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Abstract: Tree-level information can be estimated based on light detection and ranging (LiDAR) point
clouds. We propose to develop a quantitative structural model based on terrestrial laser scanning
(TLS) point clouds to automatically and accurately estimate tree attributes and to detect real trees for
the first time. This model is suitable for forest research where branches are involved in the calculation.
First, the Adtree method was used to approximate the geometry of the tree stem and branches by
fitting a series of cylinders. Trees were represented as a broad set of cylinders. Then, the end of
the stem or all branches were closed. The tree model changed from a cylinder to a closed convex
hull polyhedron, which was to reconstruct a 3D model of the tree. Finally, to extract effective tree
attributes from the reconstructed 3D model, a convex hull polyhedron calculation method based on
the tree model was defined. This calculation method can be used to extract wood (including tree
stem and branches) volume, diameter at breast height (DBH) and tree height. To verify the accuracy
of tree attributes extracted from the model, the tree models of 153 Chinese scholartrees from TLS
data were reconstructed and the tree volume, DBH and tree height were extracted from the model.
The experimental results show that the DBH and tree height extracted based on this model are in
better consistency with the reference value based on field survey data. The bias, RMSE and R2 of
DBH were 0.38 cm, 1.28 cm and 0.92, respectively. The bias, RMSE and R2 of tree height were −0.76 m,
1.21 m and 0.93, respectively. The tree volume extracted from the model is in better consistency with
the reference value. The bias, root mean square error (RMSE) and determination coefficient (R2) of
tree volume were −0.01236 m3, 0.03498 m3 and 0.96, respectively. This study provides a new model
for nondestructive estimation of tree volume, above-ground biomass (AGB) or carbon stock based on
LiDAR data.

Keywords: LiDAR; quantitative structure model; algorithm; tree attributes; nondestructive estimation

1. Introduction

Currently, LiDAR technology is widely used to extract tree location, tree height, diameter at
breast height (DBH), tree crown and tree species classification, etc. [1,2]. It also provides basic data for
tree volume, biomass and carbon stock estimation. A common approach is to input tree attributes
(DBH, tree height and specific wood density) into an allometric model established by destructive
methods to estimate tree volume or above-ground biomass (AGB) [3–6]. These indirect methods
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are often based on different assumptions, which makes it difficult to carry out any meaningful
verification of the measured results. Uncertainty is hard to quantify or even unknown [7]. This indirect
estimation method introduces the error propagation chain, and the largest source of error comes
from the allometric equation [6,8]. The real and direct measurement of tree volume or biomass is to
cut down and weigh the mass of all the trees in the plot. However, this method is expensive and
inefficient, so indirect measurement methods are needed [9]. The reconstruction of trees 3D model
based on LiDAR point clouds can measure the tree attributes with less practical difficulties, and it is not
destructive to trees [10,11]. The reconstructed tree model contains the geometry and topology of the
tree, and the attributes of branches or stem can be derived quickly and accurately [12–14]. In general,
estimating tree attributes in forestry focuses more on the shape and mass of the stem than on the
size and structure of the branches [15,16]. However, higher order branch structures and topologies
are important for estimating tree volume, AGB, carbon stock, canopy gap, canopy size and other
more general ecological characteristics [17–19]. The geometric and statistical properties of trees are
crucial to forest management, especially pre-harvest forecasting. For example, there are attributes
such as the base and height of the canopy, the volume of the stem or branch, the structure and size
distribution of the branch [20,21]. However, many features are difficult or even impossible to measure.
Estimation of carbon cycle, stand stock, biomass, tree mass and decline time of branches all require
accurate estimation of branch size and tree attributes [22,23].

Three-dimensional reconstruction of trees based on terrestrial laser scanning (TLS) point clouds
can directly obtain the structure or size distribution of main-branch of trees, the base and height of tree
canopy [24–27]. The proposed method produces a geometric model that describes the components of a
complete overground tree in hierarchical order [3,28,29]. This model can be called quantitative structural
model (QSM). To date, some QSM methods based on LiDAR data are used for 3D reconstruction of trees.
The QSM method still relies on destructive measurements for accurate verification. Compared with the
method based on the allometric model, the QSM method can directly measure the volume of stem or
branch, canopy volume and the total volume of trees on the ground under the condition of the known
size and geometric distribution of higher-order branches [20,30–33]. Moreover, the AGB or carbon stock
can be derived by QSM method [32,34,35]. One of the key differences that may arise in the application
of a forest management-specific approach to a more general approach is the identification and accurate
modeling of higher-order branches. The QSM method can calculate the length or volume of higher
order branches. These problems can be solved by providing estimates of the volume of a single tree
level or stock of a plot level. The estimation of tree volume, AGB and other attributes by QSM method
is independent of the allometric model. There is no deviation in the size distribution of the tree, and the
uncertainty can be quantified [8,36,37]. To date, the TreeQSM developed by Pasi Raumonen et al. is a
model that has been used many times. Destructive experiments have verified the high accuracy of
TreeQSM [26], which is also used by some researchers to model trees. However, the TreeQSM still has
some areas for improvement, such as the reconstructed tree model cannot guarantee that the branches
have a reasonable geometric topology. Other QSM methods include PypeTree and SimpleTree [17,27].
PypeTree gives only a rough description of the topological structure of the tree and does not attempt
to restore branch geometry. The process of model reconstruction by SimpleTree is very complicated.
Moreover, the user needs to enter key parameters (such as the radius of the branch). It requires a
near-perfect input, namely a complete point clouds of trees, which is rarely satisfied in practice [17,31].
In addition, SimpleTree cannot detect the cylinder of the branch and restore the branch geometry.
In general, the current tree quantitative structural models are still relatively rare and have some
shortcomings. Therefore, it is necessary to develop QSM based on TLS point clouds to estimate tree
attributes. Moreover, it is necessary to study QSM methods that do not rely on the allometric models
to non-destructively estimate tree volume, biomass or other more general ecological characteristics.

Following the practice of QSM, a tree quantitative structure model based on TLS point clouds was
developed. From this model, overground tree volume, stem and branch structure distribution or size,
DBH and tree height were calculated. Our model has a higher topological and geometric accuracy
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and can non-destructively estimate tree volume or AGB without relying on the allometric model.
The AdTree is a high-precision tree geometric structure reconstruction method [31]. However, it cannot
yet quantitatively calculate tree attributes, so we improved and extended the AdTree method.
The tree is transformed from a set of generalized cylinders into a completely closed polyhedron.
To effectively extract wood (including tree stem and branches) volume, DBH and tree height from the
tree reconstruction model, the convex hull polyhedron calculation method was defined. To verify the
accuracy of the tree attributes, the tree model from 153 Chinese scholartrees TLS point clouds was
reconstructed. Statistical methods were used to analyze the experimental data. The experimental
results show that the method is effective and has better consistency with the reference values.

2. Materials and Methods

2.1. Data Preparation

2.1.1. Acquisition and Processing of TLS Data

This study used FARO FOCUS150 terrestrial laser scanner (FARO Technologies, Inc., www.faro.com)
to collect point clouds from Chinese scholartrees (Sophora japonica) in spring 2018. The scanner had a
horizontal field of view of 360◦, a vertical field of view of 300◦ and a minimum horizontal and vertical
step size of 0.009◦. The maximum data acquisition rate of the laser scanner was 976,000 points/s,
and the acquisition rate used in this study was 244,000 points/s. The scanner’s full hemispherical
scan contained approximately 40,000 laser pulses. It used a 1500 nm continuous wave to measure
distances up to 153 m. The laser scanning level of the scanner was one level. The distance error of the
system in 25 m range was less than 1 mm, which was helpful to obtain high-precision forest sample
plot data. FARO Scene (FARO Technologies, Inc., version 7.1.0) was the software that comes with the
laser scanner for post-processing of original point clouds. FARO Scene software was used to assess the
quality of point clouds data and to filter out “ghost points” and discrete points. The function of “Clear
Sky” and “Clear Contour” was used to obtain more reliable 3D spatial data.

Studies have shown that multiple scans (MS) can extract tree stem more accurately than a single
scan [9,38,39]. To minimize the influence of trees occlusion or ground vegetation, we used multi-scan
method to obtain a circular plot with a radius of 20 m with better point clouds coverage. Five scan
locations were established within a radius of 20 m in the center of the circular plot [38,40]. One scan
location was in the center and the other four scan locations were around (Figure 1). The trees were
continuously scanned in a clockwise order, and the circular plot point cloud with a radius of 20 m
was finally obtained. Twelve artificial target high reflection spheres were distributed throughout the
field. Moreover, at least three spheres must have been visible for every two consecutive scan locations.
FARO Scene software was used to achieve the registration of point clouds in different scan locations,
with the registration accuracy within 1 cm. In this study, data collection was carried out under the
condition of no wind, which was helpful to avoid the inconsistency of spatial location of the same
branches in different scanning locations. To eliminate the influence of different resolutions on the
modeling results, all tree scanning data were collected at the same scanning resolution.

The accuracy of single-tree segmentation can directly affect the accuracy of our model and thus
affect the estimation accuracy of tree attributes. First, LiDAR360 software (Beijing Digital Green
Earth Technology Co., Ltd., www.LiDAR360.com) was used in this study to extract single-tree point
clouds. This software used an improved progressive triangulation densification algorithm to classify
ground points and generates the DEM through the irregular triangulation interpolation algorithm.
The normalization operations of the plot cloud data were completed [41–44]. Then, the 3D coordinate
data of 180 Chinese scholartrees were obtained by single-tree segmentation based on seed points.
The top of the tree or near the top of the tree was selected as the seed point. Finally, the point clouds of a
single tree after segmentation was checked one-by-one, and the trees with incorrect classification were
manually re-segmented in this study. Trees with incomplete stem or canopy point clouds were not
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involved in modeling. Point clouds that diverge significantly from the tree were manually removed.
Finally, 153 Chinese scholartrees were modeled.

 

  
(a) (b) 

b

Figure 1. Geometry of the reference plot and the point clouds of Chinese scholartree derived by
terrestrial laser scanning (TLS). (a) Circular reference plots for multi-scan mode TLS field work and the
reference targets spheres were illustrated using stars; (b) semi-automatic segmentation of TLS point
clouds at the classification points of ground (dark blue) and vegetation (RGB color according to height).

2.1.2. Field Data

The DBH and tree height of Chinese scholartree were obtained by the traditional forest survey
method. In this study, the total station (KTS-44R4LCN total station, South Surveying & Mapping
Technology CO., LTD) was used to measure the tree height accurately based on the triangulation
principle. The DBH of each tree (1.3 m perpendicular to the ground from the bottom of the tree) was
measured manually using a DBH tape with millimeter accuracy. The DBH and height measured in the
field were the reference values of TLS data. The reference value of DBH ranged from 5.6 cm to 23.6 cm.
The reference value of tree height ranged from 4.91 m to 21.86 m. The average value and standard
deviation of DBH were 13.4 cm and 4.1 cm, and the average value and standard deviation of tree height
were 13.44 m and 3.25 m. Figure 2 shows the histogram of DBH and tree height distribution. To match
the field measurement data with the point clouds, we placed 5 target poles in the plot. Every two poles
were visible to each other, the scanner scans five poles. After the relative coordinates of all trees and
poles were extracted from the point clouds, the total station was used to set up the observation station
and obtain the coordinate positions of all trees. The coordinates of the observation station come from
the point clouds of the poles.

 

  
(a) (b) 

bFigure 2. Histogram of diameter at breast height (DBH) and tree height distribution. (a) DBH;
(b) tree height.
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2.2. Three-Dimensional Tree Model Reconstruction Based on AdTree

The geometry and topology of the reconstructed model reflect the actual shape of the tree.
The higher the fidelity of the model, the more accurate the tree attributes derived from the model.
Three-dimensional model reconstruction was the geometric basis for establishing a quantitative
structure model of trees. To generate tree stem and branches with high-precision geometry and
topological structure, this study used the AdTree method proposed by Shenglan Du et al. in 2019 [31].
In the reconstruction process, Adtree considers the geometric accuracy and topological fidelity of
trees. On one hand, main-branch point centralization was used to assist the tree skeleton construction
process, which helps to generate high-quality branch structures. On the other hand, a method based
on optimization was used to reconstruct the geometric structure of tree branch accurately. The AdTree
method was robust to trees of different species and sizes [31]. As long as the input point clouds had a
clear branch structure, high-quality tree models can be generated.

The reconstructed stems and branches of Adtree were more realistic than other open-source tree cylinder
fitting methods and the distance between input point and output model was less than 10 cm [17,27,28,31].
It can show powerful natural patterns in computational forestry. Therefore, the AdTree method
provides a geometric basis for the automatic, detailed and accurate reconstruction of the 3D model of
trees. In this study, the Adtree method was used to reconstruct the geometric and topological structure
of trees. Figures 3–5 show the complete process of tree 3D model reconstruction based on the TLS data.

 

  
(a) (b) 

Figure 3. Input for the original point clouds and obtain the Delaunay triangulation. (a) Point clouds
after single-tree segmentation colored by height; (b) edges of the Delaunay triangulation of a tree’s
input point clouds.

The Minimum Spanning Tree (MST) was extracted between the edges of the Delaunay triangulation
of the point [31,45]. The Delaunay triangulation had laid a foundation for MST calculation. It helps
complete missing areas or incomplete branches, and ensures robustness for input point clouds with
poor data quality. After the triangulation graph was obtained, all the edges were weighted by the length
of the edges defined in Euclidean space. The Dijkstra shortest path algorithm was used to calculate
MST from triangulation [46–49]. The quality of the skeleton can be improved by pre-determining and
concentrating the main-branch points. Assign weight values to vertices and edges and remove small
noise components based on this value [50]. Finally, the lightweight tree skeleton was reconstructed by
iteratively checking the proximity between adjacent vertices and merging adjacent vertices.
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(a) (b) (c) 

Figure 4. Skeleton initialization and simplification. (a) Initial skeleton; (b) simplified the initial skeleton;
(c) final skeleton.

 

 

Figure 5. Tree stem and branches were fitted to the constructed tree skeleton.

On the basis of the final tree skeleton, the geometric model of the tree was obtained by a
cylinder-fitting approach. The exact branch geometry was obtained based on the optimization
method [28,51,52]. Levenberg Marquardt algorithm was used to solve the nonlinear least-squares
problem [53]. A kd-tree data structure was used for fast spatial neighbor searching. First, the adjacent
points within the stem were segmented and identified. Then, according to the corresponding stem
points, a cylinder was fitted to approximate the branch geometry. The radius of the stem was obtained
by using the nonlinear least square method, and the radius of the subsequent branches was obtained
from the stem geometry. On the right side of Figure 5 shows the reconstructed 3D tree model.
Every cylinder that makes up tree stem or all branches can be thought of as being fitted by a closed
convex hull polyhedron. The top and bottom surfaces of the polyhedron were convex polygons.

2.3. Model Refinement and Tree Attributes Derivation

To date, the AdTree method can only restore the stem or branch geometry and cannot measure
the size of the tree components such as tree stem or branches. The model established by AdTree
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cannot carry out a quantitative analysis of trees; it was not a quantitative structural model in theory.
AdTree originally represents trees as a set of generalized cylinders. First, trees were represented as a
complete and closed polyhedron in this study. When rebuilding the geometry and topology of the
tree, the ends of the stem and all branches were closed. Then a convex hull polyhedron algorithm
was designed to extract the tree volume, DBH and tree height from the tree reconstruction model.
Finally, a software tool was developed that can automatically reconstruct the tree model and extract
the tree attributes.

2.3.1. Convex Hull Polyhedron Algorithm for Extracting DBH and Tree Height

The convex hull polyhedron was used to approximate the stem or branches. To further improve
the usability of the model in this study and verify the model accuracy, an algorithm for extracting
DBH and tree height based on the tree reconstruction model was designed. Arranged in order of
large-to-small to obtain the coordinates of the tree model in the Z axis. By subtracting the minimum
value of Z from the maximum value of Z, the tree height can be calculated. To obtain a more accurate
tree height, calculate the average of the 5 largest coordinates in the Z-axis minus the corresponding
5 smallest coordinates. When calculating the DBH, find a cylinder that conforms to the polyhedron
with a top surface Z value greater than 1.3 m and a bottom surface Z value less than 1.3 m. As shown
in Figure 6, the polyhedron approximates a cross-sectional ring at 1.3 m and all coordinate points
constituting the cross-section ring were obtained. The distance between two adjacent coordinate points
was calculated in a clockwise direction and all the distance values were added to get the circumference
of the whole ring. Calculate the DBH according to the circumference formula. If there were two
cylinders at 1.3 m, the average value was calculated.

 

 

= ∑ ∑ ( − ) ( − ) ( − ) , (0 3)
= ∑ − , (0 6)

( , , z) Z Z ,

Figure 6. Black dashed line represents the DBH and the orange circle represents the horizontal
cross-section ring composed of multiple points at 1.3 m. Red line was the X axis, the green line was the
Y axis and the dark blue was the Z axis and the black dots were the vertices of the polygon. Pink line
represents the edge of the outermost triangulation network of the polyhedron and the light blue line
was the edge of the inner triangulation network of the polyhedron. The color usage of other pictures in
this section follows this principle.

Here, the following formulae 1 and 2 were defined, respectively to calculate DBH and tree height:

DBHtree =

∑n
i=1

∑k
i=1

2
√

(xi−xi−1)
2+(yi−yi−1)

2+(zi−zi−1)
2

π

n
, (0 < n < 3) (1)

Htree =

∑m
i=1 Zmax −Zmin

m
, (0 < m < 6) (2)
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DBHtree was DBH, k represents the number of points of the fitted ring at 1.3 m from the stem
to the ground, (x, y, z) was the coordinate of the point on the ring, n was for the number of rings.
Htree represents tree height, Zmax and Zmin, respectively represent the maximum and minimum values
of the coordinates of the tree model in the Z axis. After the Z values of the tree model coordinates were
arranged in the order of maximum or minimum, the number of obtained coordinates was m.

2.3.2. Convex Hull Polyhedron Algorithm for Extracting Tree Volume

Tree volume estimation based on tree reconstruction model was the most concerning problem in the
QSM method. The 3D tree model reconstructed in this study can be regarded as a complete and closed
convex polyhedra, and the polyhedron volume calculation needs to include the reconstructed stem
and all higher-order branches. In this study, the volume calculation method of a convex polyhedron
based on the 3D model was designed. The tree volume algorithm follows the following process.

(1) Construction of triangulation network based on the tree reconstruction model. The polyhedron
was used to approximate tree stem or branch. The top and bottom surfaces of the polyhedron were
convex polygons. The vertices of convex polygons were connected to each other. The number of
vertices in this experiment was 10 (See Figure 7). The more vertices there were, the closer the convex
polygon was to the circle. Therefore, each stem or branch can be regarded as a series of strictly convex
polyhedrons and the outside (top, bottom and sides) and inside of each polyhedron were composed of
a series of triangles.

 

 

α

α
α α

Figure 7. Merge or retain the triangles that make up the polyhedron. (a) The orange triangle QJD was
merged; (b) orange triangle ACJ was retained. Black directed line segment represents three vectors
(V, W, Z) and the orange dot U represents the center of the polyhedron.

(2) Removal redundant triangles inside polyhedron. To calculate the volume of a convex
polyhedron, the triangles that make up the polyhedron need to be merged or retained. Figure 7
indicates the merge and retain triangles, respectively. Make three vectors (V, W, Z) to the triangle
composed of the vertices of the polygon. V was the normal vector of the plane where the triangle
was located, W was the vector whose vertex points to the center U of the polyhedron and Z was the
vector whose vertex points to any other vertex. Using the coordinate product formula of the vector,
the cosine value of the angle between the normal vector V and the vector (W, Z) can be calculated,
respectively, and calculate the product of two cosines to obtain α. Sequentially traverse the vector
Z’ between this vertex and the other vertices of the polyhedron (excluding the other vertices of the
triangle). If the number of polyhedron vertices was k, (k-3) α values will be obtained. If less than 0
occurs in all α values, the triangle needs to be merged, as shown in Figure 7a. If all α values were
greater than 0, the triangle needs to be retained, as shown in Figure 7b. In this study, noise was
used to solve the problem that the normal vector V perpendicular to the vector Z. The vertices were
randomly moved to the outside (convex direction) along the direction of the polyhedron center U
pointing to each vertex (the opposite direction of the vector W). As shown in Figure 7b, under ordinary
circumstances, the normal vector V of the triangle ACJ should be in the same direction as the line
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segment AR, then the vector V will be perpendicular to the vector Z. In this study, the position of
vertex A was randomly moved along the opposite direction of the vector W, and V was the normal
vector of the new triangle formed after the vertex A was moved. The noise will make the polyhedron
increase, so when the volume of the polyhedron was calculated, the increment of the volume needs
to be subtracted. Noise can not only merge or retain triangles better, but also solve the problem of
volume repeat calculation caused by multiple triangles.

(3) Used the triangular pyramid as the minimum unit to calculate the volume of the tree
reconstruction model. After step (2), the retained triangle was used as the bottom surface and a
triangular pyramid was formed with the center U of the polyhedron as the vertex (U-RQJ and U-RAJ
in Figure 8b). Using the volume vector formula, the triangular pyramid volume can be calculated and
the convex polyhedron volume can be obtained by adding the volumes of all triangular pyramids.
The trees volume on the ground can be calculated by adding the volume of all convex polyhedrons
that make up the tree reconstruction model. If the coordinates of the vertex U (the center point of
the polyhedron) of the triangular pyramid U-RQJ were (x0, y0, z0), the coordinates of R, Q and J were
(x1, y1, z1), (x2, y2, z2) and (x3, y3, z3). Therefore, the coordinates of three vectors a, b and c passing
through the vertex U can be obtained.

 

( , , )( , , ) ( , , z ) ( , , )

 

= (|( × ) • |6 )   

Figure 8. Volume of the polyhedron was calculated with a triangular pyramid as the minimum unit.
(a) final polyhedron; (b) minimum unit in the volume calculation process was a triangular pyramid.
The black line represents the edges of the triangular pyramid.

Here, the volume calculation Formula (3) of the tree reconstruction model defined by the mixed
product algorithm based on vector:

Volumetree =
m
∑

i=1

n
∑

j=1

(

∣

∣

∣(a× b) · c
∣

∣

∣

6
) (3)

Volumetree represents the total volume including the tree stem and branches, m represents the
number of all the convex polyhedron that make up the tree model and n represents the number of all
the triangular pyramids that make up the convex polyhedron. a, b and c represent the three vectors
that pass through the vertices of the triangular pyramid.

2.4. Implementation

The software in this study (Figure 9) was written in C++ in Visual Studio 2015 and the software
relies on some third-party libraries. The AdTree library provides the functions of tree skeleton
generation and cylinder fitting branches [54]. The Minpack library provides functions for solving
nonlinear equations and nonlinear least-squares problems [55].
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Bias = 1 ( − )
RMSE = ∑( − )
rBias% = Bias


× 100% 

rRMSE% =
y × 100% 

Figure 9. User interface for tree attributes.

After the reconstruction of the tree 3D model, the software can calculate the tree attributes such
as the wood (including stem and branches) volume, DBH, tree height, the height of the living crown
and the crown volume, etc. Therefore, the user can further calculate the wood mass or AGB based on
the wood density. Software such as 360LiDAR and CloudCompare can also extract the DBH and tree
height from LiDAR point clouds. However, these programs do not had the QSM function to reconstruct
the tree model or to estimate the volume of the stem or branches. Therefore, it was important to
reconstruct the tree 3D model based on the QSM principle and estimate the tree volume directly.

2.5. Model Accuracy Evaluation

In this study, the accuracy of tree volume, DBH and tree height extracted from the tree
reconstruction model were verified, respectively. The tree volume extracted based on TreeQSM
was used as the reference value to extract the volume of this model. TreeQSM has proven to be a
modeling method with better volume accuracy [3,56,57], which can model the TLS point clouds of a
single tree and calculate the volume of branches and stem. Therefore, the tree volume estimated based
on TreeQSM is also meaningful as the reference value of our model. The DBH was measured by DBH
tape and used as the reference value of DBH extracted based on this model. The tree height measured
by the total station was used as the reference value of the tree height extracted by this model. The bias,
RMSE, rBias and rRMSE were used to verify the accuracy of tree volume, DBH and tree height.

Bias =
1
n

n
∑

i=1

(yi − yri) (4)

RMSE =

√

∑

(yi − yri)
2

n
(5)

rBias% =
Bias
yr

× 100% (6)

rRMSE% =
RMSE

yr

× 100% (7)

3. Results

3.1. Volume Measurement

The reference value of volume ranged from 0.01612 m3 to 0.82730 m3, and the extraction value of
volume ranged from 0.01045 m3 to 0.88468 m3. The average value and standard deviation calculated
by TreeQSM were 0.21922 m3 and 0.15875 m3, and the average value and standard deviation calculated
by our model were 0.20686 m3 and 0.15822 m3. Figure 10 shows that the linear fitting R2 of the volume
dataset was 0.96, and its slope was 0.975. The volume extraction values were evenly distributed on
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both sides of the reference value. The volume estimation did not change significantly with the increase
of volume, and the overall fitting effect was better.

 

Figure 10. Comparison of tree volume extraction value and reference value.

Figure 11 shows that most of the volume residuals were more evenly distributed on both sides of
the y = 0 line, and most residuals ranged from −0.05 m3 to 0.05 m3. The residuals had no significant
difference with the increase of the volume.

 

−

 

−

− −

Figure 11. Distribution of the volume residuals. (a) Scatter distribution of tree volume residuals;
(b) Histogram of tree volume residuals distribution.

The volume estimation accuracy of TreeQSM was measured by destructive experiments and was
demonstrated in several studies. Comparing the volume extraction value based on this model with
the volume reference value based on TreeQSM, bias and RMSE were −0.01236 m3 and 0.03498 m3,
respectively (See Table 1). Among the 153 trees with volume reference value ranging from 0.01612 m3

to 0.82730 m3, 82.4% of the trees had an absolute value of volume bias less than 0.05 m3.

Table 1. Accuracy comparison of tree volume extracted by this model and TreeQSM.

Category Bias rBias(%) RMSE rRMSE(%)

Volume (m3) −0.01236 −5.97 0.03498 16.91
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3.2. DBH and Tree Height Measurement

The field measurement data were used as the reference value of the model to extract DBH and tree
height. The extraction value of DBH ranged from 5.7 cm to 24.2 cm. The extraction value of tree height
ranged from 3.15 m to 21.51 m. Figure 12a shows that R2 fitted linearly with the DBH dataset was
0.92 and its slope was 0.985. The estimation of DBH did not change significantly with the increase of
DBH, and the extraction value of DBH was consistent with the reference value and distributed evenly
on both sides of the 1:1 line. Figure 12b shows that R2 fitted linearly with the tree height dataset was
0.93 and its slope was 1.032. The estimation of tree height by the model in this study does not change
significantly with the increase of tree height, and the extracted value of tree height was consistent with
the reference value, which was evenly distributed on both sides of the 1:1 line.

 

  
(a) (b) 

−

−

 

Figure 12. Comparison of the extracted DBH and height values with their reference values. (a) DBH;
(b) tree height.

Figure 13 shows the distribution of the DBH residuals. Most of the DBH residuals were between
−2.0 cm and 2.0 cm. The residual value distribution range had no significant difference with the
increase of the DBH and was evenly distributed on both sides of the y = 0 line. Figure 14 shows
that most tree height residuals were evenly distributed on both sides of the y = 0 line, and most of
the residuals were between −1.5 m and 1.5 m. The tree height extracted by this model was slightly
underestimated compared with the tree height measured in the field. The residual value distribution
range had no significant difference with the increase of tree height.

 

−

−

  

Figure 13. Distribution of the DBH residuals. (a) Scatter distribution of DBH residuals; (b) Histogram
of DBH residuals distribution.



Remote Sens. 2020, 12, 1779 13 of 20

 

  

−

− −

Figure 14. Distribution of the tree height residuals. (a) Scatter distribution of tree height residuals;
(b) Histogram of tree height residuals distribution.

As shown in Table 2, the accuracy of DBH and tree height extracted based on this model. Bias and
RMSE of the DBH calculated by the least square method were 0.38 cm and 1.28 cm, respectively.
Among the 153 trees with DBH reference value ranging from 5.6 cm to 23.6 cm, 89.5% of the trees had
an absolute value of DBH bias less than 2 cm. The bias and RMSE of the tree height were −0.76 m
and 1.21 m, respectively. Among the 153 trees with tree height reference value ranging from 4.91 m to
21.86 m, trees with an absolute value of tree height bias within 1.5 m accounted for 73.9% of the total.

To ensure the accuracy of DBH and tree height estimation by this model, it was necessary to obtain
a complete tree point clouds as much as possible. The DBH and tree height extracted from this model
had similar performance in 153 Chinese scholartrees, and the quality of the input point clouds can
directly affect the estimation accuracy of DBH and tree height.

Table 2. Accuracy comparison of DBH and tree height obtained by using this model and
field measurement.

Category Bias rBias(%) RMSE rRMSE(%)

DBH(cm) 0.38 2.75 1.28 9.28
Height(m) −0.76 −5.95 1.21 9.52

3.3. Comparison of Reconstruction Results of Branches

The branch attributes reflect the recovery ability of the model. Branch attributes (including the
length and number of branches) need to be calculated and quantified, because tree parameters
were most relevant to our current work. The number and length of branches can directly affect the
measurement accuracy of volume. We used quantitative methods to calculate the branch attributes.

3.3.1. Visual Comparison

The AdTree method developed by Shenglan Du et al. provides a better geometric structure for
the reconstruction of the tree model [31]. The geometric accuracy of the model was quantified by
calculating the average distance between the input point and the generated model. The average
distance of Adtree’s report was less than 10 cm, and the standard deviation was less than 8. Using the
same point clouds of Chinese scholartree, the geometry of tree branch reconstruction based on this
model was compared with that of TreeQSM.

It can be seen from Figures 15 and 16 that although both TreeQSM and this model can restore the
geometric structure of branches, the tree model reconstructed in this study had more realistic branch
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structure than the tree model reconstructed in TreeQSM and was more suitable for input point clouds.
TreeQSM cannot ensure the consistent restoration of the branches.

 

 

Figure 15. Comparison of reconstruction results of a Chinese scholartree crown. (a) Input point cloud
of a tree; (b) our model; (c) reconstruction of tree crown based on TreeQSM.

 

 
Figure 16. Comparison of our branch model and TreeQSM. (a) Our model; (b) tree branch reconstruction
based on TreeQSM.

3.3.2. Comparison of Branch Attributes

The length and number of reconstructed branches of each tree based on this model and TreeQSM
were calculated, respectively, as shown in Figure 17. Among the 153 trees, the branches average length
calculated by our model was 863.57 m, while the branches average length calculated by TreeQSM
was 230.24 m. Therefore, the model developed in this study can reconstruct twigs or branches better
than TreeQSM. The average number of branches each tree calculated by this model was 24.6 times
that calculated by TreeQSM. The distribution of branch number was similar to that of branch length.
The greater the number of branches, the greater the length of the branches.
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Figure 17. Number and length distribution of branches of each tree. (a) Length of branches; (b) number
of branches.

4. Discussion

It was very meaningful to build a tree quantitative structure model based on LiDAR point
clouds [20,58]. The tree quantitative structure model provides a non-destructive estimation method
of tree volume that does not depend on the allometric model [17]. Higher-order tree structure and
topology were very important for estimating tree volume, AGB, canopy gap, crown shape and other
more general ecological characteristics [59–61]. In this study, based on the existing research of Adtree
method, it was further modified and expanded. After fitting a series of cylinders to approximate the
geometry of the stem and branches, the ends of the stem and branches were closed. The tree model
was changed from a set of generalized cylinders to a closed polyhedron. To effectively estimate tree
attributes from the tree reconstruction model, this study defined a convex hull polyhedron algorithm
based on the model to extract tree volume (including stem and branches), DBH and tree height. In this
study, the model and algorithm were used for the first time to extract the tree volume, DBH and
tree height and the accuracy was verified. The experimental results show that the volume extraction
value of our model had better consistency with the reference value. The bias, RMSE and R2 of the
tree volume were −0.01236 m3, 0.03498 m3 and 0.96, respectively. The DBH and tree height estimated
based on our model were in better consistency with the reference values based on field measurements.
The bias, RMSE and R2 of DBH were 0.38 cm, 1.28 cm and 0.92 and the bias, RMSE and R2 of tree
height were −0.76 m, 1.21 m and 0.93, respectively. The overall fitting effect of DBH and tree height
was better. Although the volume reference value in this study was not from the destructive experiment
of trees, TreeQSM had the ability to serve as a reference value. The accuracy of TreeQSM was proved
and used by some studies [19,31–33]. The tree volume extraction value of in Section 3.1 was slightly
lower than the reference value, which was probably related to the more real geometric and topological
structure of the reconstructed branches or twigs by this study. Although both TreeQSM and Adtree
methods can restore the geometry of branches, TreeQSM cannot guarantee the consistent restore
of tree branch [28,57]. Among the 153 trees, the branches average length calculated by this model
was 863.57 m, while the branches average length calculated by TreeQSM was 230.24 m. The model
developed in this study can reconstruct twigs or branches better than TreeQSM.

The main contribution of this study was to provide a new tree quantitative structural model and
to develop algorithms to estimate tree volume, DBH and tree height. The original Adtree method
cannot calculate tree attributes or other more general ecological characteristics, so the reconstructed
tree 3D geometric model cannot be called a quantitative structural model. In this study, based on the
existing research of Adtree method [31], it was further modified and expanded, and a quantitative
analysis calculation method was given to the reconstructed tree model. Judging from the existing
research reports, the quantitative structural model of trees based on LiDAR point clouds was still very
few, such as PypeTree, TreeQSM and SimpleTree [17,26,27]. PypeTree only gives a rough description of
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the tree topology and does not intend to restore the branch geometry. TreeQSM cannot guarantee the
consistent restoration of tree branch. SimpleTree’s process of rebuilding trees was very cumbersome
because it requires users to enter key parameters, such as the radius of branches. In this study, the TLS
data can be used for automatic, accurate and detailed modeling. The model in this study had a more
real tree branch structure than TreeQSM, which makes the model as close as possible to the objective
growth form of trees in nature. Our model considers the size and geometry of higher-order branches
and provides a new method with reference values for non-destructive estimation of tree volume,
AGB and carbon storage. The most important was that this study provides a complete modeling and
calculation method for tree quantitative analysis and builds a new tree quantitative structure model
for forestry LiDAR data.

This study still had some limitations. First, cutting down trees and measuring branches
and stem was the most realistic method to verify the accuracy of the model to extract volume,
but due to the limitations of current research conditions, this approach had not been implemented.
TreeQSM, which was widely used and had reference significance, was used as the reference object to
extract tree volume in this model [8,19]. In terms of volume estimation accuracy, the current research
results cannot prove that the model had more obvious advantages than TreeQSM. However, this study
still provides a valuable reference for the quantitative analysis of trees, and the branches reconstructed
by this method had better geometric effects than TreeQSM. Second, the 3D reconstruction of trees based
on LiDAR point clouds was an ill-posed problem, which depends on the quality of the input point
clouds. The quality of the point clouds directly determines the accuracy of the tree volume, DBH and
tree height extracted from the model in this study, so it was necessary to obtain a complete tree point
clouds as much as possible. For the poor scan data with sparse points, this study can reconstruct
the reasonable topology of the branches, but it cannot obtain sufficient geometric accuracy. To date,
this study does not consider the natural growth rules of branches (such as branch split angle) [62].
The knowledge of tree growth will further restrict the topological accuracy of the reconstruction model
and improve the accuracy of tree parameter estimation.

5. Conclusions

In this study, a quantitative structure model that automatically and accurately measures
tree attributes was developed based on TLS data and used for the first time to detect real trees.
After modifying and perfecting the AdTree method, the tree model was reconstructed and the convex
hull polyhedron calculation method was defined for the tree reconstruction model to extract the tree
volume, DBH and tree height. The statistical analysis of the extracted values and reference values
verifies the accuracy of our model in extracting tree attributes. The tree model in this study can
continuously monitor the growth, health, economic value and ecological benefits of trees. Our model
can analyze more tree attributes, including the height of the living crown, crown width, crown volume
and shape or other more general ecological characteristics. Our model can be combined with a
specific wood density to provide a new detection method for non-destructive estimation of AGB or
carbon storage. This study can provide potential possibilities for the development and calibration of
the allometric models, especially for large or precious trees that cannot be harvested and measured.
In addition, combining the synthesized leaves with our model can be directly applied to urban
landscape design and entertainment applications to express the reality of the scene.

Under suitable conditions in the future, this study will conduct the tree destructive experiment to
test more relevant attributes of this model. In addition, we hope to extend the current research results
at the level of a single tree to the level of plot, which can directly restore the 3D model of the forest
plots and provide related parameter calculation methods. Referring to the existing tree automatic
segmentation method, this model will be extended to a wider application of fields.
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