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One of the most fundamental problems in science is to define the complexity of organized matters quantitatively, that is, organized
complexity. Although many definitions have been proposed toward this aim in previous decades (e.g., logical depth, effective
complexity, natural complexity, thermodynamics depth, effective measure complexity, and statistical complexity), there is no agreed-
upon definition. 'e major issue of these definitions is that they captured only a single feature among the three key features of
complexity, descriptive, computational, and distributional features, for example, the effective complexity captured only the descriptive
feature, the logical depth captured only the computational, and the statistical complexity captured only the distributional. In addition,
some definitions were not computable; somewere not rigorously specified; and any of them treated either probabilistic or deterministic
forms of objects, but not both in a unified manner. 'is paper presents a new quantitative definition of organized complexity. In
contrast to the existing definitions, this new definition simultaneously captures all of the three key features of complexity for the first
time. In addition, the proposed definition is computable, is rigorously specified, and can treat both probabilistic and deterministic forms
of objects in a unifiedmanner or seamlessly.'e proposed definition is based on circuits rather than Turing machines and ε-machines.
We give several criteria required for organized complexity definitions and show that the proposed definition satisfies all of them.

1. Introduction

1.1. Background. More than seven decades ago, an American
scientist, Warren Weaver, classified scientific problems into
three classes: problems of simplicity, problems of disorganized
complexity, and problems of organized complexity [1]. For
example, classical dynamics can be used to analyze and predict
the motion of a few ivory balls as they move about on a billiard
table. 'is is a typical problem of simplicity. Imagine then, a
large billiard table with millions of balls rolling over its surface,
collidingwith one another andwith the side rails. Although to be
sure the detailed history of one specific ball cannot be traced,
statistical mechanics can analyze and predict the average mo-
tions. 'is is a typical problem of disorganized complexity.
Problems of organized complexity, however, deal with features
of an organization such as living things, ecosystems, and artificial
things. Here, cells in a living thing are interrelated into an
organic whole in their positions and motions, whereas the balls
in the above illustration of disorganized complexity are dis-
tributed in a helter-skelter manner.

In the tradition of Lord Kelvin, the quantitative defi-
nition of complexity is the most fundamental and important
notion in problems of complexity [2].

“I often say that when you can measure what you are
speaking about, and express it in numbers, you know
something about it; but when you cannot measure it, when
you cannot express it in numbers, your knowledge is of a
meagre and unsatisfactory kind; it may be the beginning of
knowledge, but you have scarcely in your thoughts ad-
vanced to the state of science, whatever the matter may be.”

Lord Kelvin, 1883

'e quantitative definition of disorganized complexity of
physical systems has been established to be entropy, which is
defined in thermodynamics and statistical mechanics. In a
similar manner, the disorganized complexity of information
sources (distributions) can be quantitatively defined by
Shannon entropy [3, 4].
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In contrast, there is no agreed-upon quantitative defi-
nition of organized complexity. 'e difficulty comes from
the notion that organized complexity could be greatly de-
pendent on our senses and the context or that the objects of
organized complexity like living things, ecosystems, and
artificial things may be recognized only by intelligent or-
ganisms such as human beings and they are often heavily
dependent on the context in the environments (e.g., previous
knowledge and understanding), that is to say, it is vastly
different from the measures of disorganized complexity such
as entropy that simply quantifies the randomness of the
objects.

We may therefore wonder whether such sensory, vague,
and context-dependent things can be rigorously defined in a
unified manner covering various living things to artificial
things. Many investigations nonetheless have been pursued
toward this aim in the last decades, for example, logical
depth by Bennett [5], effective complexity by Gel-Man [6–8],
natural complexity by Gentili et al. [9–12], thermodynamic
depth by Lloyd and Pagels [13], effective measure complexity
by Grassberger [14], and statistical complexity by Crutch-
field et al. [15–18], although no existing definition has been
agreed on in the field [2, 19, 20].

In Section 4, we explain our understanding of why no
existing definition is satisfactory to be agreed upon. Roughly
speaking, these definitions have the following problems
(Section 4.3).

(i) 'ey captured only a single feature among the
three key features of complexity; descriptive, com-
putational, and distributional features. 'e effective
complexity (and Kolmogorov complexity [21])
captured only the descriptive feature; the logical
depth captured only the computational; and the
statistical complexity and effective measure com-
plexity captured only the distributional.

(ii) 'ey treated either a probabilistic or deterministic
form of objects, but none of them could treat both
forms of objects in a unified manner or seamlessly.

(iii) Some definitions were not computable.
(iv) Some definitions were not rigorously specified.

We then have the following question:
Is there any quantitative definition of organized com-

plexity with all of the following properties?

(i) It simultaneously captures all of the descriptive,
computational, and distributional features

(ii) It can treat both probabilistic and deterministic
forms of objects in a unified manner or seamlessly

(iii) It is computable
(iv) It is rigorously specified

1.2. Contribution. In this paper, we positively answer this
question.

'e major results of this paper are as follows:

(1) Summary

'is paper presents a new quantitative definition of or-
ganized complexity. In contrast to existing definitions, this
definition simultaneously captures the three key features of
complexity: descriptive, computational, and distributional
features. It is also computable, is rigorously specified, and
can treat both probabilistic and deterministic forms of
objects in a unified manner or seamlessly.

(2) 'e Proposed Definition of Organized Complexity
'e proposed definition is based on circuits [22, 23]
rather than Turing machines [5–8, 21, 22] and
ϵ-machines [15–18]. 'e new definition for an object
(distribution) is given by the shortest size of a sto-
chastic automaton form of circuit, oc-circuit, for
simulating the object (i.e., it is based on Occam’s
razor principle and rigorously specified).
Here, we show the proposed definition roughly (see
Section 5.2 for the precise definition).

(a) 'e oc-circuit (stochastic automaton form of
circuit) is defined as below. LetC be a circuit with
N input bits and L output bits (C: 0, 1{ }N

⟶ 0, 1{ }L), and let C be a specified form of C.
(C, u, n, (m1, . . . , mK)) is oc-circuit C such that

si+1, yi( ⟵C(u, ·)⟵ si, mi, ri( , i � 1, 2, . . . , K,

Y ≔ y1, . . . , yK( n, y1, . . . , yK( n

is the n-bit prefix of y1, . . . , yK( ,

(1)

(see Section 1.3) where si is a state at step i, u is an
a priori input (universe), mi is an input at step i,
ri is random bits at step i, K ≔ ⌈n/L⌉, and L �

|yi| (bit length of yi ) for all i (Definition 1).
(b) Organized complexity OC of an object, distri-

bution X over n bit strings, at precision level δ
(0≤ δ < 1) is defined as follows:

OC(X, δ) ≔ min |C||X ≈δ Y⟵R C , (2)

where C is an oc-circuit, and Xδ ≈ Y⟵R C

means the output (simulation result) Y of oc-
circuitC is close (with precision level δ) to object
X (|C| denotes the bit length of C). 'at is, the
organized complexity of object X is the shortest
size of oc-circuit C that simulates X (with
precision level δ; Definition 2).

(3) Properties of the Proposed Definition (See Section
5.3 for the Precise Descriptions)

(a) For any distribution X over 0, 1{ }n (n ∈ N) and
any precision level δ > 0, (the proposed definition
of organized complexity) OC(X, δ) can be
computed ('eorem 1).

(b) Any ϵ-machine can be simulated by an oc-circuit
(as a special case with no descriptive nor com-
putational feature; 'eorem 2).

(c) We introduce a structured variant of the pro-
posed definition, OCS(X, δ), for object X and
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precision level δ (Definition 3) and show the
following properties:

(i) For any distribution X over 0, 1{ }n (n ∈ N)

and any precision level δ > 0, OCS(X, δ) can
be computed ('eorem 3).

(ii) Let OCS
NAND{ }(X, δ) be defined on NAND-

based circuits, while OCS(X, δ) is defined on
(AND, OR, NOT)-based circuits. 'en, for a
constant O(1) in n,

OC
S
NAND{ }(X, δ) − OC

S
(X, δ)



≤O(1). (3)

('eorem 4)
(4) Comparison

We give five criteria required for organized complexity
definitions in Section 3.3 and summarize the com-
parison of our definition (Section 5) with the existing
definitions (Section 4) in Table 1 in terms of the criteria
and Table 2 in terms of the approach and machinery.
('e comparison is described in Sections 4.3 and 5.1.)

As shown in Table 1, the proposed definition satisfies all
of the criteria for the first time. As shown in Table 2, the
proposed definition is based on Occam’s razor principle and
the oc-circuit machinery. As a result, it is rigorously spec-
ified, is computable, and captures all three key features of
complexity.

1.3. Notations. 'e sets of natural, rational, and real
numbers are denoted by N,Q, andR, respectively. 'e set of
n-bit strings is denoted by 0, 1{ }n (n ∈ N) and
0, 1{ }∗ ≔ ∪ n∈N 0, 1{ }n, and the null string (0 bit string) is
denoted by λ. When x ∈ 0, 1{ }∗, |x| denotes the bit length of
x. When a, b ∈ R, [a, b] denotes set x∣x ∈ R, a≤x≤ b{ } ⊂ R.
When x ∈ R, ⌈x⌉ denotes the smallest integer greater than or
equal to x.

When x is a variable and y is a value, x ≔ y denotes that
x is substituted or defined by y. A probability distribution
over 0, 1{ }n is (a, pa)∣a ∈ 0, 1{ }n, pa ∈ [0, 1], 

a∈ 0,1{ }n

pa � 1}.

When A is a probability distribution, or the source (ma-
chinery) of the distribution, a⟵R

A denotes that element
a ∈ 0, 1{ }n is randomly selected from A according to its
probability distribution. When A is a set, a⟵U A denotes
that a is randomly selected from A with a uniform
distribution.

When X and Y are two distributions, the statistical
distance of X and Y, SD(X, Y), is defined by
1/2 · 

α∈ 0,1{ }∗
|Pr[α⟵R X] − Pr[α⟵R Y]|, and Xδ ≈ Y denotes

that SD(X, Y) is bounded by δ. 'en we say X and Y are
statistically δ-close.

When Y is a distribution, (Y)n denotes the n bit re-
striction (n bit prefix) of Y, that is, (Y)n is a distribution over
0, 1{ }n and Pr[y⟵R (Y)n] � z∈ 0,1{ }∗Pr[(y, z)⟵R Y].

When S is a set, #S denotes the number of elements of S.

2. Objects

'e existing complexity definitions can be categorized into
two classes. One is a class of definitions whose objects are
deterministic strings, and the objects of the other class of
definitions are probability distributions. As for the tradi-
tional complexity definitions, the Kolmogorov complexity is
categorized in the former, and entropy is in the latter.
Among the above-mentioned organized complexity defi-
nitions, logical depth and effective complexity are in the
former, and thermodynamic depth, effective measure
complexity, and statistical depth are in the latter.

Which is more appropriate as the objects of organized
complexity?

'e objects of complexity are everything around us,
stars and galaxies in space, living things, ecosystems, ar-
tificial things, and human societies. 'e existence of ev-
erything can be recognized by us only through
observations. For example, the existence of many things are
observed through devices such as the telescope, micro-
scope, and various observation apparatus and electronic
devices. We can take things around us directly into our
hands and sense them, but they are also recognized by our
brains as electronic nerve signals transmitted from the
sensors of our five senses through the nervous system. 'at
is, all objects of complexity are recognized as the result of
observations by various apparatus and devices, including
the human sensors of our five senses.

Since quantum mechanics governs the microworld,
observed values are determined in a probabilistic manner.
'is is because observed values (data) obtained when ob-
serving microphenomena (quantum states) in quantum
mechanics are randomly selected according to a certain
probability distribution corresponding to a quantum state
(e.g., entangled superposition).

How, then, are observed values in macrophenomena?
For example, if some sort of radio signals are received and
measured, they would almost certainly be accompanied by
noise.'ere are various reasons why noise becomesmixed in
with signals, and one of them is thought to be the proba-
bilistic phenomena of electrons, thermal noise. Similarly,
various types of noise will be present in the data obtained
when observing distant astronomical bodies. 'is can be
caused by the path taken by the light (such as through the
atmosphere) and factors associated with the observation
equipment.

Even in the case of deterministic physical phenomena,
chaos theory states that fluctuations in initial conditions can
lead to diverse types of phenomena that behave similarly to
those of random systems. In short, even a deterministic
system can appear to be a quasi-probabilistic system.
However, even a system of this type can become a true
(nonquasi) probabilistic system if initial conditions fluctuate
due to some noise, for example, thermal noise.'ere are also
many cases in which a quasi-probabilistic system associated
with chaos cannot be distinguished from a true probabilistic
system depending on the precision of the observation
equipment. Here, even quasi-probabilistic systems may be
treated as true probabilistic systems.
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'us, when attempting to give a quantitative definition
of the complexity of observed data, the source of those
observed data would be a probability distribution, and the
observed data themselves would be randomly selected values
according to that distribution. If we now consider the
complexity of a phenomenon observed using certain ob-
servation equipment, the object of this complexity should
not be the observed data selected by chance from the source
but rather the probability distribution itself corresponding
to the source of the observed data.

It is known that some parts of genome patterns appear
randomly distributed over a collection of many samples (over
generations). Here, we can suppose a source (probability
distribution) of genome patterns from which each genome
pattern is randomly selected. Also, in this case, the object of
complexity should not be each genome pattern but rather the
source (probability distribution) of the genome patterns.

'erefore, hereafter, we consider that an object of com-
plexity is a probability distribution in this paper. Here, note that
we treat a deterministic string as an object since a deterministic
string is a special case of a probability distribution (where only a
value occurs with probability 1 and the others with 0).

How can we identify a source or a probability distri-
bution from observed data? It has been studied as the model
selection theory in statistics and information theory, for
example, AIC (Akaike’s information criterion) by Akaike
[24] and MDL (minimum description length) by Rissanen
[3, 25, 26]. Here, given a collection of data, find the most
likely and succinct model (source, i.e., probability distri-
bution) of the data.

In this paper, however, it is outside the scope, that is, we
do not care how to find such a source from a collection of
observed data (through the model selection theory). We here
suppose that a source (probability distribution) is given as an
object of organized complexity and focus on how to define
the complexity of such a given source quantitatively.

'ere are roughly two types of observed data: one type is
data observed at a point in time, and the other is time-series
data. Genome pattern data are examples of the former, and
data obtained from an observation apparatus for a certain
period are examples of the latter. In any case, without loss of
generality, we here assume that observed data x is bounded
and expressed in binary form, that is, x ∈ 0, 1{ }n for some
n ∈ N, since any physically observed data have only finite
precision (with rounding error). 'en the source of the
observed data, X, which is an object of organized complexity
in this paper, is a probability distribution over 0, 1{ }n for
some n ∈ N such that X ≔ (x, px)∣x ∈

0, 1{ }n, 0≤px ≤ 1, x∈ 0,1{ }n px � 1}.

3. Criteria

In this section, we will show the criteria required for the
quantitative definitions of organized complexity.

3.1. Examples. To begin with, let us consider the following
example. We give a chimpanzee a computer keyboard and
prompt the chimpanzee to freely hit the keys, resulting in a
string of characters. Let us assume an output of 1,000 al-
phabetical characters. At the same time, we select a string of

Table 1: Comparison of the proposed definition with the existing ones regarding criteria.

Definitions of complexity Objects
(Prob./Det.)

Simply
regular

Simply
random

Key features of highly organized objects
Computability

Descriptional Computational Distributional
Kolmogorov complexity × ✓ × ✓ × × ×

Effective complexity × ✓ ✓ ✓ × × ×

Logical depth × ✓ ✓ × ✓ × ×

Effective measure
complexity × ✓ ✓ × × ✓ ✓

Statistical complexity × ✓ ✓ × × ✓ ✓
Proposed definition ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Approach and machinery of the proposed definition and the existing ones.

Definitions Approach Rigorously
specified Machinery Computa-

bility Key features

Kolmogorov complexity Occam’s razor ✓ Turing machine × Descriptive
Effective complexity Occam’s razor ✓ Turing machine × Descriptive
Logical depth Occam’s razor ✓ Turing machine × Computational

Statistical complexity Occam’s razor ✓ Stochastic finite-state automaton
(hidden Markov; ϵ-machine) ✓ Distributional

Effective measure
complexity

Information
theoretical ✓ None ✓ Distributional

Natural complexity Framework × None — —
'ermodynamics depth Framework × None — —

Proposed definition Occam’s razor ✓ Stochastic automaton form of circuit
(oc-circuit) ✓ All (of the three)

—: Not easy to characterize.
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1,000 characters from one of Shakespeare’s plays. Naturally,
the character string input by the chimpanzee is gibberish
possessing nomeaning, which undoubtedly makes it easy for
us to distinguish that string from a portion of a Shake-
spearean play.

However, is there a way to construct a mathematical
formulation of the difference between these two strings that
we can easily tell apart?Why is it so easy for us to distinguish
these two strings? 'e answer is likely that the chimpanzee’s
string is simply random (or disorganized) and meaningless
to us, while Shakespeare’s string is highly organized and
meaningful. In short, if we can mathematically define the
amount of organized complexity (or meaningful informa-
tion), we should distinguish between these two strings.

What then are the sources of the observed data, the
chimpanzee’s string and Shakespeare’s string. Let us
return to the source of the chimpanzee’s string creation
without thinking of it as simply a deterministic string.
Here, for simplicity, we suppose that the scattered hitting
of keys by the chimpanzee is the same as a random se-
lection of hit keys. At this time, the source of the
chimpanzee’s string is the probability distribution in
which any particular 1,000-character string can be ran-
domly selected from all possible 1,000-character strings
with equal probability.

What, then, would be the source of Shakespeare’s string?
We can surmise that when Shakespeare wrote down this
particular 1,000-character string, a variety of expressions
within his head would have been candidates for use and that
the 1,000-character string used in the play would have finally
been selected from those candidates with a certain probability.
'e candidates selected must certainly be connected by
complex semantic relationships possessed by English words.
Such complex semantic relationships of human language have
been extensively studied by the modeling with complex
networks [27]. Accordingly, the source of Shakespeare’s string
must be the complex probability distribution of candidate
expressions connected by complex semantic relationships.

Here, note that the source of Shakespeare’s string (dis-
tribution of candidate expressions within his head) is an
imaginary example of distribution. As we will observe below,
we may easily perceive the features of the organized com-
plexity in such an example. As mentioned in Section 2, this
paper supposes a source is given and focuses on defining the
complexity of the given source. Hence, it is outside the scope
of this paper how to find the source (distribution) of
Shakespeare’s strings (for practical applications of our
complexity definition, however, wemay need to consider how
to identify a source. See Section 6.3.)

We now consider three imaginary examples, Cases 1,
2, and 3. In Case 1, candidate expression 1 has the
probability of 0.017, candidate expression 2 has the
probability of 0.105, . . ., candidate expression 327 has the
probability of 0.053. 'e other expressions have the
probability of 0, that is, hundreds of candidate expressions
occurred in his head consciously or unconsciously. Fi-
nally, one of them was randomly chosen according to the
distribution. As more simplified cases, Case 2 is where

candidate expression 1 has the probability of 2/7, can-
didate expression 2 has the probability of 5/7, and the
others have the probability of 0, that is, only two candidate
expressions occurred in his head. Finally, one of them was
randomly chosen. Case 3 is where only a single expression
has the probability of 1 and the others have the probability
of 0, that is, a deterministic string case; he selected the
expression without hesitation. 'ese expressions and
distributions should be highly organized and structured
with complex semantic relationships.

3.2. 5ree Key Features. We can find three key features,
descriptive, computational, and distributional features, in
the examples of Shakespeare’s string above.

Case 1 may have a highly complicated distribution with
complex semantic relationships.'e distributional feature of
complexity captures such distributional complexity. In
contrast, Case 3 has no such feature since it is deterministic.
(Note that the distributional feature of complexity for dis-
tribution can be represented by the statistical complexity,
Section 4.2.3, with an ϵ-machine.)

Instead, Case 3 (and Cases 1 and 2) may have two other
features, descriptive and computational ones.'e descriptive
feature of complexity captures how much description (in-
formation or knowledge) is needed to produce an expres-
sion. For example, Shakespeare should need a tremendous
amount of knowledge about culture, history, and language to
write his plays. Its complexity (amount of knowledge) can be
characterized as the descriptive feature. 'e complexity of
the plays’ semantic information (story, etc.) can also be
characterized as the descriptive feature. (Note that the de-
scriptive feature of complexity for a deterministic string can
be represented by the Kolmogorov complexity, Section 4.1.1,
with a Turing machine.)

'e computational feature of the complexity of an ex-
pression captures howmuch amount of computation (work)
is needed to produce the expression. Suppose that Shake-
speare came up with an idea of what he wanted to express.
He then tried to find a proper literary expression or rhetoric.
It might be easy (less thinking) for him in some cases and
might require much work (hard thinking) in other cases. As
mentioned above, we can analyze complex semantic rela-
tionships of human language with complex network models
[27]. To find a proper expression with complex semantic
relationships can be modeled as solving a mathematical
problem in complex networks for human language. We can
consider such computational complexity (to find a proper
expression or to solve a mathematical problem in complex
networks) as the computational feature. (Note that the
computational feature of complexity for a deterministic
string can be represented by the logical depth, Section 4.1.2,
with a Turing machine.)

In general, the organized complexity of an object (e.g.,
Case 1) can have all three key features, descriptive, com-
putational, and distributional features. 'erefore, a desirable
quantitative definition of organized complexity should
capture these three features simultaneously.
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3.3. Criteria for the Quantitative Definition of Organized
Complexity. Considering the observation mentioned above,
we provide the following criteria for specifying the quan-
titative definition of organized complexity.

(1) Object (Prob. and Det.)
'e objects of the complexity definition should be
probability distributions. In addition, the complexity
definition should treat any deterministic strings (as a
special case of distributions) and any general dis-
tributions in a unified manner or seamlessly. For
example, it should treat Cases 1 and 2 (probabilistic
distributions) and Case 3 (deterministic strings) of
Section 3.1 in a unified manner or seamlessly.

(2) Simply Regular
Simply regular objects, “problems of simplicity” by
Weaver [1], should have low-organized complexity.

(3) Simply Random
Simply random objects, “problems of disorganized
complexity” by Weaver [1], for example, the source
of the chimpanzee’s string, should have low-orga-
nized complexity.

(4) Key Features of Organized Complexity
Highly organized objects, “problems of organized
complexity” by Weaver [1], for example, the source
of Shakespeare’s string (Cases 1, 2, and 3), should
have high-organized complexity. In addition, the
organized complexity definition should simulta-
neously capture all of the three key features (de-
scriptive, computational, and distributional) of
complexity.

(5) Computability
Given an object, the organized complexity of the
object should be computable (or recursive in the
computation theory).

4. Existing Quantitative
Definitions of Complexity

We now survey the typical quantitative definitions of or-
ganized complexity in the literature using the criteria above.
Here, we can categorize them into two classes. One is a class
of definitions whose objects are deterministic strings, and the
objects of the other class of definitions are probability
distributions.

4.1. Objects Are Deterministic Strings

4.1.1. Kolmogorov Complexity. 'e notion of the Kolmo-
gorov complexity was independently proposed by Solo-
monoff, Kolmogorov, and Chaitin [3, 21, 28–30].

Roughly, the Kolmogorov complexity of string x is the
size of the shortest program (on a Turing machine) to
produce string x, that is, it is based on Occam’s razor
principle (see (iv) in Section 4.3) and rigorously (uniquely)
specified. 'is definition captures the descriptive feature of
the complexity of deterministic strings.

More precisely, let U be a reference universal prefix
Turing machine (see [21] for the reference universal prefix
machine). 'en, the Kolmogorov complexity, K(x), of
string x ∈ 0, 1{ }∗ is defined by

K(x) � min |z| ∣ U(z) � x, z ∈ 0, 1{ }
∗

 . (4)

Note that the Kolmogorov complexity is a quantitative
definition for disorganized complexity or the degree of
randomness for deterministic strings (the counter notion of
entropy for distributions).

'e criteria in Section 3.3 show that the Kolmogorov
complexity has the following properties (summarized in
Tables 1 and 2).

(1) Object (Prob. & Det.): 'e objects are only deter-
ministic strings (bad).

(2) Simply Regular: Simple (or very regular) objects have
low Kolmogorov complexity (good).

(3) Simply Random: Simply random objects, deter-
ministic n bit strings, that are uniformly and ran-
domly chosen from 0, 1{ }n have high Kolmogorov
complexity (bad).

(4) Key Features of Organized Objects: For highly
organized objects that focus on the computational
feature (e.g., highly organized objects generated
from small strings through long running-time
computations), their Kolmogorov complexities are
low (bad). In other words, the Kolmogorov
complexity cannot capture the computational
feature of organized complexity, while it captures
the descriptive feature. In addition, the Kolmo-
gorov complexity cannot capture the distribu-
tional feature because its objects are only
deterministic strings.

(5) Computability: 'e Kolmogorov complexity of an
object (string) is not computable (bad).

4.1.2. Logical Depth. Bennett [5] introduced logical depth
with the intuition that complex objects are those whose most
plausible explanations describe long causal processes. To
formalize the intuition, Bennett employs the methodology of
algorithmic information theory, the Kolmogorov com-
plexity. 'e logical depth can be considered as one of the
(computational) resource-bounded variants of the Kolmo-
gorov complexity [21].

'e logical depth of a deterministic string, Bennett’s
definition for measuring organized complexity, is dependent
on the running time of the programs that produce the string
and whose length is relatively close to the minimum in a
sense. 'is definition captures the computational feature of
the complexity of deterministic strings.

More precisely, the logical depth of string x at signifi-
cance level ϵ ≔ 2− b [21] is

min t
mt(x)

m(x)
≥ ϵ

 , (5)

where we define mt(x) and m(x) by
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mt(x) ≔ 
Ut(p)�x

2− l(p)
, m(x) ≔ 

U(p)�x

2− l(p)
, (6)

that is, it is based on Occam’s razor principle (see (iv) in
Section 4.3) and rigorously (uniquely) specified. Here, U is
the reference universal prefix Turing machine (for the
Kolmogorov complexity), and Ut is a specific class of U

whose running time is bounded by t steps. l(p) is the length
of program p.

In terms of the criteria shown in Section 3, the logical
depth has the following properties (summarized in Tables 1
and 2).

(1) Object (Prob. and Det.): 'e objects are only de-
terministic strings (bad).

(2) Simply Regular: Simple (or very regular) objects have
low logical depth (good).

(3) Simply Random: Simply random objects have low
logical depth (good).

(4) Key Features of Organized Objects: For highly or-
ganized objects that focus on the descriptive feature
(e.g., high Kolmogorov complexity objects generated
from (compressed) long strings through very small
running-time computations), their logical depths are
low (bad). Hence, logical depth cannot capture the
descriptive feature of organized complexity, while it
captures the computational feature. In addition, the
logical depth cannot capture the distributional fea-
ture because its objects are only deterministic strings.
Note that other (computational) resource-boun-
ded variants of the Kolmogorov complexity, such
as computational depth [31] and Kt complexity
[21, 32], have the same drawback as the logical
depth because they also focus on the computa-
tional feature and cannot capture the descriptive
feature of complexity.

(5) Computability:'e logical depth of an object (string)
is not computable because it is based on the Kol-
mogorov complexity or Turing machines (bad).

4.1.3. Effective Complexity. Effective complexity [6, 7] was
introduced by Gell-Mann and is based on the Kolmogorov
complexity. To define the complexity of an object, Gell-
Mann considers the shortest description of the distribution
in which the object is embedded as a typical member. Here,
“typical” means that the negative logarithm of its probability
is approximately equal to the entropy of the distribution.'e
effective complexity captures the descriptive feature of
complexity since it is defined by the Kolmogorov complexity
of the distribution induced by an object (deterministic
string).

'e effective complexity of string x is

min K(E)∣ − log PrE(x) ≈ H(E) , (7)

where K(E) is the Kolmogorov complexity of distribution E,
that is, the length of the shortest program to list all members,
r, of E together with their probabilities, PrE(r), and H(E) is

the Shannon entropy of E, that is, it is based on Occam’s
razor principle (see (iv) in Section 4.3) and rigorously
(uniquely) specified.

In terms of the criteria shown in Section 3, the effective
complexity has the following properties (summarized in
Tables 1 and 2).

(1) Object (Prob. and Det.): 'e objects are only de-
terministic strings (bad). Technically, however, we
can consider distribution E to be an object of the
effective complexity in place of x.

(2) Simply Regular: Simple (or very regular) objects have
low effective complexity (good).

(3) Simply Random: Simply random objects have low
effective complexity (good).

(4) Key Features of Organized Objects: For highly
organized objects that focus on the computational
feature (e.g., a distribution, E, induced by object, x,
that is generated from a small string through very
long running-time computation), their effective
complexities are low (bad). Hence, the effective
complexity cannot capture the computational
feature of organized complexity, while it captures
the descriptive feature. In addition, the effective
complexity cannot capture the distributional fea-
ture because its objects are only deterministic
strings.

(5) Computability: 'e effective complexity of an
object (string) is not computable, since it is based on
the Kolmogorov complexity or Turing machines
(bad).

4.1.4. Natural Complexity. 'ere are various definitions and
frameworks of natural complexity in the literature
[9, 11, 12, 33–37]. Here, we focus on the definition in [9]
since it has the most general form of natural complexity
among them.

'e natural complexity (NaC) [9] is a multivariate
function that depends on the following:

(i) 'e multiplicity (Mu) of the network, which is the
number N of nodes. 'e nodes are described by the
temporal functions of the type:
x1(t), x2(t), . . . , xN(t).

(ii) 'e interconnection (Ic) of the network, which is
the number L of links among the nodes. All the
potential edges can be represented by the N × N

adjacency matrix A that describes the system’s
wiring and the interaction strength between the
nodes.

(iii) 'e diversity of the nodes (DiN) when the func-
tions, x1(t), x2(t), . . . , xN(t), are not the same.

(iv) 'e diversity of links (DiL) when the elements of
the matrix A are different.

(v) 'e variability of the nodes (VaN), which depends
on how much the functions x1(t), x2(t), . . . , xN(t)

evolve in time.
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(vi) 'e variability of links (VaL), which depends on how
much the coefficients of the adjacency matrix A (i.e.,
a11(t), a12(t), . . . , aNN(t)) change over time.

(vii) 'e integration (Ig) of the nodes’ and links’ features,
which gives rise to those properties that are called
emergent because they belong to the entire network.
As has been sustained in the previous paragraph, the
emergent properties depend on the network’s ar-
chitecture. 'e network’s topology can be inferred
from parameters such as the degree distribution
(P(d)), the clustering coefficient (C) of the nodes,
and the mean path length (sp) of the network.
Furthermore, the emergent properties depend on the
environment surrounding the system as proved by
the Darwinian evolution of life [38].

In synthesis, natural complexity (NaC) results to be a
seven-variable function of the type:

NaC � f(Mu, Ic,DiN,DiL,VaN,VaL, Ig). (8)

Although the natural complexity (NaC) provides a good
framework for studying the complexity of various systems
expressed with network forms as shown in [9] and Section
6.2, it has the following problems as a quantitative com-
plexity definition.

(1) NaC is a framework of definitions but not a rigorous
definition because there is no concrete description/
specification of f, DiN, DiL, VaN, VaL, and Ig (P(d),
C, sp, etc.) and there is no way to compute a concrete
value of NaC given an object (network expression).
Even if NaC were concretely specified (by specifying
f, DiN, DiL, VaN, VaL, and Ig (P(d), C, sp, etc.)), it
would be ad hoc, and there would be many other
concrete specifications of NaC. 'erefore, it would
be hard to specify NaC uniquely.

Note that this drawback is shared with the ther-
modynamic depth to be introduced below, which is
not rigorously specified due to the arbitrariness of
macroscopic states.

(2) 'e object of NaC is restricted to network expres-
sions but not general. Network expressions have
been used broadly for the characterization and
analysis of complex systems. However, individual
models or more direct analyses for complex systems
rather than network expressions have also been
employed [10, 39–41]. 'erefore, a complexity def-
inition is desirable to give no particular restriction on
the objects. Otherwise, we would need many com-
plexity definitions depending on different classes of
objects, for example, network expressions and other
individual models.

Here, note that if the object of a complexity definition is
general (as described in pointer (1) of Section 3.3), it can
treat any particular class of the object, for example, deter-
ministic network expressions, as shown in Section 6.2. 'at
is, if the object of a complexity definition is general, it can be

applied to any particular class of the object, but if the object
is restricted, it cannot be applied to objects outside the
restriction.

'erefore, the natural complexity (NaC) is not rigor-
ously specified, and it is not easy to characterize the defi-
nition in terms of the criteria in Section 3 (summarized in
Table 2).

4.2. Objects Are Probability Distributions

4.2.1.5ermodynamic Depth. 'e thermodynamic depthwas
introduced by Lloyd and Pagels [13] and shared some in-
formal motivation with logical depth, where complexity is
considered a property of the evolution of an object.

We now assume the set of histories or trajectories that
result in object (distribution) S0. A trajectory is an ordered
set of macroscopic states (distributions) S−L−1, . . . , S−1, S0.
'e thermodynamic depth of object S0 is

H S−L+1, . . . , S−1∣S0( , (9)

where H(A, . . . , B∣C) is the conditional entropy of com-
bined distribution (A, . . . , B) with condition C.

'e thermodynamic depth has the following problems as
a quantitative complexity definition.

(1) 'e thermodynamic depth is not rigorously defined.
'is is because it is not defined how long the tra-
jectories (what value of L) should be, and there is no
description on how to select macroscopic states in
the definition [13]. If there are thousands of possible
sets of macroscopic states, we would have thousands
of different definitions of the thermodynamic depth.

(2) 'e object is essentially limited by the selection of
macroscopic states. In order to define the complexity
of an object S0, a set of macroscopic states S whose
complexity is comparable to or more than that of S0
should be established beforehand. Hence, if S is
fixed, or the thermodynamic depth ofS is concretely
defined, it cannot measure the complexity of an
object whose complexity is more than that ofS. 'at
is, any concrete definition of this notion can measure
only a restricted subset of objects, that is, any con-
crete and generic definition is impossible in the
thermodynamic depth.

'erefore, the thermodynamic depth is not rigorously
specified, and it is not easy to characterize the definition in
terms of the criteria in Section 3 (summarized in Table 2).

4.2.2. Effective Measure Complexity. 'e effective measure
complexity was introduced by Grassberger [14] and mea-
sures the average amount by which the uncertainty of a
symbol in an (infinite) random string (distribution) de-
creases due to the knowledge of previous symbols. 'e ef-
fective measure complexity captures the distributional
feature of complexity.

For distribution XN over 0, 1{ }N(N ∈ N), H(XN) is the
Shannon entropy of XN. Let hN ≔ H(XN+1) − H(XN) and
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h ≔ limN⟶∞hN. 'e effective measure complexity of
XN N∈N is



∞

N�0
hN − h( . (10)

'is difference quantifies the perceived randomness, which,
after further observation, is discovered to be order [19]. It is
information theoretically and rigorously (uniquely) specified.

In terms of the criteria shown in Section 3, the effective
measure complexity has the following properties (summa-
rized in Tables 1 and 2).

(1) Object (Prob. and Det.): 'e objects are only
probability distributions, and deterministic strings
are outside the scope of this definition (the com-
plexity is 0 for any deterministic string; bad).

(2) Simply Regular: Simple (or very regular) objects have
low effective measure complexity (good).

(3) Simply Random: Simply random objects have low
effective measure complexity (good).

(4) Key Features of Organized Objects: For highly or-
ganized objects that focus on the descriptive or
computational feature (e.g., highly organized com-
plex objects (distributions), XN N∈N, that are almost
deterministic and generated from (compressed) long
strings or from small strings through very long
running-time computation), their effective measure
complexities are low since they are almost deter-
ministic (bad). In other words, the effective measure
complexity cannot capture the descriptive and
computational features of complexity, while it cap-
tures the distributional feature.

(5) Computability: 'e effective measure complexity of
an object (distribution) is computable since it is
information theoretically defined and not based on a
Turing machine (good).

4.2.3. Statistical Complexity. 'e statistical complexity was
introduced by Crutchffeld and Young [15]. Here, to define
the complexity, the set of causal states S and the probabilistic
transitions between them are modeled in the so-called
ϵ-machine, which produces a stationary distribution of
causal states, DS. 'e mathematical structure of the ϵ-ma-
chine is a stochastic finite-state automaton or hidden
Markov model. 'e statistical complexity of object (distri-
bution) is the minimum value of the Shannon entropy of DS,
where the object is equivalent to the output of the ϵ-machine,
that is, it is based on Occam’s razor principle (see the
footnote in Section 4.3) and rigorously (uniquely) specified
because the minimum value of the Shannon entropy cor-
responds to the shortest size of expression. It captures the
distributional feature of complexity.

Let Si for i � 1, .., k be causal states, S ≔ S1, . . . , Sk , and
Tij be the probability of a transition from state Si to state Sj,
that is, Tij ≔ Pr[Sj∣Si]. Each transition from Si to Sj is as-
sociated with an output symbol, σij (e.g., σij ∈ 0, 1{ }). 'en,
Pr[Si], the probability that Si occurs in the infinite run of the

ϵ-machine, is given by the eigenvector of matrix T ≔ (Tij),
since 

k
i�1 Pr[Si] · Tij � Pr[Sj], that is,

(Pr[S1], . . . , Pr[Sk]) · T � (Pr[S1], . . . , Pr[Sk]). Hence, the
machine produces a stationary distribution of states, DS. 'e
output of the ϵ-machine is the infinite sequence of σij in-
duced by the infinite sequence of the transition of states.
'at is, ϵ-machine outputs a distribution, ΣS, over 0, 1{ }∞,
induced by DS.

'e statistical complexity of object X (distribution),
denotedC1, is the minimum value of the Shannon entropy of
DS, H1(DS), when ΣS � X:

C1 ≔ min H1 DS( ∣ΣS � X . (11)

Amore generalized notion, Cα (0≤ α≤∞), is defined by
the Reny entropy of DS in place of the Shannon entropy, that
is,

Cα ≔ min Hα DS( ∣ΣS � X , (12)

where C1 is the case where α ≔ 1 as H1 is the Shannon
entropy and C0 ≔ min log #S|ΣS � X  (α ≔ 0; #S is the
number of elements of set S; for α ≔ ∞, H∞ is the mini-
entropy).

In terms of the criteria shown in Section 3, the statistical
complexity has the following properties (summarized in
Tables 1 and 2).

(1) Object (Prob. & Det.): Statistical complexity Cα for
any α (0≤ α≤∞) can measure only probability
distributions as objects, since for any deterministic
string, there is only one state S1 with this deter-
ministic string and Pr[S1] � 1, that is, Cα � 0
(0≤ α≤∞). 'us, none of Cα can treat probability
distributions and deterministic strings in a unified
manner (bad).

(2) Simply Regular: Simple (or very regular) objects have
low statistical complexity (good).

(3) Simply Random: Simply random objects have low
statistical complexity (good).

(4) Key Features of Organized Objects: For highly
organized objects that focus on the descriptive or
computational feature, their statistical complex-
ities are low, that is, the statistical complexity
cannot capture the descriptive and computational
features (bad). Here, we show two typical cases
below:

(i) For highly organized complex objects (on the
descriptive or computational feature) that are
almost deterministic and are generated from
(compressed) long strings (information) or from
small strings through very long running-time
computations), their statistical complexities are
low.

(ii) For a highly organized complex object (on the
descriptive or computational feature) charac-
terized by an ϵ-machine with (T, S, DS, σij )

that has low statistical complexity, Cα, and that
has σij  generated from (compressed) long
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strings (information) or from small strings
through very long running-time computa-
tions), its statistical complexity is low. Note
that Cα depends on only DS but is independent
of σij .

'at is, the statistical complexity cannot capture the
descriptive and computational features of com-
plexity, while it captures the distributional feature.
See Remark 3 for more precise observation about the
properties of the statistical complexity.

(5) Computability: 'e statistical complexity of an ob-
ject is computable since it is information theoreti-
cally defined and not based on a Turing machine
(good).

4.3. Summary. In summary, the existing definitions have the
following properties and shortcomings (see Tables 1 and 2):

(i) Any existing complexity definition can capture only
a single feature of complexity; for example, the
Kolmogorov complexity and effective complexity
capture only the descriptive feature, the logical
depth captures only the computational, and the
statistical complexity and effective measure com-
plexity capture only the distributional.

(ii) Any existing complexity definition can treat either a
probabilistic or deterministic form of objects, but
none of them can treat both in a unified manner or
seamlessly.

(iii) 'e definitions on Turing machines (Kolmogorov
complexity, effective complexity, and logical depth)
are not computable. 'e definitions not on Turing
machines (the effective measure complexity and the
statistical complexity) are computable, but they can
only capture the distributional feature (but not
descriptive and computational ones) due to the lack
of computational machinery in the definitions. Note
that an ϵ-machine for the statistical complexity,
which produces a stochastic or hidden Markov
process, is information-theoretical but not com-
putational machinery.

(iv) We can rigorously specify the complexity in Occam’s
razor principle and information-theoretical ap-
proaches (Kolmogorov complexity, effective com-
plexity, logical depth, statistical complexity, and
effective measure complexity), while the natural
complexity (NaC) and the thermodynamics depth are
not rigorously specified as described in Sections 4.1.4
and 4.2.1. Occam’s razor principle can be described as
“if presented with a choice between indifferent al-
ternatives, then one ought to select the simplest one”
[21]. We can specify a complexity definition on
Occam’s razor principle by adopting the shortest one
(expression/time/entropy) for simulating the object.
Due to the minimality principle, the definition can be
specified uniquely.

5. Proposed Quantitative Definition of
Organized Complexity

5.1. Introductionof theProposedDefinition. We now propose
a new quantitative definition of organized complexity. 'is
definition simultaneously captures the three key features of
complexity: descriptive, computational, and distributional.
It is also computable, is rigorously specified, and can treat
both probabilistic and deterministic forms of objects in a
unified manner or seamlessly. We give several criteria re-
quired for organized complexity definitions and show that
the proposed definition satisfies all of them (Table 1).

Roughly speaking, the proposed quantitative definition
is given by the shortest size of a stochastic automaton form
of circuit (oc-circuit) that simulates an object (distribution).
'at is, in place of Turing machines and ϵ-machines, the
proposed definition employs another class of computational
machinery, a stochastic automaton form of circuit, oc-circuit.
It is based on Occam’s razor principle and rigorously
specified (Table 2).

We now clarify the differences between oc-circuit (cir-
cuit), ϵ-machine, and Turing machine. We also show the
advantage of using oc-circuit (circuit) in terms of the three
key features of complexity.

(i) oc-Circuit versus ϵ-machine

Our approach by oc-circuits is more general than
the approach by ϵ-machines for the statistical
complexity because an oc-circuit can simulate any
ϵ-machine as a special case without the descriptive
and computational features. In other words, an
ϵ-machine is information-theoretical machinery to
produce a stochastic process or hidden Markov
process with only the distributional feature. In
contrast, an oc-circuit is computational machinery
to produce a distribution with all three key features,
descriptive, computational, and distributional fea-
tures ('eorem 2 and Remark 3).
Another special case of oc-circuits lacks the dis-
tributional feature but has descriptive and com-
putational features. Such an oc-circuit produces
(simulates) a deterministic string. See pointer (1) in
Section 5.5 for the description of such an oc-circuit.

Hence, oc-circuits include two typically specific
cases. A special oc-circuit, ϵ-machine, produces in-
formation-theoretical distributions with only the
distributional feature. Another is a special oc-circuit,
pointer (1) in Section 5.5, which produces deter-
ministic strings with only the descriptive and com-
putational features. In general, an oc-circuit
produces any distribution with the three key features.
Hence, the proposed definition can treat both
probabilistic and deterministic forms of objects in a
unified manner or seamlessly.

(ii) Circuit versus Turing machine
'e major difference between circuits [22, 23] and
Turing machines [22] is that a single (universal)
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Turing machine can compute any size of input,
while a single circuit can compute a fixed size of
input. In spite of the difference, any bounded time
Turingmachine computation with n bit input can be
computed by a circuit with n bit input. 'e fi-
niteness of a circuit (oc-circuit) yields the com-
putability of our definition ('eorem 1). It contrasts
with the incomputability of Turing machine-based
definitions (Kolmogorov complexity, logical depth,
and effective complexity) [21], which is due to the
incomputability (undecidability) of the halting
problem of Turing machines.

(iii) Advantage of using circuits

An advantage of basing on circuits is that it can
simultaneously capture the three key features: de-
scriptive, computational, and distributional
features.

(a) Descriptive feature: An input on a Turing ma-
chine for a descriptive feature can be realized for
a circuit with the input or hard-wire of the
description. If a descriptive feature requires d bit
input to a Turing machine, it requires d bit
input/hard-wire for a circuit to describe it.
Hence, if an object has a d bit descriptive feature
represented on a Turing machine (e.g., the
Kolmogorov complexity of the object is d), the
size of a circuit producing the object should be
Ω(d). 'en, the proposed complexity definition
of this object (the shortest size of an oc-circuit
simulating this object) should be Ω(d).
'erefore, the proposed complexity definition
can capture the descriptive feature of
complexity.

(b) Computational feature: A t-time computation
of a Turing machine can be computed by an
O(t2)-size circuit [22]. If a computational fea-
ture requires t-time computation on a Turing
machine, the size of a circuit to compute it for
the computational feature would be Ω(t2).
Hence, if an object has a t-time computational
feature represented on a Turing machine (e.g.,
the logical depth of the object is t), the size of a
circuit producing the object would beΩ(t2). We
now suppose that the data compression by the
t-time computation is greater than the com-
putation overhead in terms of the circuit size.
'en, the proposed complexity definition of this
object (the shortest size of an oc-circuit simu-
lating this object) would be Ω(t2). 'erefore,
the proposed complexity definition can capture
the computational feature of complexity.

(c) Distributional feature: An oc-circuit includes an
ϵ-machine structure as a partial structure, which
characterizes a distributional feature (Remark
3). If an object has an s bit distributional feature
represented on an ϵ-machine (e.g., the statistical
complexity of the object is s), the size of an oc-

circuit simulating this object should be Ω(s).
'erefore, the proposed complexity definition
can capture the distributional feature of
complexity.

5.2. Proposed Definition. We now define a new measure of
organized complexity. First, we define our computation
model, oc-circuit.

Definition 1 (oc-circuit). Let circuit C with N input bits and
L output bits be a directed acyclic graph in which every
vertex is either an input gate of in-degree 0 labeled by one of
the N input bits, or one from the basis of gates, B:� {AND,
OR, NOT}. Among them, L gates are designated as the
output gates. 'at is, circuit C actualizes a Boolean function:
0, 1{ }N⟶ 0, 1{ }L.

Let si ∈ 0, 1{ }Ns be a state at step i (i ∈ N), u ∈ 0, 1{ }Nu be
an a priori input (universe), mi ∈ 0, 1{ }Nm be an input at step
i, ri⟵

U
0, 1{ }Nr be random bits at step i, and

N ≔ Nu + Ns + Nm + Nr. 'en
si+1, yi( ⟵ C(u, ·)⟵ si, mi, ri( , i � 1, 2, . . . , K, (13)

that is, (si+1, yi) ≔ C(u, si, mi, ri), where yi ∈ 0, 1{ }Ly ,
Nm ≤ Ly is the output of C at step i, and L ≔ Ns + Ly. Let V

be the number of vertexes of C.
Let C ≔ ((wij)i�1,...,V;j�1,...,V, (ℓ1, . . . , ℓV), (o1, . . . , oL))

be a canonical description of C, where (wij)i�1,..,V;j�1,..,V is the
adjacent matrix of directed graph C, that is, wij ≔ 1 iff there
is an edge from vertex i to vertex j, and wij ≔ 0 otherwise,
and ℓi (i � 1, .., V) is the label of the i-th vertex,
ℓi ∈ 1, .., N,AND,OR,NOT{ }, that is, each vertex i is labeled
by ℓi, and oi ∈ 1, . . . , V{ } is the vertex designated to the i’s
output, that is, (o1, . . . , oL) is the sequence of output gates.
Hereafter, we abuse the notation of C to denote C, the
canonical description of C.

Let C ≔ (C, u, n, m
→

) be an “oc-circuit,” and Y be the
output of C, where C ≔ (C, Nu, Ns, Nm, Nr, Ly, s1),
K ≔ ⌈n/Ly⌉, m

→ ≔ (m1, .., mK), and Y ≔ (y1, . . . , yK)n (see
Section 1.3 for the notation of (. . .)n ).

Here,C is expressed by a specified form C ⊂ 0, 1{ }∗, that
is, C ∈ C iff C is a valid form of oc-circuit, and it can be
efficiently (polynomial-time in |C|) verified whether C ∈ C.

'e output, Y, of C can be expressed by Y⟵R
C, that is,

Y⟵R (C, u, n, m
→

), where the probability of distribution Y is
taken over the randomness of ri⟵

U
0, 1{ }Nr (i � 1, . . . , K).

'en, C, u, and m
→ are called the “logic,” “universe,” and

“semantics” of oc-circuit C, respectively.

Remark 1. Circuit C of oc-circuitC is a probabilistic circuit,
where uniformly random strings, ri⟵

U 0, 1{ }Nr for
i � 1, . . . , K, are input to C and the output ofC is distributed
over the random space of ri i�1,...,K.

Here, note that ri i�1,...,K, which is an input to C, is not
included inC, while the other inputs to C, u and mi i�1,...,K,
are included in C. In other words, the size of the ran-
domness, 

K
i�1 |ri|, is ignored in the size of C or the defi-

nition of the organized complexity (see Definition 2), while
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Nr and a part of C regarding the randomness are included in
C. 'is is because the randomness, ri i�1,...,K, is just the
random source of C’s output distribution and has no or-
ganized complexity itself. Hence, simply random objects are
characterized to have low-organized complexity based on
the size of oc-circuit C (see pointer (3) in Section 5.5).

Definition 2 (organized complexity). Let X be a distribution
over 0, 1{ }n for some n ∈ N.

“Organized complexity” OC of distribution X at pre-
cision level δ (0≤ δ < 1) is

OC(X, δ) ≔ min |C||Xδ ≈ Y⟵R C , (14)

where C ≔ (C, u, n, m
→

) is an oc-circuit and |C| denotes the
bit length of the binary expression of C (see Section 1.3 for
the notations of δ ≈ ).

We call oc-circuitCX ≔ (C
X

, uX, n, m
→X

) the shortest (or
proper) oc-circuit of X at precision level δ, iff Xδ ≈ Y⟵R CX

and |CX| � OC(X, δ). If there are multiple shortest oc-
circuits of X, that is, they have the same bit length, the
lexicographically first shortest one is selected as the shortest
oc-circuit.

'en, C
X

, uX, and m
→X are called the “proper logic,”

“proper universe,” and “proper semantics” of X at precision
level δ, respectively. Here,
Xδ ≈ Y⟵R

CX ≔ (C
X

, uX, n, m
→X

).

5.3. Properties of the Definition

5.3.1. Computability

Theorem 1. For any distribution X over 0, 1{ }n (n ∈ N) and
any precision level δ > 0, OC(X, δ) can be computed.

Proof. For any distribution X ≔ (x, px)∣x ∈ 0, 1{ }n,

px ∈ [0, 1], 
x∈ 0,1{ }n

px � 1} and any precision level δ > 0, there

always exists another distribution X′ ≔ (x, px
′)∣x ∈

0, 1{ }n, 0≤px
′ ≤ 1, px
′ ∈ Q, 

x∈ 0,1{ }n

px
′ � 1} such that X′δ ≈ X.

(Here, note that px ∈ R is changed to px
′ ∈ Q provided that

X′δ ≈ X.)
We then construct the truth table of Boolean function

f: 0, 1{ }ℓ⟶ 0, 1{ }n such that Pr[x � f(r)∣r⟵U 0, 1{ }ℓ] �

px
′ for all x ∈ 0, 1{ }n, where the probability is taken over
⟵U 0, 1{ }ℓ. Such a function, f, can be achieved by setting
truth table Tf ≔ (r, f(r)) r∈ 0,1{ }ℓ such that
# r∣f(r) � x /2ℓ � px

′ ∈ Q for all x ∈ 0, 1{ }n.
Since any Boolean function can be achieved by a circuit

with basis B≔ {AND, OR, NOT} [42], we construct circuit
C∗ for oc-circuit C∗ with Ns ≔ 1, Nu � Nm ≔ 0 (i.e.,
u � mi ≔ λ), Nr ≔ ℓ, K ≔ 1, Ly ≔ n, and s1 � s2 ≔ 0. 'at
is, (0, y1) ≔ C∗(λ, 0, λ, r1), and the output of C∗ is
y1 ∈ 0, 1{ }n with the same distribution as that of X′ over the
randomness of r1⟵

U
0, 1{ }Nr . 'at is, y1⟵

R
C∗ and

Xδ ≈ X′ � y1.
From the definition of OC, OC(X, δ)≤ |C∗|.

We then exhaustively check all values of Z with |Z|< |C∗|

whether Z is a valid oc-circuit such that Xδ ≈ Y⟵R
Z. Note

that we can efficiently check whether or not Z is the correct
form of an oc-circuit orZ ∈ C. Finally, we find the shortest one
among the collection of Z (and C∗) satisfying the condition.
Clearly, the size of the shortest one is OC(X, δ). □

Remark 2. As clarified in this proof, given object (distri-
bution) X and precision level δ, the proposed definition of
organized complexity uniquely determines (computes) not
only organized complexity OC(X, δ) but also the shortest
(proper) oc-circuit, CX, including proper logic C

X, proper
universe uX, and proper semantics m

→X of X. In other words,
the definition characterizes the complexity features of object
X, that is, it characterizes not only organized complexity
OC(X, δ) but also structural complexity features of X, for
example, the descriptive feature by the size of uX and m

→X

and the computational and distributional features by the size
of C

X and (Nr, Ns) of C
X.

5.3.2. Relation between oc-Circuit and ϵ-Machine. In the
following theorem, we show that the notion of oc-circuit
with the proposed organized complexity includes the
ϵ-machine with statistical complexity introduced in Section
4 as a special case.

Theorem 2. Any ϵ-machine can be simulated by an
oc-circuit.

Proof. Given ϵ-machine, ( S1, . . . , Sk , (Tij)i�1,..,k;j�1,..,k,
(σij)i�1,..,k;j�1,..,k), we construct oc-circuit C ≔ ((C, Nu,
Ns, Nm, Nr, Ly, s1), u, n, (m1, m2, . . .) such that
Ns ≔ ⌈log2 k⌉ + 1 (i.e., Si ∈ 0, 1{ }Ns ), Nu ≔ 0, Nm ≔ 0,
Nr ≔ maxi,j |Tij| , Ly ≔ maxij |σij| , s1 ≔ S1 (initial causal
state), n ≔ ∞, u ≔ λ (null string), mι ≔ λ (ι � 1, 2, . . .), and
C is achieved to satisfy Pr[(Sj, σij) ≔ C(λ, Si, λ, r)] � Tij for
i, j � 1, .., k, where |Tij| is the bit length of the binary ex-
pression of Tij, and the probability is taken over the ran-
domness of r⟵U 0, 1{ }Nr in each execution of C. It is clear
that the behavior of this oc-circuit with respect to the causal
states is exactly the same as that for the given ϵ-machine. □

Remark 3 (features of the proposed complexity). Our
complexity definition can treat more general cases with
Nu > 0 andNm > 0, while statistical complexity only considers
a limited case with Nu � 0 and Nm � 0, that is, it ignores the
descriptive feature as well as the computational feature.

For example, a sequence in a genome pattern that is
common to all individuals is considered to be determined in
the evolution process and has some biological meaning. 'e
biological knowledge of DNA necessary to understand the
DNA sequences can be captured by logic C and universe u of
the oc-circuit C (where |u| � Nu > 0), and the characteristic
information (biological meaning) on each genome pattern
(δ ≈ Y⟵R C) can be captured by semantics m

→ of C (where
|mi| � Nm > 0).
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Our complexity definition also covers the computational
feature, which is characterized by the size of logic C of oc-
circuit C in our definition.

5.3.3. Structured Organized Complexity. We can construct a
circuit C using another basis of gates, for example, {NAND}
and {AND, NOT}, in place of {AND, OR, NOT}. We express
an oc-circuit using such a basis by C NAND{ } and C AND,NOT{ },
respectively. We also express the organized complexity of X

using such a circuit by OC NAND{ }(X, δ) and
OC AND,NOT{ }(X, δ), respectively.

Based on such a different basis of gates, a natural variant
of the proposed organized complexity, structured organized
complexity, is given below.

Definition 3 (structured organized complexity). Let X be a
distribution over 0, 1{ }n for some n ∈ N.

Let CS ≔ (C
S
, u, n, m

→
) be a structured oc-circuit, where

C
S

� (macros, Cmacros, Nu, Ns, Nm, Nr, Ly, s1) and macros
represents a set of macro gates (subroutine circuits) that are
constructed from basis gates and that can be hierarchically
constructed, where a level of macro gates are constructed
from lower levels of macro gates. In addition, macros is
notationally abused as the canonical description of macro
gates in macros, which is specified in the same manner as
that in the canonical description of a circuit. Term Cmacros is
(the canonical description of) a circuit constructed from
basis gates B as well as macro gates in macros.

Structured organized complexity OCS of distribution X

at precision level δ (0≤ δ < 1) is

OC
S
(X, δ) ≔ min |C

S
| Xδ ≈ Y⟵R C

S
 . (15)

Theorem 3. For any distribution X over 0, 1{ }n (n ∈ N) and
any precision level δ > 0, OCS(X, δ) can be computed.

Proof. Given distributionX, we can construct structured oc-
circuitC∗ in the same manner as that shown in the proof of
'eorem 1. Here, note that any (basic) oc-circuit C can be
expressed as structured oc-circuit CS where macros ≔ λ,
with slightly relaxing the format for structured oc-circuits,
or to allow macros ≔ λ.

From the definition of OCS, for any value of 0< δ < 1,
OCS(X, δ)≤ |C∗|.

We then, given δ, exhaustively check all values of Z with
|Z|< |C∗| whether Z is a structured oc-circuit such that
Xδ ≈ Y⟵R

Z. Finally, we select the shortest one among the
collection of Z (andC∗) satisfying the condition. Clearly, the
size of the shortest one is OCS(X, δ). □

Remark 4. As described in Remark 2, the shortest structured
oc-circuit with these parameters characterizes the properties
of object X. It especially shows the optimized hierarchically
structured circuit CS.

As mentioned above, we can construct a structured oc-
circuit using another basis such as {NAND} and {AND,

NOT}, for example, CS
NAND{ } and CS

AND,NOT{ }. 'en, macros
in CS

NAND{ } can consist of macro gates of AND, OR, and
NOT from NAND gates.

Theorem 4

OC
S
NAND{ }(X, δ) − OC

S
(X, δ)



≤O(1), (16)

where X is a distribution over 0, 1{ }n and O(1) is a constant in
n.

Proof. Let CS be a structured oc-circuit with macros that
consists of the NAND gate macro from {AND, OR, NOT} as
well as macros from {NAND} (i.e., macros is macros from
{AND, OR, NOT}), and Cmacros be constructed only by
NAND and macros. 'en OCS(X, δ) is upper bounded by
|CS| for (X, δ), whose minimum value is OCS

NAND{ }(X, δ) +

O(1) since the size of the NAND gate macro from {AND,
OR, NOT} is a constant in n. 'erefore,

OC
S
(X, δ)≤ OC

S
NAND{ }(X, δ) + O(1). (17)

Let CS
NAND{ } be a structured oc-circuit with macros that

consists of the AND, OR, and NOT gate macros from
{NAND} as well as macros from {AND, OR, NOT} (i.e.,
macros is macros from {NAND}) and Cmacros be constructed
only by {AND, OR, NOT} and macros. 'en,
OCS

NAND{ }(X, δ) is upper bounded by CS
NAND{ } for (X, δ),

whose minimum value is OCS(X, δ) + O(1), since the size of
the AND, OR, and NOT gate macros from {NAND} is a
constant in n. Hence,

OC
S
NAND{ }(X, δ)≤ OC

S
(X, δ) + O(1).

(18)
□

5.4. Variations. We have more variations of the organized
complexity.

(1) Computational Distance: In Definitions 2 and 3,
statistical distance is used for defining the closeness
≈δ . We can replace this with the “computational”

closeness ≈(D ,δ)
. Here, for two distributions, X and Y,

over 0, 1{ }n, the computational closeness of X and Y

is defined by
X(D ,δ) ≈ Y iff ∀D ∈ D, 1/2 · |Pr[1⟵R D(α)∣α⟵R

X] − Pr[1⟵R D(α)∣α⟵R Y]|< δ,

where D is a class of machines D: 0, 1{ }n⟶ 0, 1{ }.
Intuitively, the computational closeness means that X

and Y are indistinguishable at precision level δ by any
machine in class D (the computational closeness/in-
distinguishability is widely used in cryptography [43];
for example,D is the class of probabilistic polynomial-
time Turing machines and δ is a polynomially negli-
gible function in the security parameter).

(2) Quantum Circuits: Circuit C in Definitions 2 and 3
can be replaced by a “quantum” circuit [44]. In this
variation, we assume that the source of observed data
is principally given by a quantum phenomenon.
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'ere are several variations of the quantum complexity
definition, typically: (1) all inputs and outputs of C are
classical strings, (2) only state si is a quantum string,
and the others are classical, (3) all inputs and outputs of
C except output yi are quantum strings, and (4) all
inputs and outputs of C are quantum strings.

(3) Interactions: If an observation object actively reacts
similar to a living thing, we often observe it in an
interactive manner.
So far in this paper, we have assumed that an object is
a distribution that we perceive passively. We can
extend the object from such a passive one to an active
one with interactive observation.
Suppose that the observation process is interactive
between observer A and observation object B. For
example, A first sends z1 to B, which replies x1 to A,
and we continue the interactive process, z2, x2, . . .,
zJ, xJ.
Let Z ≔ (z1, .., zJ) and X ≔ (x1, .., xJ) be distribu-
tions. We then define the conditional organized
complexity of X under Z with precision level δ,
OC(X: Z, δ), which can be defined as the shortest
(finite version of) conditional oc-circuit to simulate
X (with precision level δ) under Z.
'e extended notion of the organized complexity of
interactive object (X, Z) can be defined by
OC(X: Z, δ).

(4) Generalization of the Size of Circuit: Some appli-
cations may employ a metric (e.g., depth) of a circuit
in place of the size of a circuit [45].
We can introduce a variant of the proposed defi-
nition using another metric f of an oc-circuit in
place of the oc-circuit size |C| such that

OCf(X, δ) ≔ min f(C) Xδ ≈ Y⟵R C
 . (19)

5.5. Evaluation in terms of the Criteria. In terms of the
criteria described in Section 3, the proposed definition has
the following properties (summarized in Tables 1 and 2).

(1) Object: Prob. & Det.
'e proposed definition can treat probability dis-
tributions and deterministic strings (as special cases
of distributions) in a unified manner as the objects
(good).
For example, an oc-circuit of pointer (3) in this
section is a case for simulating a probability distri-
bution (simply random), and an oc-circuit of pointer
(2) in this section is a case for simulating a deter-
ministic string (simply regular).
More generally, for any deterministic string (as a
special case of distribution), there exists an oc-circuit
with circuit C to simulate the deterministic string by
Y ≔ (y1, . . . , yK)n ∈ 0, 1{ }n, such that

si+1, yi(  ≔ C u, si, mi, λ( , i � 1, 2, . . . , K, (20)

where Nr � 0, that is, ri ≔ λ for i � 1, . . . , K.
For example, any deterministic form of network as
an object can be simulated (produced) by this oc-
circuit with specifying C for the network (see Section
6.2 for an example of an oc-circuit to produce
network expressions).

(2) Simply Regular
Simple (or very regular) objects have low complexity
(good).
For example, in a very regular case (“11 · · · 1”
∈ 0, 1{ }n), the object can be simulated by an oc-circuit
C ≔ (C, 1, n, λ) with C ≔ (C, 1, 1, 0, 0, 1, 0), such
that

si+1, 1(  ≔ C 1, si, λ, λ( , i � 1, 2, . . . , n, (21)

where Nu � 1(u � 1), si ≔ 0 for i � 1, .., n + 1 (i.e.,
Ns � 1), Nm � Nr � 0 (i.e., mi � ri � λ), and Ly � 1.
'at is, input size N � 2 and output size L � 2, that
is, C has two gates that are input gates labeled by
(1, 2) and that are also output gates.
C ≔ ((wij) ≔ I2, (ℓ1, ℓ2) ≔ (1, 2), (o1, o2) ≔ (2, 1)),
where I2 is the two-dimensional identity matrix.
Hence, C ≔ ((((1, 0, 0, 1), (1, 2), (2, 1)),

1, 1, 0, 0, 1, 0), 1, n, λ), and OC (“11 . . . 1”)
≤c + log2 n, where c is a small constant.

(3) Simply Random
Simply random objects have low complexity (good).
For example, in the case of uniformly random dis-
tribution X over 0, 1{ }n, the object can be simulated
by an oc circuit C ≔ (C, λ, n, λ) with
C ≔ (C, 0, 1, 0, 1, 1, 0), such that

si+1, ri(  ≔ C λ, si, λ, ri( , i � 1, 2, . . . , n, (22)

where Nu � 0, si ≔ 0 for i � 1, .., n (i.e., Ns � 1),
Nm � 0 (i.e., u � mi � λ), Nr � 1, ri⟵

U
0, 1{ }, and

Ly � 1. 'at is, input size N � 2 and output size
L � 2, that is, C has two gates that are input gates
labeled by (1, 2) and that are also output gates.
C ≔ ((wij) ≔ I2, (ℓ1, ℓ2) ≔ (1, 2), (o1, o2) ≔ (1, 2)).
Hence, C ≔ ((((1, 0, 0, 1), (1, 2), (1, 2)),

0, 1, 0, 1, 1, 0), λ, n, λ), and OC(X)≤ c + log2 n,
where c is a small constant.

(4) Key features of Organized Objects
As described in Section 5.1 and Remarks 2 and 3, the
proposed definition simultaneously captures the
distributional, computational, and descriptive fea-
tures of organized complexity (good).
Hence, our definition does not have the drawbacks
of the existing definitions described in Section 4.
'at is, the proposed definition correctly estimates
the complexity of highly organized objects for

14 Complexity



which an existing definition miss-estimates low. In
addition, an object estimated by an existing defi-
nition high for a feature is also estimated high in our
definition.

(5) Computability
'e proposed complexity of any object (distribu-
tions/strings) is computable as shown in'eorems 1
and 3 (good).

6. Applications of the Proposed
Complexity Definition

'is section will show several possible applications of the
proposed complexity definition. Exploring the applications
is one of the most important issues regarding this notion.

6.1. Applications and Approximations. 'e Kolmogorov
complexity is a quantitative definition for disorganized
complexity (or randomness) of deterministic strings, and it
is incomputable (Section 4.1). Nonetheless, many applica-
tions have been known [21], for example, theoretical
background for inductive reasoning and compression the-
ory, lower bound and average-case analysis of algorithms
and computational and communication complexity, and
information theory.

Several methods of approximating the Kolmogorov
complexity have been developed for more practical appli-
cations [11, 21, 39, 46–48]. 'e methods of approximating
the Kolmogorov complexity of an object (deterministic
string) are closely related to the compression of the object
since the Kolmogorov complexity is the size of an optimally
compressed (shortest) program (on a Turing machine) to
produce the object and its approximation is considered the
size of a nearly optimal (program) compression to produce
the object. For example, approximation methods based on
data compression such as MDL (minimum description
length) [3, 25, 26, 49, 50] were proposed [39, 46]. Ap-
proximation methods based on the coding theorem [21],
which implies a compression by random sampling, were
explored [11, 47, 48] (which were criticized by [51]).
However, Faloutsos et al. [39] emphasized the importance of
selecting good models as an art rather than the automated
methods on the data compression and the coding theorem.

In contrast to the Kolmogorov complexity, the proposed
complexity definition (Section 5) is a quantitative definition
for organized complexity of distributions (including deter-
ministic strings as a special case), and it is computable.
'erefore, it should have more advanced applications than
the Kolmogorov complexity, for example, (1) theoretical
background for machine learning and artificial intelligence;
(2) lower bound and average-case analysis of algorithms,
networks, and computational and communication com-
plexity regarding organized matters; and (3) semantic in-
formation theory.

Although the proposed definition is computable, com-
puting it for an object generally requires at least an expo-
nential time in the object size. Hence, for practical

applications, it should be beneficial to explore efficient
methods for approximating it.

Similarly to the Kolmogorov complexity, the methods of
approximating the proposed complexity definition of an
object (distribution) should be closely related to the (oc-
circuit form) compression of the object, since the proposed
complexity definition is the size of the optimally compressed
(shortest) oc-circuit to simulate the object and its approx-
imation is considered the size of a nearly optimal (oc-circuit
form) compression to simulate the object.

Here, the approximation should be achieved by more
sophisticated compression methods (considering the orga-
nized structure of the object) than just a randomness
compression for the Kolmogorov complexity approxima-
tion. Since the oc-circuit captures the three key features of
organized complexity, descriptive, computational, and dis-
tributional features, such sophisticated compression
methods should utilize these three key features. As em-
phasized by [39], selecting good models and frameworks as
an art that captures the object’s key features should be
important to seek effective approximation methods.

6.2. Applications to Network Expressions. We now suppose
that objects are expressed by network forms, which have
been widely used for the natural complexity
[9, 11, 27, 33, 34, 36, 37]. Note that the proposed complexity
definition can treat (a deterministic form of) network ex-
pressions as a particular case of distributions (see pointer (1)
in Section 5.5). 'is section will show how our complexity
definition can be applied to network expressions.

If a network (object) is less structured/featured, it should
have more compressed (shorter) oc-circuit to produce the
network, that is, it has (approximate) lower complexity.
Conversely, it should have less compressed oc-circuit if it is
more structured/featured, that is, it has (approximate)
higher complexity.

For example, we suppose an undirected graph expresses
a network with n nodes, represented by an adjacent matrix
(n × n upper-triangular binary matrix) and expressed by an
n(n − 1)/2 bit string. 'en, if a network (object) is randomly
generated (i.e., almost the least structured/featured), the
object should be the uniform distribution of possible net-
works (not a sampled network), that is, the uniform dis-
tribution of n(n − 1)/2 bit strings.'en, the oc-circuit shown
in pointer (3) of Section 5.5 (over 0, 1{ }n(n− 1)/2) produces the
uniform distribution of the graphs (networks) and should be
nearly the shortest one to produce it. 'e approximate
complexity of this object (the randomly generated network)
is the size of the oc-circuit. If a network is very regular (e.g.,
complete graph; i.e., nearly the least structured/featured),
the oc-circuit shown in pointer (2) of Section 5.5 produces
the complete graph and should be nearly the shortest one to
produce it. 'e approximate complexity of this object (the
complete graph network) is the size of the oc-circuit.

If a network is general, its properties/features such as
network structure and topology, which have been exten-
sively studied in the framework and analysis of the natural
complexity [9, 11, 27, 33, 34, 36, 37], should be beneficial to
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obtain a compressed (short) oc-circuit to produce the
network. 'e size of such an oc-circuit is the approximate
complexity. For example, [33, 35] presented frameworks to
characterize and analyze social networks and highlight
many technical disciplines. To evaluate the (approximate)
proposed complexity of an object (social network), we have
to find a compressed representation of the object or a short
oc-circuit to produce the network, where the character-
ization and analysis suggested by [33, 35] could be
employed.

A network is usually considered deterministic in the
natural complexity [9]. However, as shown above, in the
random network case, it may be appropriate to consider a
network expression as a distribution of networks since some
parts of a network are often randomly distributed (e.g., some
parts of genome patterns described in Section 2). As shown
in Section 3, it may also be helpful to capture the compu-
tational feature of networks.

6.3. Remark on the Identification of Objects. 'is paper fo-
cuses on the complexity definition for a given object, and it is
outside the scope of this paper how to find or identify the
object (Section 2). However, if we analyze or compute the
complexity of an object in practical applications, we may
have to identify the object before computing the (approx-
imate) complexity of the object. When the object is a dis-
tribution, the model selection theory such as MDL [25, 26]
and AIC [24] would be used to identify the distribution from
sampled data. For a variety of complex systems, wemay need
a method more specific to each system. For example, when
the object is a complex system like biochemical systems, a
graphical approach with the observability theory has been
explored to identify the system [37].

6.4. Summary and Challenge. Here, we summarize several
issues about the applications of the proposed definitions.

(1) 'eoretical Applications
As described above, possible theoretical applications
of the proposed complexity definition are: (1) the-
oretical background for machine learning and arti-
ficial intelligence; (2) lower bound and average-case
analysis of algorithms, networks, and computational
and communication complexity regarding organized
matters (living things, ecosystems, economic and
social systems, artificial things, etc.); and (3)semantic
information theory.

(2) Approximation Methods
For practical applications, we need an efficient ap-
proximation method of the proposed complexity
definition. As mentioned above, such an approxi-
mation method is closely related to a compressed
(short) oc-circuit to simulate the object.
In the computational complexity theory, approxi-
mation algorithms for optimization problems have
been extensively studied for many years [52]. Here,
an approximation ratio, the multiplicative factor on

how close the approximate solution is to the opti-
mization solution, is a key factor to evaluate an
approximation algorithm.

'erefore, such an approximation ratio (of the ap-
proximate complexity value over the precise com-
plexity value) is a key factor for an approximation
method of the proposed complexity definition. Since
the proposed definition generally requires at least an
exponential-time computation, a natural question is
which approximation ratio is achieved if an ap-
proximation method is a polynomial-time algo-
rithm. Similarly, how is the approximation ratio for a
sub-exponential-time or exponential-time algo-
rithm? We need both theoretical and practical an-
alyses for the problem.

(3) Applications to Network Expressions

'e proposed complexity definition can be applied to
any form of network expression. Here, the framework
and analysis studied in the natural complexity
[9, 11, 27, 33, 34, 36, 37] should be beneficial for our
complexity definition approach to network expressions.

(4) Evaluation Process
An advantage of our complexity definition for
practical applications is that we can clarify the eval-
uation process, especially separating the phase for
identifying the object, the phase for finding a com-
pressed (short) oc-circuit to simulate the object, and
the phase for obtaining the (approximate) complexity.
'e evaluation process of our (approximate) com-
plexity is as follows:

(a) Identifying an object
We can skip this phase if an object is given in a
proper form. Otherwise, we must identify the
object or describe it precisely in some model (see
Section 6.3). Here, note that an (identified)
object can be any form of expression, for ex-
ample, network expressions or others, deter-
ministic or probabilistic, and so on.

(b) Finding a short oc-circuit
Given an object, this phase finds a short oc-
circuit to simulate the object as shorter as pos-
sible (see Sections 6.1 and 6.2).

(c) Obtaining the (approximate) complexity
'e size of the oc-circuit obtained in the previous
phase is the (approximate) value of the proposed
complexity definition of the object. If it is an
approximate value, the approximation ratio
(pointer (2) in this section) may be evaluated
heuristically or theoretically.

(5) Coding 'eorem
Let X be a distribution over n bit strings, δ be a
precision level (0≤ δ < 1), C be an oc-circuit, and
OC(X, δ) be the proposed organized complexity of
X at δ (Section 5.2).
Let m(X, δ) ≔ 

X≈δY⟵R C
1/2|C|.
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Note that the binary representation of C is inher-
ently prefix-free (i.e., the Kraft inequality [3] holds,
m(X, δ)≤ 1.)
We then conjecture the following inequality, which
corresponds to the coding theorem of the Kolmo-
gorov complexity.

OC(X, δ) + log2 m(X, δ)


<O(1). (23)

Note that the difference with the coding theorem of
the Kolmogorov complexity K(x) (Section 4.1 (1)) is
as follows: (1) OC(X, δ) is computable, while K(x) is
incomputable; (2) OC(X, δ) includes the computa-
tional complexity for C to produce (simulate) the
object X, while K(x) does not include the compu-
tational complexity for a prefix universal Turing
machine U to produce the object x; (3) the object X

of OC(X, δ) is a distribution, while the object x of
K(x) is a deterministic string; and (4) an oc-circuit
C with X δ ≈ Y⟵R

C is used to define m(X, δ) and
OC(X, δ), while a program p with x � U(p) is used
for m(x) and K(x).

(6) A Problem in the Economy
An attractive but challenging application of our
definition is to give the complexity of a country’s
economy in a single number [12]. If we can express a
country’s economy with an appropriate (probabi-
listic or deterministic) description of the economic
activities, it would be possible to evaluate our ap-
proximate complexity definition of the description,
which could be a single number for the organized
complexity of the country’s economy.

7. Conclusion

'is paper quantitatively defined the organized complexity.
'e proposed definition for the first time simultaneously
captured the three key features of organized complexity:
descriptive, computational, and distributional features. It is
computable, rigorously specified, and treated both proba-
bilistic and deterministic forms of objects in a unified
manner or seamlessly. As a result, it satisfied all of the
criteria for organized complexity definitions introduced in
this paper.

Organized complexity is an interdisciplinary concept
straddling physics, cosmology, chemistry, biology, ecol-
ogy, sociology, economy, informatics, and so forth. 'us,
the proposed organized complexity definition would be a
core notion in such interdisciplinary areas and offer some
basis for tackling the problems posed in [2, 20] and
Section 6.
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