
A New PWM Strategy for Grid-Connected

Half-Bridge Active NPC Converters With Losses

Distribution Balancing Mechanism
Lin Ma, Tamas Kerekes, Pedro Rodriguez, Xinmin Jin, Remus Teodorescu, Fellow, IEEE,

and Marco Liserre, Fellow, IEEE

Abstract—Photovoltaic systems technological development is
driven by the request for higher efficiency and safety. These con-
cerns influence also the choice of the power converter stage. Sev-
eral topologies have been proposed and many of them are available
commercially. Among them, the neutral point clamped (NPC) and
derived topologies offers high efficiency, low leakage current, and
low EMI. However, one main disadvantage of the NPC inverter is
given by an unequal distribution of the losses in the semiconduc-
tor devices, which leads to an unequal distribution of temperature
that can affect lifetime. By using the active NPC (ANPC) topology,
where the clamping diodes are replaced by bidirectional switches,
the power losses distribution problem is alleviated. The modula-
tion strategy is a key issue for losses distribution in this topology.
In this paper, two known strategies are discussed and a new PWM
strategy, namely the adjustable losses distribution is proposed for
better losses distribution in the ANPC topology. Simulations and
experimental results help in evaluating the modulation strategies.

Index Terms—Active NPC (ANPC), adjustable losses distribu-
tion (ALD), NPC, PV system.

I. INTRODUCTION

S
INGLE-PHASE photovoltaic (PV) systems (1–10 kW) are

attractive distributed power generation system in household

applications. Hence, they have specific needs such as maximum

profitability through high efficiency, long lifetime, low prices,

small volume, and safety [1], [2]. In order to improve the effi-

ciency of household PV inverters and lower the system prices,

isolation transformers used in the past to interface the PV sys-

tem with the electric grid in order to provide higher safety and

lower leakage current is typically not present in the new gen-

eration of PV systems. Thereby, many transformerless appli-

cations were proposed [3]–[6], including HERIC topology [7],

full-bridge (FB) with dc bypass topology [8], H5 topology [9],

Neutral Point Clamped (NPC) topology, Conergy NPC topol-

ogy, and active NPC (ANPC) topology. All these voltage source
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transformerless PV inverter topologies can be classified in two

groups: One is the topologies derived from conventional FB

topology as HERIC, H5, and FB with dc Bypass topology; the

other group is the topologies derived from conventional half-

bridge NPC topology as NPC, Conergy NPC, and ANPC.

The NPC topology was proposed by Baker in a patent in

1970s, in 1981 for the first time stated in the paper by Nabae,

Takahashi, and Akagi in [10] and it has been proven to pro-

vide high efficiency and to allow connection to the grid without

step-up transformer [11], [12]. Compared with the traditional

two-level FB PWM inverters, the NPC topology inverters pro-

duce no common-mode current, which make it appealing for

PV application [13]. Meanwhile, one disadvantage of the NPC

inverter is given by an unequal distribution of the losses in the

semiconductor devices, which leads to an unequal distribution

of temperature and limits the output power of the inverter. In or-

der to overcome this drawback, the conventional NPC topology

was extended to the ANPC structure [14], [15].

Compared with the conventional NPC topology, the total effi-

ciency of the ANPC topology is not improved, but this topology

has more switching states freedom degrees, which could be used

in dc-bus voltage balancing applications [16]–[19], which is an-

other essential for all NPC topologies. Some of the ANPC PWM

strategies were also used for balancing the losses distribution

[20], [21], but all of them were not optimal.

This paper introduced two ANPC PWM strategies [20], [21]

used for balancing the power losses distribution and proposed

a novel PWM strategy named adjustable losses distribution

(ALD) for better losses distribution balancing. This modulation

method could adjust the switching losses distribution depended

on different switches conduction loss distribution. By using this

method, it could optimal the total switches losses distribution.

Simulation and experimental results are given to validate that

the proposed strategy has better losses distribution performance,

which could enlarge the components and inverter SOA areas.

II. POWER UNBALANCE DRAWBACKS OF HALF-BRIDGE

NPC TOPOLOGY

Due to the structure of PV panels, the leakage capacitance

between the PV panels’ output terminals and ground reaches a

significant value. In order to save using isolation transformers,

the conventional half-bridge NPC topology is a popular topology

that is used in PV inverter applications [22], [23]. In half-bridge

NPC converters, zero voltage can be achieved by “clamping” the



Fig. 1. NPC Half Bridge.

TABLE I
SWITCHES STATES OF NPC HALF-BRIDGE INVERTER

Voltage S1 S2 S3 S4

Positive 1 1 0 0

0+ 0 1 1 0

0− 0 1 1 0

Negative 0 0 1 1

Fig. 2. Sinusoidal PWM for conventional NPC half-bridge inverter, (a) Sr >
0 and (b) Sr < 0.

output to the grounded “middle point” of the dc bus using D+
or D− depending on the sign of the output current. As presented

in Fig. 1, by using this topology, the voltage VP E is clamped

to VPV/2, the leakage current could not be generated through

CP E . All half-bridge topologies could be used in this kind of

applications to eliminate the leakage current. However, the NPC

half-bridge topology has three output voltage levels and better

efficient performance.

Since this topology has just one zero state, the PWM method

of half-bridge NPC has no more options. The commutation

states and the switching PWM pattern of the NPC inverter are

given by Table I and Fig. 2, where “0” stands for “OFF” state

of IGBTs, while “1” stands for “ON” state of IGBTs. In Fig. 2,

Sr is the output voltage reference sinusoidal modulation wave

Fig. 3. Switching losses of a 5-kW NPC topology inverter at different frequen-
cies, M = 0.9 and PF = 1. (a) Switching frequency at 10 kHz. (b) Switching
frequency at 16 kHz.

which is generated by grid-connected current-loop controller

[20], [21]. During the positive half cycle of the grid voltage, S2 is

ON and only S1 switches at the switching frequency. Therefore,

the dead time between S1 and S2 might be set to zero by using

this PWM strategy. S3 and S4 work complementarily to S1 and

S2, respectively.

Fig. 3 shows the switching losses of a 5-kW NPC topol-

ogy inverter at different switching frequencies, which presents

unbalance losses distribution among the semiconductors. This

figure points out that the stresses due to switching losses on the

outer switches S1 and S4 is higher than on the inner switches,

especially at higher frequency [see Fig. 3(b)]. As the switching

frequency increases, the uneven losses distribution in the NPC

inverter gets even worse. For the grid-connected PV system, the

modulation index (M) is often fixed when dc bus voltage and

grid voltage are given, e.g., by using the traditional FB topology

connected with 230-V RMS grid, usually using 400-V dc bus,

the modulation index is set to M = 0.9.

In the case of half-bridge NPC topologies, the other obvious

drawback is that these topologies need double dc-bus voltage

compared with the traditional FB topology, which is the com-

mon drawback of all the half-bridge topologies. The higher

dc-bus voltage usually needs more PV panels in series or using

an additional dc/dc boost converter, but more PV panels in se-

ries would influent the maximum power point tracking, while

using an additional dc/dc boost converter would decrease the ef-

ficiency of PV systems [24], [25]. Although by using dc/dc boost

converter [26], cascade technique [27], or some other methods



TABLE II
SIMULATION PARAMETERS

Quantity Value Comment

Simulation step 5 e–5 s

Grid 230 V(RMS); 50 Hz

Carrier frequency 10 kHz/16 kHz

Output filter L 10 mH

CD C 1000 µF Each dc bus

DC Bus voltage 800 V 400 V each level

Power rate 5000 W

Switches PM75DSA120 IPM

PF 1.0

Modulation rate 0.9

Fig. 4. ANPC Half Bridge.

[28] could solve this problem ideally; it usually introduces more

facilities.

In this paper, all the simulation models parameters are shown

in the Table II.

III. ANPC CONVERTER

The ANPC topology inverter [14] is derived from the conven-

tional NPC topology as presented in Fig. 4. Two active switches

with antiparallel diodes are used for clamping. In contrast to the

conventional NPC converter, it has more than one way to clamp

the midpoint. The upper clamping path results from turning on

S2 and S5 and the lower clamping path from turning on S3 and

S6. The current can be conducted through both clamping ways

in both directions.

The distribution of the conduction losses during the zero states

can be controlled by the selection of the different NPC paths.

The switching losses could be controlled by the selection of

different commutation states. There are many different PWM

strategies for ANPC control by using different zero states and

conduction paths [19]. In this section, two PWM strategies are

introduced, and a new PWM strategy named ALD is proposed

in the next section.

A. Classical Active PWM Strategy

In [20], two PWM strategies, named PWM-1 and PWM-2,

for ANPC are discussed. In the case of the PWM-1 strategy, the

inner switches have only conduction losses and the switching

losses mainly stress the outer IGBTs. In the case of PWM-2

strategy, the switching losses only stress the inner switches.

TABLE III
SWITCHES STATES OF DF-ANPC HALF-BRIDGE INVERTER

Voltage S1 S2 S3 S4 S5 S6

Positive 1 1 0 0 0 1

0+ 1 0 1 0 0 1 0

0+ 2 1 0 1 0 0 1

0−2 0 1 0 1 1 0

0−1 0 0 1 0 0 1

Negative 0 0 1 1 1 0

Fig. 5. Sinusoidal PWM for ANPC-DF strategy: (a) Sr > 0 and (b) Sr < 0.

The power losses distribution situation is not improved in the

PWM-1 strategy and gets even worse in the PWM-2 strategy

compared with the conventional NPC topology.

B. Double-Frequency (DF)-ANPC Strategy

Papers [20] show a PWM strategy named double-frequency

(DF) ANPC control which naturally doubles the apparent

switching frequency. In comparison with the other ANPC PWM

strategies, the DF-ANPC strategy has four zero states: 0+1, 0+2,

0−1, and 0−2 (see Table III). The modulation wave Sr is com-

pared with two different carrier waves phase shifted by TS /2 to

generate the pulse as shown in Fig. 5. As there are two active

states during one switching period, the output voltage has an

apparent switching frequency equal to 2 fS .

The work mode during positive half cycle is analyzed as

below: As shown in Fig. 5(a), there are two active state periods

with VAO = VPV/2 during one switching cycle. In the case of

the first period, when S1 turns on, S2 keeps on state from zero

state to active state, the switching on losses totally stresses on

S1. When S2 turns off, S1 keeps on state from active state to

zero state, all the switching off losses stresses on S2. In the case

of second period, the situation is opposite, S2 takes the turn-on

losses and S1 takes the turn-off losses.



Fig. 6. Switching losses of a 5-kW DF-ANPC topology inverter at different
frequencies, M = 0.9 and PF = 1. (a) Switching frequency at 5 kHz. (b)
Switching frequency at 8 kHz.

TABLE IV
SWITCHES STATES OF ALD-ANPC HALF-BRIDGE INVERTER

Voltage S1 S2 S3 S4 S5 S6

Positive 1 1 0 0 0 1

0+ In 1 0 1 0 0 1

0+ Out 0 1 1 0 0 1

0+ 0 0 1 0 0 1

0− 0 1 0 0 1 0

0−Out 0 1 1 0 1 0

0−In 0 1 0 1 1 0

Negative 0 0 1 1 1 0

By using this PWM method, the switching losses are dis-

tributed more uniformly among inner and outer IGBTs as pre-

sented in Fig. 6. Compared with the conventional NPC topology,

although the efficiency was not improved, the power losses dis-

tribution problem is improved.

IV. ALD ANPC STRATEGY

A. ALD Strategy

In the case of previously described classical strategies, the

switching losses are concentrated on the outer or inner switches,

which lead the power losses distribution unbalanced. The DF

strategy could distribute the switching losses between inner

switches and outer switches equally, however which still cannot

optimize the total losses distribution. In this part, a new PWM

Fig. 7. Switches states and output voltage of ALD strategy, (a) Sr > 0 stress-
in mode, (b) Sr > 0 stress-out mode, (c) Sr < 0 stress-in mode, (d) Sr < 0
stress-out mode.

strategy (named ALD strategy) is proposed, which combines

the classical and DF PWM strategies’ advantages.

This strategy uses six different zero states and a total of eight

switches states as shown in Table IV and Fig. 7.

By distributing switching losses between inner and outer

switches, ALD PWM could optimize the IGBT total losses dis-

tribution, and simplify the heat sink design.



Fig. 8. Stress-in mode and stress-out mode selection during positive half cycle (turn off). (a) Positive. (b) Stress-in mode 0+ in. (c) Stress-out mode 0+ out.
(d) 0+ .

When the switching sequence follows as 0+ , 0+ In, Positive,

0+ In, 0+ or 0−, 0−In, Negative, 0−In, 0− as shown in the Fig. 7(a)

and (c), as the inner switches turn off before outer switches while

turn on later than outer switches, all the switching losses stress

the inner IGBTs, in this case named this mode stress-in mode.

When the switching sequence follows as 0+ , 0+Out, Positive,

0+Out, 0+ or 0−, 0−Out, Negative, 0−Out, 0− as shown in the

Fig. 7(b) and (d), as the outer switches turn off before inner

switches while turn on later than inner switches, all the switching

losses stress on the outer IGBTs, in this case named this mode

stress-out mode.

Accounting for different distributions (different modulation

index and power factor), the inner and outer semiconductors

losses could be totally balanced by selecting a suitable stress-in

mode/stress-out mode ratio.

B. Modulation Method of ALD

In this strategy, a new modulation signal Sr′ is composed

by a synchronized sinusoidal wave signal Sradd added to the

original modulation wave Sr. Actually the stress-in mode/stress-

out mode selected is depended on which semiconductors (inner

or outer) use the new modulation wave Sr′.

By using different modulation wave, different switching or-

ders could be achieved to distribute the switching losses flexibly.

In theory, using the new modulation wave Sr′ will not change



the modulation index. In the case of positive active state, S1 and

S2 must be ON at the same time, the same situation with the S3

and S4 in the case of negative active state.

For example, using stress-in mode during the positive half

cycle, S1 uses Sr′ as modulation signal and turns on before S2.

However, this does not influence the output current, since the

state of S1 neither influences the active state nor changes the

modulation index. That because S2 also used the old modulation

wave Sr, the duration of the both switches ON states is not

changed. Therefore, the modulation index will not be changed

(see Fig. 10).

The amplitude of Sradd (ASr add ) is depended on the mod-

ulation index

ASr add ≤ (1 − M) · ASr .

In the experiments, the pulse generation not only used DSP

PWM1-6, but also used PWM 7-12, two different clocks need

some margin to make sure the PWM generation. Therefore,

the amplitude of this adding wave is chosen as 10% of the

modulation wave, which could make sure the edge comparison

accuracy and restrict the over modulation part.

S5 and S6 switches with grid frequency, half cycle on, and

half cycle off (see Figs. 7 and 9).

When stress-in mode is selected, during the positive half

cycle, S1 uses signal Sr′ instead modulation signal Sr, whereas

during the negative half cycle, S4 uses Sr′ instead Sr. When

stress-out mode is used, during the positive half cycle, S2 uses

Sr′, whereas during the negative half cycle, S3 uses Sr′ instead

Sr, which is illustrated by Fig. 7.

Fig. 8 shows the stress-out mode/stress-in mode selection and

commutation process from positive state to zero state during

positive half cycle. When stress-in mode is selected, the com-

mutation process follows as (a), (b), (d). From (a) to (b), S2 turns

off before S1, the main switching losses stress on S2. From (b)

to (d), S1 switches off with soft switch condition. Meanwhile,

when stress-out mode is selected, the commutation process fol-

lows as (a), (c), (d). From (a) to (c), S1 turns off before S2, the

main switching losses stress on S1. From (c) to (d), S2 switches

off with soft switch condition. The commutation process from

zero state to positive state during positive half cycle is oppo-

site. When stress-in mode is selected, the commutation process

follows as (d), (b), (a). The main switching losses stress on S2.

Meanwhile, when stress-out mode is selected, the commuta-

tion process follows as (d), (c), (a), the main switching losses

stress on S1.The negative half cycle commutation process is

contrary.

Moreover, Fig. 9 shows two grid cycles, the first one with

50–50% stress-in/stress-out mode and the second one with 30–

70% stress-in/stress-out mode. 50–50% is the time ratio of

stress-in and stress-out mode. As shown in Fig. 9, the first

grid cycle with 50–50% stress-in/stress-out mode in order to

distribute the switching losses between S1 and S4 equally, S1

takes first 25% positive stress-out mode switching losses and S4

takes the another 25% negative stress-out mode. The stress-in

mode is also shared by positive and negative cycle equally in

order to S2 and S3 take the same switching losses.

Fig. 9. PWM generation for one cycle of 50–50% stress-in/stress-out mode
and one cycle of 30–70% stress-in/stress-out mode.

As in (1), [29], the conduction losses depended on the

switches’ threshold voltage Voffset , on-state resistor R, pass

through current I, and integration time T are shown

Econ =

∫ T

0

(Voffset + IR) · I · dt. (1)

For different modulation index (M) and power factor (PF)

used, the integration time ratio between in and out switches is

different, so the conduction losses distribution is different.

If the conduction losses are mainly stressed inner IGBTs (the

conduction losses distribution are depending on the modulation

index M and PF), then the ALD control could give more switch-

ing losses to outer IGBTs by increasing the rate of stress-out

mode. Thereby, the total losses of inner and outer IGBTs are bal-

anced. Otherwise, it could give more switching losses to outer

IGBTs by increasing the rate of stress-in mode.

The switching loss also could be expressed approximately as

(2), vj and ij are the instantaneous values of voltage and current

at jth switching [30]

Esw =
n∑

j=1

1

6
vj × ij × (Ton + Toff ). (2)

By using (1) and (2), the conduction losses and switching

losses could be estimated then distributed equally. It could also

get the stress-in/stress-out mode ratio by simulating or tempera-

ture closed-loop control in order to find the suitable work mode

ratio.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. ALD Modulation Experimental Waves

1) Fig. 10 validates that using different modulation waves, Sr′

does not change the modulation rate (M) and influence the



Fig. 10. Experimental waveform. (a) Waveforms 50–50% stress-out/stress-
in mode. (b) Waveforms 70–30% stress-out/stress-in mode. (c) Waveforms
30–70% stress-out/stress-in mode.

output current as the S1 and S2 both ON periods were not

changed. In case of Fig. 10(a), 50–50% stress-out/stress-

in is used where it could see that Ch1 (S1) and Ch3

(S2) take the same switching losses during the positive

half cycle. In Fig. 10(b), 70–30% stress-out/stress-in is

Fig. 11. Switching losses of ALD-ANPC 50–50% stress-out/stress-in mode
at PF = 1, M = 0.9.

Fig. 12. Switching losses of ALD-ANPC 60–40% stress-out/stress-in mode.

used, whereas in Fig. 10(c), 30–70% stress-out/stress-in is

used.

2) When ANPC topology inverter works, it must make sure

that S1 and S5; S4 and S6; S1, S2, S3, and S4 are not ON at

the same time. In theory, it is necessary to add dead time

between them. However, during the positive half cycle,

S5 and S4 keep OFF, meanwhile during the negative half

cycle, S6 and S1 keep OFF, therefore there is no need to

add dead time in this PWM strategy.

3) As shown in Fig. 7, during the positive half cycle 0+out

stress-out mode, there are two routes the current could

pass in the case of PF = 1: D5, S2; S6, S3. In the case of

PF�1, during the periods current is negative, there is just

one route the current could pass through: S6, S3.

4) Fig. 10 also shows that the output voltage VAB has three

voltage levels as ordinary FB inverters.

Otherwise, if the conduction losses are mainly stressed outer

IGBTs, then the ALD strategy could give more switching losses

to outer IGBTs by increasing the rate of stress-in mode.

B. Simulation Results of ALD

Some simulation results are shown in Figs. 11–13. For 50–

50% stress-in/stress-out mode (see Fig. 11), the total losses

of S1/D1 and S2/D2 are 22.3 and 37.2 W, respectively, the

losses distribution between outer and inner switches is not ideal.

For 40–60% stress-in/stress-out mode (see Fig. 12), the losses



Fig. 13. Switching losses of ALD-ANPC 70–30% stress-out/stress-in mode.

Fig. 14. Experimental equipments.

distribution is improved to: 24.8 and 34.6 W, respectively. For

30–70% stress-in/stress-out mode (see Fig. 13), the losses dis-

tribution is balanced to 30.1 and 29.2 W, respectively. By using

this strategy, the power losses distribution problem could be

alleviated.

The main features of this ANPC converter with ALD strategy

are as follows:

1) it is possible to control the switching losses distribution

by controlling the stress-out/stress-in mode ratio, which

means distribute the switching losses to outer or inner

IGBTs;

2) from Figs. 3, 6, and 11–13, they show that the efficiency

of these topologies are same, the different point is the

losses distribution;

3) there are six zero states in the current switching process;

4) the adding sine wave has same phase angle and frequency

as the modulation wave;

5) it is easy to control the switching distribution, since just

one parameter needs to be modified.

6) no need for high-frequency dead time. Just need dead time

add to zero crossing period.

Fig. 15. Thermal experimental results, (a) 50–50% stress-out/stress-in mode
experiment (outer IGBTs around 70 °C, inner IGBTs over 110 °C), (b) 80–20%
stress-out/stress-in mode experiment (outer IGBTs around 90 °C, inner IGBTs
around 100 °C).

Fig. 16. 5-kW efficiency comparison experimental results.

C. Thermal Experimental Results

The experimental tests setup is constructed by MITSUBISHI

PM75DSA120 IPM and the system parameters are shown in

Table V. The YOGOGAWA WT3000 precision power analyzer

is used for calculating the efficiency of the different invert-

ers. The PV panels are replaced by one-stage dc power supply

(MAGNA power). Power resistor is used as load, in order to

increase the temperature faster. The thermal experiment setup

uses six individual IPMs without heat sink as shown in Fig. 14,

where S1, S3, and S5 using P module; S2, S4, and S6 using N

module.

Fig. 15(a) shows the thermal photo of 50–50% stress-

in/stress-out work mode, it is clear that the inner switches take



TABLE V
LOSSES DISTRIBUTION EXPERIMENTAL SYSTEM PARAMETERS

Quantity Value

Line frequency 50 Hz

Carrier frequency 18 kHz

Output filter L 6 mH

CD C 3000 µF

Rated dc voltage 450 V

RL o a d 15 Ω

Power rate 1350 W

Switches PM75DSA120

Power fact 1.0

Modulation rate 0.9

more stress than outer switches. It is easy to find that the losses

distribution in (b) is much balanced than the losses distribution

in (a).

From the experiments, the efficiency curves for the tested

topologies are given in Fig. 16. The efficiencies of the ANPC

and conventional NPC are almost equal. In fact, the efficiency

of inverter by using different ANPC PWM strategies should

be same. Due to the experimental environment difference, the

efficiency is slightly different.

VI. CONCLUSION

The NPC topology has been proven to be very suitable for

transformerless PV systems due to their high efficiency, low

leakage current, and low EMI. The main disadvantage of the

NPC inverter is given by an unequal distribution of the losses in

the semiconductor devices, which leads to an unequal distribu-

tion of temperature and limits the output power of the inverter.

The ANPC structure has been developed in order to overcome

this drawback.

For the ANPC topology, due to the presence of switches

instead of clamping diodes, it is possible to use different modu-

lation strategies aiming at obtaining a better power losses distri-

bution. Thus, the ANPC topology is suitable for the high-power

transformerless PV system applications. The modulation strat-

egy is a key issue in this topology. In this paper, a new ANPC

modulation strategy named ALD is proposed.

This PWM method combines the losses distribution advan-

tages of classical and DF-ANPC strategies. Depending on the

different modulation index and PF (which means different con-

duction losses distribution between inner and outer switches), it

is able to choose the most suitable stress-in/stress-out mode rate

to balance the total losses distribution between inner and outer

switches, where the switching losses distribution is controlled

by the stress-in/stress-out mode rate.

The simulation and experimental results show that the losses

distribution could be balanced without adding any new compo-

nents in all the modulation index and PF conditions. Thermal

experiments worked at PF = 1 (for PV systems) illustrate that

the losses distribution could be balanced by using this PWM

method.

Moreover, in some work mode fixed applications (modulation

index and PF fixed), the stress-out/stress-in ratio could be fixed

by losses calculation or simulation off-line. For the work mode

changeable applications, the stress-out/stress-in ratio could be

chosen in a closed thermal loop fashion using online temperature

monitor, which could lead this strategy to suit for any work

conditions.
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