0 25·4 29·8 10·6 24·4 23·0
0·9 21·6 30·6 20·0 8·4 22·6 31·6 11·4 23·6 26·8
0·95 21·4 26·2 18·8 9·8 21·6 30·2 10·6 21·8 25·6
�=4·75=104
0·1 9·0 94·6 11·4 4·8 94·2 23·4 6·2 92·8 15·6
0·2 13·0 95·2 12·0 5·8 95·6 30·2 8·6 94·0 21·0
0·3 20·0 96·4 21·8 12·4 95·2 30·8 8·6 96·2 20·6
0·4 33·8 98·2 40·4 12·2 98·0 42·2 15·6 96·6 28·8
0·5 47·4 98·0 47·4 19·2 98·2 46·6 24·6 97·0 34·2
0·6 61·8 97·0 67·8 22·4 98·8 53·4 26·8 98·0 40·4
0·7 71·8 98·2 79·4 28·2 98·4 58·4 36·8 98·0 48·8
0·8 83·4 98·2 88·4 39·6 97·8 66·0 38·4 98·2 56·0
0·9 87·2 95·2 88·4 43·0 98·6 63·6 44·2 95·8 55·6
0·95 82·8 89·4 78·8 39·4 90·6 64·2 34·6 89·0 51·8
�=4·75=103
0·1 13·0 100 15·0 6·2 100 30·0 11·4 100 20·6
0·2 25·2 100 27·0 15·4 100 39·4 15·4 100 34·4
0·3 44·2 100 46·2 25·0 100 56·2 27·4 100 44·8
0·4 68·6 100 63·8 41·8 100 70·2 40·2 100 54·8
0·5 83·2 100 84·8 55·0 100 78·6 53·2 100 72·0
0·6 94·2 100 93·8 65·2 100 86·0 65·8 100 78·6
0·7 97·8 100 98·8 78·4 100 90·8 71·8 100 86·6
0·8 99·4 100 99·4 85·2 100 92·4 85·2 100 87·8
0·9 100 100 100 88·8 100 94·6 86·4 100 90·0
0·95 100 100 99·8 83·2 100 93·0 83·0 100 86·6

The comparison of Oden’s power with the other two tests is not so obvious since they consider
di�erent null hypotheses. It is not clear how much of this power is due to the simple heterogeneity
of the rates or to the spatial autocorrelation of the heterogeneous rates. In fact, in Table I we
showed that, even under spatially independent risks, Oden’s test often rejects Ho and this suggests
that its power could not increase substantially with the increase of the spatial autocorrelation.
To address this issue, we ran additional simulations for Oden’s and Moran’s statistics where, for

a �xed spatial correlation degree �, the variability of the risks is gradually increased (Figures 3(a)

Copyright ? 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2147–2162 (1999)
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Figure 2. Power estimates of one-sided tests (�=0·05) with Moran’s I , Oden’s I∗pop, and Waldh�or’s I based on 500
simulations. The risks follow the SAR model with mean �, parameter � and coe�cient of variation 0·4. The risk population

of the areas are chosen to be constant or di�erent, with or without spatial correlation

and (b)). Note that when the risks are spatially independent (�=0), Moran’s I actually has
the nominal type I error probability for any risks variability pattern, since it tests only spatial
independence. Testing the situation of risks heterogeneity, I∗pop is naturally more powerful when
the risks are more variable. Since these tests are not testing the same hypothesis, it is not correct
to compare the power of Moran’s I and I∗pop directly.
Note also in Figures 3(a) and (b) that, for high risk correlation degree (�=0·7), the tests lose

power as the coe�cient of variation (CV) decreases. This is so because in the limit as CV goes
to zero the homogeneity implies spatial independence.
To �nd a better basis to compare the power of the two tests to detect spatial correlation, we

propose a partition of Oden’s I∗pop power. Consider the I
∗
pop power curve varying with the increase

of the risks’ heterogeneity (Figure 3(b)). We can see this curve broken down in two parts:
(a) The power curve when there is no spatial correlation (�=0), which can be considered as

detecting only heterogeneity on the rates.

Copyright ? 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2147–2162 (1999)
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Figure 3. Power estimates of one-sided tests (�=0·05) with (a) Moran’s I and (b) Oden’s I∗pop based on 1000 simu-
lations. The risks follow the SAR model with mean 4·75=105 and varying � and coe�cient of variation. (c) and (d)

D(�)= �(�)− �(0) where �(�) is Oden’s I∗pop power estimated at �

(b) The di�erence D(�) between the power curve for a given � and the �rst component above.
This di�erence would detect spatial correlation after controlling for the rates heterogeneity.
The power curve of Moran’s I can then be compared with part (b) of I∗pop as de�ned above

(Figures 3(c) and (d)). Using this approach, Moran’s I seems to be better suited to detect spatial
autocorrelation at the level of spatial units considered. The di�erence component associated with
I∗pop is very small and is close to zero when the risks’ variability is large.

3. A NEW PROPOSAL TO ADJUST MORAN’S I

Let �1; : : : ; �m be the unknown and possibly di�erent underlying rate of the areas. Suppose the
number ni of observed events during a reference period has a Poisson distribution with con-
ditional mean E(ni | �i)= xi�i. The estimated rate pi has conditional mean E(pi | �i)= �i and

Copyright ? 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2147–2162 (1999)
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Table III. Type I error probability estimate of EBI test (and 95 per cent con�dence interval) of one-sided
test (�=0·05) based on 1000 simulations of constant risk or independently generated risks according to a

log-normal distribution with mean � and coe�cient of variation equal to 0·4

Real risks Constant population Variable populations without Variable populations with
spatial structure spatial structure

Constant = �
�=4·75=105 5·6 (4·2; 7·0) 4·7 (3·3; 6·1) 5·1 (3·7; 6·5)
�=4·75=104 4·7 (3·3; 6·1) 4·8 (3·4; 6·2) 5·1 (4·7; 7·3)
�=4·75=103 5·3 (3·9; 6·7) 5·3 (3·9; 6·7) 5·2 (3·8; 6·6)

Log-normal, mean= �
�=4·75=105 4·9 (3·5; 6·3) 5·3 (3·9; 6·7) 5·1 (3·7; 6·5)
�=4·75=104 4·6 (3·2; 6·0) 5·7 (4·3; 7·1) 5·5 (4·1; 6·9)
�=4·75=103 5·3 (3·9; 6·7) 5·2 (3·8; 6·6) 5·7 (4·3; 7·1)

variance var(pi | �i)= �i=xi. Therefore, the estimated rates have di�erent conditional means and
variances.
Adopting a mixing approach, suppose the underlying rates �i have a priori expectation and

variance equal to � and �, respectively. Hence, the marginal expectation of pi is � and the
marginal variance is � + �=xi. Now, only the variances di�er among the areas and it increases as
the population decreases.
Marshall18 proposed moment estimates for the parameters � and � given by a= s2−b=(x=m) and

b= n=x, respectively, where s2 =
∑
xi(pi−b)2=x. Therefore, the marginal expectation and variance

of pi are estimated by b and vi= a+ b=xi, respectively. By convention, if vi¡0, we set vi= b=xi.
Instead of using the rates pi, we propose a new index using a deviation of the estimated marginal

mean standardized by an estimate of its standard deviation:

zi=
pi − b√
vi
:

The Empirical Bayes Index (EBI) is de�ned as

EBI=
m

∑
wij

∑
wij zi zj∑
(zi − �z)2 :

Like Moran’s I , EBI will tend to be positive if the risks are spatially correlated. The test of
spatial independence against the null hypothesis H0 :A∪B depends on the null distribution of
EBI, which can be obtained by permutation. In this case, we independently permute the vector
(z1; z2; : : : ; zm) around the areas a large number of times. For each permuted map, we calculate the
value of EBI. The realized p-value is given by the proportion of times EBI exceeds the observed
EBI calculated out of the actual map.

3.1. Results of simulations with EBI

Using the same simulation framework de�ned previously, we analyse the performance of our EBI
statistics. Table III shows the results of the type I error probability of our test based on 1000
simulations with constant risk or risks generated as independently and identically random variables
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Table IV. Power estimate of one-sided EBI test (�=0·05). The estimate is based on 500 simulations of SAR generated risks with expected value
�, coe�cient of variation equal to 0·4 and spatial correlation �. The risk population of the areas are chosen to be constant or di�erent, with or

without spatial correlation

Real risks Constant population Variable populations without spatial structure Variable populations with spatial structure

� �=4·75=105 �=4·75=104 �=4·75=103 �=4·75=105 �=4·75=104 �=4·75=103 �=4·75=105 �=4·75=104 �=4·75=103

0·1 5·4 10·2 11·4 8·2 9·2 9·0 3·6 8·2 13·0
0·2 7·2 14·0 22·8 6·0 13·4 22·0 4·8 12·4 22·8
0·3 7·4 25·4 43·4 7·2 21·8 40·2 7·4 20·6 40·8
0·4 9·8 32·6 62·8 9·4 22·6 57·8 7·4 26·6 54·8
0·5 8·4 45·8 82·2 8·4 38·4 77·2 8·4 35·4 74·6
0·6 11·0 64·0 94·4 8·8 54·2 86·8 10·0 50·8 87·8
0·7 12·2 75·8 98·0 13·8 58·6 96·2 12·4 63·6 96·4
0·8 16·4 85·2 99·6 17·0 73·4 98·8 14·6 71·4 99·0
0·9 19·8 88·4 99·8 19·0 79·2 98·8 17·8 78·0 99·2
0·95 16·8 79·2 99·6 13·6 72·2 99·2 14·0 73·8 99·4
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with log-normal distribution with mean � and variation coe�cient 0·4. The test is one-sided and
was carried out under the nominal value of 0·05. Table III shows that, in all risk scenarios, the
EBI test kept the type I error probability within the nominal value.
The results for the power against SAR generated risks are shown in Table IV and displayed

graphically in Figure 4. We can see that EBI has a substantially larger power than Moran’s I
when the risk population is heterogeneous. When the population is constant, the two tests have
approximately equal power.

4. AN EXAMPLE: HOMICIDES IN BELO HORIZONTE

A broad concept of health considers crime as a component of environmental risk. In Belo Hori-
zonte, there has been concern about the geographical distribution of the several types of crime and
we have been involved in spatial analysis of crime rates and covariates. The data set we use in
this paper has an interesting outlier which turned out to show an additional property of our test.
The number of homicides in Belo Horizonte in 1994 varies from 0 to 6 cases with an average

of 1·3 cases per UP, and hence the homicide rates are small. Thirty-�ve UPs had a rate equal to
0, while 45 other UPs had rates between 1 and 39 cases per 100,000 inhabitants. One UP was an
outlier, with one homicide among 160 inhabitants which produced a rate equal to 625 per 100,000
(Figure 1).
To test for spatial independence of homicide rates through Moran’s I , we consider two UPs as

neighbours if they are adjacent de�ning therefore a symmetric W matrix. The value of Moran’s
I is 0·0129, with p-value 0·039 with 1000 permutations. If the test is carried out with the less
acceptable asymptotic normal distribution as the reference distribution, we �nd a p-value of 0·346.
To calculate I∗pop, we de�ned matrix M equal to W but with the main diagonal set equal to 2.
Oden’s index is then 5·9×10−6 with p-value 0·0102. Hence, both indexes lead us to conclude
that Belo Horizonte homicide rates in 1994 show evidence of spatial correlation. Waldh�or’s test
has p-value equal to 0·244. The value of EBI is 7·866 with permutation p-value equal to 0·167,
non-signi�cant at the usual levels.
The discrepancy of conclusions can be explained by the presence of the high outlier in a sparsely

populated area and singled out in the map. Excluding this area from the data, we �nd Moran’s
I equal to −0·070 with p-value 0·824 under permutation, and, using the normal distribution as
reference, we �nd a p-value equal to 0·810. Oden’s index is equal to 2·20×10−6 with p-value
0·165, and Waldh�or’s test gives a p-value of 0·90. The EBI statistic is equal to −5·618 with
p-value equal to 0·786. The signi�cant results of Moran’s and Oden’s test disappears but our EBI
test is not a�ected by the outlier removal. Hence, we �nd out that our proposed statistic has some
additional robustness qualities due to its shrinkage e�ect on the crude rates.

5. CONCLUSIONS

In this work, we consider tests for the hypothesis of spatial independence of morbidity risks. The
permutation test based on Moran’s I applied directly on the observed rates loses power if the
areas have risk populations of di�erent sizes. However, the power is not additionally a�ected if,
in addition to being di�erent, the populations are also spatially correlated.
We verify the e�ect of varying populations in the type I error probability of the permutation

test when the underlying risks are equal for all areas. In our simulations, the actual type I error
probability is smaller than its nominal value when the populations are di�erent without spatial
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Figure 4. Power estimates of one-sided tests with EBI statistic with �=0·05 based on 500 simulations with mean risk
equal to 4·75=104

structure. When the populations are spatially correlated, Moran’s I has type I error probability
greater than the nominal value.
We introduce a proposal to adjust Moran’s I for the variation on population size. The adjustment

is based on a Bayesian approach to model the underlying risks allowing for realizations with
di�erent risks between the areas. The permutation test based on the new index has a larger power
than Moran’s I applied directly on the observed rates. Additionally, the type I error probability of
our test is within the nominal signi�cance level in all simulated situations.
We show that two previous proposals to adjust Moran’s I , Oden’s I∗pop and Waldh�or’s I statistic,

have some problems. Oden’s test is very powerful to test risk heterogeneity but its power does not
increase substantially when, in addition to their heterogeneity, the risks are also spatially correlated.
The spatial correlation interpretation of a signi�cant Moran’s I test implies that close areas tend to
have similar risks, producing a thematic map with clusters of similar values. If this test accepts H0
we can have homogeneous or heterogeneous risks. In the case of I∗pop, the null hypothesis rejection
means heterogeneous risks, which can be either spatially correlated or not. Oden13 states that if
the risks are heterogeneous and spatially independent, we have a case of disease clustering, that
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is, concentration of a few cases in a few areas, even if they are far apart. However, if we want to
test only spatial independence at the areas’ own scale, we should use Moran’s I or our proposed
test to be sure of interpreting the null hypothesis rejection as evidence of spatial correlation of
risks, which also implies its heterogeneity.
The other proposal, Waldh�or’s I , has an error type I probability larger than its nominal value

and in general cannot be trusted.
Finally, note that the power against spatial correlation of very low risks of Moran’s I or any

other test is low, due to the resulting great number of rates equal to zero. Additionally, since
risks homogeneity implies spatial independence, the tests are likely to be more powerful to detect
spatial correlation when the risks have large variability.
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