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ABSTRACT

Motivation: Protein–protein complexes are known to play key roles

in many cellular processes. However, they are often not accessible

to experimental study because of their low stability and difficulty to

produce the proteins and assemble them in native conformation.

Thus, docking algorithms have been developed to provide an

in silico approach of the problem. A protein–protein docking

procedure traditionally consists of two successive tasks: a search

algorithm generates a large number of candidate solutions, and then

a scoring function is used to rank them.

Results: To address the second step, we developed a scoring

function based on a Voronoı̈ tessellation of the protein three-

dimensional structure. We showed that the Voronoı̈ representation

may be used to describe in a simplified but useful manner,

the geometric and physico-chemical complementarities of two

molecular surfaces. We measured a set of parameters on native

protein–protein complexes and on decoys, and used them as

attributes in several statistical learning procedures: a logistic

function, Support Vector Machines (SVM), and a genetic algorithm.

For the later, we used ROGER, a genetic algorithm designed to

optimize the area under the receiver operating characteristics curve.

To further test the scores derived with ROGER, we ranked models

generated by two different docking algorithms on targets of a blind

prediction experiment, improving in almost all cases the rank of

native-like solutions.

Availability: http://genomics.eu.org/spip/-Bioinformatics-tools-

1 INTRODUCTION

The three-dimensional structure of a protein–protein complex

is a crucial information for its functional study. Whereas

structural genomics projects have considerably increased our

knowledge of individual protein structures, protein–protein

complexes are still beyond the reach of high-throughput

methods. Reliable, fast and automatic docking algorithms

that can assemble individual proteins into complexes are

therefore of great value.
A docking procedure comprises two tasks, generally

consecutive and largely independent. The first is a rigid-body

search over the rotational/translational degrees of freedom.

It generates a large number of candidate solutions where the

two partners contact each other in many different orientations,

avoiding steric clashes. Then, the best solutions are selected by

evaluating a score. Scoring functions express the geometric

complementarity of the two molecular surfaces in contact,

and also the strength of the interaction, based on the physico-

chemical characteristics of the amino acids in contact with

each other. Most procedures handle the geometric and

physical-chemical criteria separately.
The formation of a complex often induces changes in the

structure of both partners. These changes may concern only

the side chain conformation of amino acid residues at the

interface, or they may imply motions of the protein backbone,

the nature and amplitude of which remains very difficult to

predict. In some cases, an amino acid substitution in one of

the partners can cause gross changes in the complex even

though it hardly affects the structure of the protein itself

(Graille et al., 2005). This makes ‘unbound’ docking predictions

much more difficult than ‘bound’ ones: bound docking starts

from protein structures taken from the complex and ignores these

motions, whereas unbound docking uses the structures of the free

partners and must take the physico-chemistry into account.
One major barrier for the study of macromolecular

assemblies is their sheer complexity. The problem cannot

be solved without simplifications, and even with those, the best

performing algorithms consume great amounts of CPU time.

Biological information is often available for a given protein–

protein structure, requiring ‘human’ post-processing (Mendez

et al., 2005). Yet, postgenomic functional studies need a

procedure that can search for plausible protein–protein

complexes in a complete genome with thousands of genes.

This requires the procedure to be: (i) very reliable, which means

that the score of the best solution is high only if the two

proteins do form a complex, and that the best solution is close

to the native complex; and (ii) very fast, since the inspection

of a whole genome requires the modeling of many hundreds

of thousands potential complexes.
In this work we use the Voronoı̈ tessellation as a descriptor of

the protein structure (Poupon, 2004). The tessellation, which

is based on amino acid residues rather than individual atoms

has been shown to yield valuable mathematical results on the

molecular packing (Soyer et al., 2000), molecular recognition*To whom correspondence should be addressed.
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(Bernauer et al., 2005) and other structural properties

of proteins. We show here that its use in the description of

protein–protein interfaces leads to valuable scoring functions

for docking algorithms.
To generate a scoring function, we choose a limited number

of parameters that can be measured on the Voronoı̈ tessellation

of a complex. These parameters are measured in a set of native-

like protein–protein complexes and in a set of decoys, and used

as attributes in statistical learning methods. Three different

types of learning algorithms are compared: a logistic function,

SVM and a genetic algorithm called ROGER. ROGER gives

the best results by far, and we use its score to re-rank models of

protein–protein complexes generated by two different docking

algorithms on targets of Critical Assessment of PRedicted

Interactions (CAPRI), a blind prediction experiment designed

to test docking procedures (Janin et al., 2003). The results show

that the ROGER score improves the ranking of native-like

solutions and suggest that it will be of great value in early steps

of a fully automated docking procedure.

2 METHODS

2.1 The Voronoı̈ construction

Voronoı̈ diagrams, also known as Dirichlet or Thiessen

tessellations, have been used in many fields of sciences. Given

a set of points in space (centroids), the Voronoı̈ tessellation

divides the space into Voronoı̈ cells centered on each point.

A Voronoı̈ cell includes all points of space that are closer to the

cell centroid than to any other centroid, and it is the smallest

polyhedron defined by bisecting planes between its centroid and

all others. The Delaunay tessellation is obtained by tracing the

vertices joining centroids, which have a common face in their

Voronoı̈ cells. The two tessellations are dual from each other.

They are uniquely related, and for efficiency, it is best to

compute the Delaunay tessellation first and derive Voronoı̈

cells from it.
We performed the computation by using as centroids the

center of mass of amino acid side chains, including C� (Fig. 1).

Our procedure uses the Computational Geometric Algorithms

Library (CGAL), which implements an incremental random-

ized algorithm (Boissonat et al., 2002) of optimal O(n2)

complexity, n being the number of centroids. Solvent was

modeled around the protein to prevent surface residues from

having unbound Voronoı̈ cells (Fig. 1). We placed spheres of

radius 6.5 Å on a water-like lattice (Soyer et al., 2000) to

give solvent cells a volume similar to the average residue

Voronoı̈ cell.
The tessellation of a protein–protein complex leads to the

following definitions:

(i) Two residues are neighbors if their Voronoı̈ cells share

a common face.
(ii) A residue belongs to the protein interior if all its

neighbors are residues of the same protein.
(iii) A residue belongs to the protein surface if one or more

of its neighbors is solvent.

(iv) A residue belongs to the protein–protein interface if

one or more of its neighbors belongs to the other protein.

(v) An interface residue belongs to the core of the interface if
none of its neighbors is solvent.

(vi) The cell facets shared by residues of both proteins
constitute the interface.

2.2 Training set

The training set consists in two subsets: positive examples,

complexes of known 3D structure; and negative examples

generated from the positive examples using a docking procedure.

2.2.1 Complexes of known 3D structures The set of models
on which were used as positive examples in the training set for

learning methods was computed from the 2004 release #1 of the

Protein Data Bank (PDB) (Berman et al., 2000) (Fig. 2).

First, we used a BioPython module (Hamelryck and
Manderick, 2003) to extract entries reporting X-ray structures

with resolution higher than 3 Å and with two polypeptide

chains longer than 20 residues, putative partners in a complex.

Then we searched the PDB with Blastp (Altschul et al., 1990)

for entries containing the free partners, and retained those
having more than 95% identity. Hierarchical clustering

by R software (Ihaka and Gentleman, 1996) then gave a

non-redundant set of 102 complexes (22 Unbound/Unbound

and 80 Bound/Unbound).

2.2.2 Decoys The decoys were generated by applying
a docking algorithm to each complex. The starting proteins

structures were those of the free partners when available,

or taken from the complex for the bound partner of
unbound/bound complexes.

To generate non-native solutions (decoys), we used the
program DOCK (Cherfils et al., 1991; Janin and Wodak, 1985).

DOCK explores the solution space using five angles and a

distance as rigid-body parameters. The program was run in grid

mode sampling the whole range of the five angles in 10� steps;

200 solutions were randomly chosen among the 18.106 thus
generated. We checked that they were all non-native, that is,

far from the X-ray structure.

2.3 Training attributes

We chose properties of interface residues and residue pairs

as training attributes. The number of parameters that may be

used in training is limited by the size of the training set.

With only 102 native complexes in the set, attributes could
be attached to each of the 20 amino acid residue types, but not

to each pair. To define pair attributes, we grouped residue types

in six categories: hydrophobic H (ILFMV), aromatic � (FYW),

positively chargedþ (HKR), negatively charged� (DE),

polar P (NQ) and small S (AGSTCP). The final set of attributes

includes 84 parameters in five classes:

(i) P1 The Voronoı̈ interface area, measured by summing

the areas of the cell faces constituting this interface
(1 parameter)

(ii) P2 the total number of core interface residues

(1 parameter)
(iii) P3 the number fraction of each type of core interface

residues (20 parameters)
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(iv) P4 the mean volume of the Voronoı̈ cells for the core

interface residues of each type (20 parameters)
(v) P5 the number fraction of pairs of each category

(21 parameters)
(vi) P6 the mean centroid-to-centroid distance in pairs of

each category (21 parameters)

2.4 Learning methods

The values of the 84 parameters were measured on the 102

native complexes (the positive examples) and on the decoys

(the negative examples) of the training set. These values were

then used to train statistical learning procedures that optimize

score functions to best discriminate between the native and

the decoy models.

2.4.1 Logistic function A logistic function is a linear
combination of the parameters with weights optimized to

yield a value close to 1 on the native models and 0 on

the decoys. The vector of weights W[wi] was estimated on the

learning set by the maximum likelihood method using

the general linear model (GLM) of the R software (Ihaka and

Gentleman, 1996).

2.4.2 SVM: Support vector machines Support vector
machines (SVM) aim to divide a high-dimensional space into

regions containing only positive examples or only decoys,

Fig. 1. Voronoi description of protein–protein interfaces. (a) The Voronoı̈ cell of a leucine residue in complex 1p2k. The cross marks the centroid

used for constructing the cell (b) Complex 1p2k; the two protein chains are in blue and pink, and solvent is drawn as dots (c) Voronoı̈ envelope of

complex 1p2k (d) Facets in gray are shared by Voronoi polyhedra of residues of the two proteins, representing the interface of the complex.
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each represented by a point with the values of the different

parameters as coordinates. The functions defining these

regions, which can be of different types, are called kernels.

We tested SVM with linear, polynomial and radial basic

function (RBF) kernels. Computations were carried out using

SVMTorch (Collobert and Bengio, 2001).

2.4.3 ROGER: a ROc based GEnetic learner The Receiver

Operating Characteristics (ROC) procedure is often used

evaluate learning procedures by cross-validation on examples

taken from the learning set. Plotting the proportion of true

positives against the proportion of false positives yields a ROC

curve, and the area under that curve is the ROC criterion.
ROGER (Sebag et al., 2003) uses a genetic algorithm to

find a family of functions that optimizes the ROC criterion.

In our implementation, the function optimized was the sum

of the weighted and centered parameters:

f ðxÞ ¼
X

i

!i xi � cij j

Thus, two values are determined for each attribute: a central

value ci and a weight !i. We applied a ten-fold cross-validation

procedure by forming 10 groups of models, each excluding 10%

of the training set, and repeated the training procedure 21 times

for each set. This was required by the heuristic nature of

the genetic algorithm, which can end in a local minimum.

Thus, the learning procedure generated 210 functions. For a

given complex, the 210 functions were evaluated, and the

median value was retained as score.

2.5 Missing data in learning

Interfaces in the learning set contained on average 18 core

residues per partner protein. Thus, the least abundant residue

types and some of the category pairs were absent from many

members of the set, leading to a null value of the amino acid

frequency (parameter class 3) and to missing values of the

volumes (class 4) and of the pair parameters in classes 5 and 6.

Because learning methods including the logistic functions and

ROGER, generally cannot handle missing data, we replaced

each missing value by either:

(i) The mean value on the whole set
(ii) The median value on the whole set
(iii) The mean value in the category (native or decoy)

to which the example belong
(iv) The median value in the category

Missing values also had to be replaced when scoring a model

generated by docking in the test phase. Here again, many

combinations are possible: replacing by the mean or median

values of the whole learning set, of the whole test set, by

category or not.
In this study, we replaced missing values by their median

on the whole learning set during both the learning procedure

and the test phase. We tested other alternatives and found

that they performed less well, possibly because our parameters

have non-Gaussian distributions.

3 RESULTS AND DISCUSSION

3.1 Performance of the learning procedures

The ROC curve was evaluated on the training set for four

different scores: the sum of the mean square deviation of the

attributes from their mean values, the logistic function,

the classification made with SVMs, and the scoring function

obtained with ROGER. A perfect selection (100% true

positives and no false positives) should make the area under

the ROC curve AUC equal to 1; a random selection yielding

true positives and false positives in equivalent numbers should

have an AUC of 0.5.

Taking the sum of the mean square deviations as a score

yielded an AUC close to 0.5, indicating that individual

parameters discriminate very poorly between the native and

Fig. 2. Procedure for extracting the training set from the PDB.
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the decoys, and that they must be properly weighted
and combined, which is what a learning procedure aims to.
With the logistic function, the area under the ROC curve

increased to 0.85, indicating a better discrimination.
ROGER and the SVMs did much better, achieving AUC

of 0.98 and 0.99, respectively. More important perhaps, the

initial slope of the ROC curve was very steep in both cases,
implying that ROGER and the SVMs had very few false

positives among their best scoring solutions. Thus, both
learning procedures were successful, and we retained the
ROGER score for further studies as the SVMs only give

a binary classification, ill-suited to our problem of ‘finding
a needle in a hay stack’. As docking generates hundreds of

thousands of non-native solutions along with only a few near-
native ones, a binary classification would still yield many false
positives. In contrast, the ROGER score could easily be

combined with other functions if needed.

3.2 Weight and central value of the attributes in the

ROGER scoring functions

The ROGER score of a docking model is the median value of

210 functions generated in separate trainings as described under
Methods. The role of an attribute in the function depends on
both the absolute value and the sign of its weight.

Because the algorithm is designed to minimize the score
of native-like solutions, the most significant attributes are those
having large weights and/or central values that are very

different from the median value. The greater the difference
between the central and median value, the more influence

a parameter has.
Figure 3 and 4 show that the largest positive weights are

for the interface area and number of interface residues, two

attributes that measure the size of the interfaces. They are
highly correlated and both have central values that are much

larger than the median values observed in native complexes.
Thus, large interfaces are preferred. Residue and pair frequen-
cies also have central values that are larger than the median.

The weights are small and of both signs for residue frequencies,
which govern the amino acid composition of the interface.
They are larger and mostly positive for pair frequencies,

especially for pairs involving hydrophobic residues, implying
that the score favors hydrophobic contacts.

In contrast, the central value is close to the median for most
of the residue volumes and pair distances. The residue volumes
and the pair distances involving hydrophobic residues have

large negative weights, and therefore, they are important
attributes. A tight packing of hydrophobic residues at the

interface, which makes their volume and the distance to
neighbors less than the average, is particularly favored by the
ROGER score.

3.3 Results on the targets of CAPRI rounds 3–6

We tested the scoring functions on models of the targets
of CAPRI Rounds 3–6 generated by two docking programs:

DOCK (Cherfils et al., 1991; Janin and Wodak, 1985) run as in
the learning set, and HADDOCK (Dominguez et al., 2003).
Models generated by the two programs were grouped into

classes depending on the fraction Fnat of the residue–residue

contacts in the native structure that were present in the model,

and on the fraction Fint of the interface residues that were

correctly predicted. As described in the legend of Table 1,

classes 1 to 4 were defined by ranges of Fnat; class 5 had

Fnat¼ 0 (no native contact), but Fint40 (some interface

residues correctly predicted); class 6 was for incorrect models.
As all classes were not represented for each target, Table 1

cites the ‘best class’ that was present in a given data set. Taking

target 11 as an example, the best model in the data set

generated by HADDOCK had Fnat¼ 0.54. Thus, the best class

in that data set was 2 (0.55Fnat50.75).

3.3.1 Re-ranking HADDOCK solutions Models for five
CAPRI targets generated by HADDOCK (Dominguez et al.,

2003) were kindly communicated by Dr A. Bonvin.

Their ROGER score was computed and the result of their

re-ranking is given in Table 1. The ‘rank1’ column in Table 1

indicates the rank of the first best class solution, and the

‘Orig. rank’ column indicates the original rank, given by

HADDOCK, for the same solution. For all but one target,

the rank given by our function is better than the rank given

by HADDOCK.
With Target 11, a model of the best class (class 2), re-ranked

4, and one of the next best class (class 3) was 1st. The top 50

ROGER scores included 4 models of class 2, and 44 models of

class 3. Thus very few if any of the top 50 were false positives.

With Targets 13 and 14, the data set contained class 1 models

that were ranked 1st or 2d by ROGER, although the top 50

contained more false positives than for Target 11. The results

were less satisfactory on Targets 12 and 15, no model of the

best class present in these data sets scoring in the top 50.

3.3.2 Re-ranking DOCK solutions We ran a complete grid
search of the five angles in steps of 10 degrees on ten of the

CAPRI targets of Rounds 3–6. The models generated by

DOCK were clustered, the average position in each cluster was

retained, and its ROGER score was evaluated.

Table 1 shows that the DOCK data sets were generally

poorer than for HADDOCK. None contained models of

class 1 or 2. The best models had Fnat50.5 (class 3 or 4),

or even Fnat¼ 0 (class 5) in the case of Target 15. Nevertheless,

the re-ranking with ROGER performed correctly. In all but one

data set, the top 50 included models of the best class that was

present in the set. The 1st rank was a model of the best class

(class 4) in the case of Target 16, and a model of the second best

class in four other cases. Moreover, for all targets but one,

the rank given by our function to the first best class solution

is better than the original rank given by DOCK.
Since Round 10 in CAPRI, it is possible to test scoring

functions. The putative solutions generated by participants

using docking algorithms are made available to other partici-

pants for re-ranking. We have tested our scoring function, and

amongst the 10 solutions we have submitted, the best one

had 20% of native contacts. This solution was ranked 5 with

our scoring function. The fraction of interface residues

correctly identified on the receptor and on the ligand were

0.43 and 0.68, respectively, and the RMSD between its interface

and the correct one was 5.34 Å. There were better solutions

in the original set, the best one having 54% of correct
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Fig. 3. Comparision of parameter values observed on the learning set and central value obtained after the learning procedure. The root square

deviation on central values was 0.17 on average over 10 runs in 5-fold cross validation. (a) P1 Voronoı̈ interface area (Å2) (b) P2 number of interface

residues (c) P3 Residues frequencies (normalized) (d) P5 Pair frequencies (normalized) (e) P4 Residues Voronoı̈ volumes (Å3) (f) P6 Pair square

distances.
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native interactions. However, none of these were ranked

amongst the 10 first with our scoring function. Moreover,

as the coordinates of the real structure are not yet available,

we could not know the ranks of these better solutions.

3.3.3 Comparison with other docking programs Recent
experiment in protein–protein docking such as CAPRI has

shown improvements in docking procedures now able to take

certain flexibility into account. Lately scoring functions

appeared to play a greater role in rescoring the solutions

(Mendez et al., 2005), especially during a refinement stage.
They usually rely on shape complementarity supplemented

by additional energy terms such as van der Waals Coulomb

or desolvation in different and ingenious ways (Carter et al.,

2005; Daily et al., 2005; Fernandez-Recio et al., 2005;

Law et al., 2005; Lee et al., 2005; Mustard and Ritchie, 2005;

Schneidman-Duhovny et al., 2005; Terashi et al., 2005; van

Dijk et al., 2005; Wiehe et al., 2005). Taking into account

residue conservation and biological information from literature

has also been added to the process with varying results

(Ma et al., 2005; Tress et al., 2005).
Lately novel energy scoring functions involving statistical

methods have made a breakthrough, first in predicting protein

structure in the CASP (Rohl et al., 2004) but now also for the

protein–protein docking problem with very promising first

attempts (Daily et al., 2005; Zhang et al., 2005).

Our work falls within this scope of statistical method but

affords both the measure of geometric criteria and protein

structure knowledge described by previous energy-based

methods.

4 CONCLUSION

The residue-based Voronoi tessellation provides a convenient

low-resolution description of protein structure and protein–

protein interfaces. We built a set of parameters derived from

that description and a data set of native or decoys models

obtained by docking, and used these sets to train the ROGER

statistical learning procedure. It returned a score that we tested

on docking models of CAPRI targets generated by two

different docking programs.
For most targets, a best or second best class solution was

found in the top 10 ranking solutions, and in more than half of

the cases the top ranking solution belonged to the best or

second best class. Moreover, for all targets but one, the rank

given to the first best class solution by our scoring function is

better than the rank of the same solution given by the original

method (DOCK or HADDOCK). We may thus hope that

further refinement of the parameters and of the scoring

function will have a class 1 or 2 solution as top ranking in all

cases. The quick and efficient selection of docking models

Fig. 4. Weights of the different parameters obtained after the learning procedure. The root square deviation on weights was 0.21 on average

over 10 runs in 5-fold cross validation.
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based on whole residues will be an asset in whole-genome
studies. On the other hand, these models remain crude and we
cannot expect to have very accurate solutions unless go back to

an atomic model and an appropriate scoring function.
Last, a study that deals only with the scoring function is

obviously dependent on the quality of the original data set.
Further refinement of the method will require the implementa-

tion of a new exploration method that could also be based
on Voronoı̈ tessellation.
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data sets. Solutions: number of solutions scored, Best class: best class

present in set

Target Nb. Sol. Best class rank1 Orig. rank rank2 rank3 Number

of hits

HADDOCK

11 200 2 4 50 1 9 4

12 200 1 78 119 78 49 0

13 200 1 1 8 7 5 1

14 200 1 2 3 1 3 10

15 200 3 57 29 1 20 0

DOCK

9 3446 4 4 49 1 3 10

11 32 4 11 28 3 2 3

12 139 3 27 64 14 20 4

13 2263 4 84 1740 7 1 0

14 2460 4 5 244 352 1 2

15 9 5 9 8 1 8 1

16 165 4 1 65 2 5 2

17 72 4 16 39 1 2 1

18 972 3 24 226 1 4 1

19 1979 4 22 94 25 1 2

Definitions of the classes:

Class 1: Fnat40.75

Class 2: 0.55Fnat� 0.75

Class 3: 0.255Fnat� 0.5

Class 4: 05Fnat� 0.25

Class 5: Fint40 and Fnat¼ 0

Class 6: Fint¼ 0 and Fnat¼ 0

Fnat: fraction of contacts in the native structure that are

present at the docking model

Fint: fraction of correctly predicted interface residues

rank1, rank2, rank3: rank1 is the best ROGER rank

achieved by a model that belong to the best class present

in the set; rank2 is the best rank achieved by of model

of the next best class, and so on for rank3.

Orig. rank: original rank of the rank1 solution

Number of hits: number of models with a ROGER

rank550 that belong to the best class present in the set.
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