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Abstract. We present a new quick algorithm for the solution of the well-known 
point location problem and for the more specific problem of point-in-polygon 
determination. Previous approaches to this problem are presented in the first 
sections of this paper. In the remainder of the paper, we present a new quick 
location algorithm based on a quaternary partition of the space, as well as its 
associated cost and data structures. 

1 Introduction 

In this paper we present a new quick algorithm for the general solution of the point 
location problem1 and the specific solution of the point-in-polygon problem [1] on 
which we will focus our attention. Some of the most efficient solutions for the point-
in-polygon problem reduce the solution to that of other fundamental problems in 
computational geometry, such as computing the triangulation of a polygon or 
computing a trapezoidal partition of a polygon to solve, then, in an efficient way, the 
point-location problem for that trapezoidal partition. Two different methods for 
solving the point-in-polygon problem have become popular: counting ray-crossings 
and computing “winding” numbers. Both algorithms lead to solutions with a less-
than-attractive cost of O(n), however the first one is significantly better than the 
second [2]. An implementation comparison by Haines [3] shows the second to be 
more than twenty times slower.  

Methods of polygon triangulation include greedy algorithms [2], convex hull 
differences by Tor and Middleditch [4] and horizontal decompositions [5]. Regarding 
solutions for the point-location problem, there is a long history in computational 
geometry. Early results are surveyed by Preparata and Shamos [1]. Of all the methods 
suggested for the problem, four basically different approaches lead to optimal 
O(log(n)) search time, and O(n) storage solutions. These are the chain method by 
Edelsbrunner et al. [6], which is based on segment trees and fractional cascading, the 

                                                           
1 The well-known point-location problem could be more appropriately called point-inclusion 

problem. 
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triangulation refinement method by Kirkpatrick [7], and the randomised incremental 
method by Mulmuley [8]. Recent research has focused on dynamic point location, 
where the subdivision can be modified by adding and deleting edges. A survey of 
dynamic point location is given by Chiang and Tamassia [9]. Extension beyond two 
dimensions of the point-location problem is still an open research topic. 

2 Point Location Problems in Simple Cases 

Several algorithms are available to determine whether a point lies within a polygon or 
not. One of the more universal algorithms is counting ray crossings, which is suitable 
for any simple polygons with or without holes. The basic idea of the counting ray 
crossings algorithm is as follows: 
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Fig. 1. Ray-crossings algorithm 

Let L be the scan-line crossing the given point, Lcross is the number of left-edge ray 
crossings and Rcross is the number of right-edge ray crossings. First, we need to 
determine whether the given point is a vertex of the polygon or not; if not, we 
calculate Lcross and Rcross. If the parities of Lcross and Rcross are different (Fig.1, 
case B) then this point lies on the edge of the polygon. Otherwise, if Lcross (or 
Rcross) is an odd number, (Fig.1 case A) the point must lie inside the polygon. If 
Lcross (or Rcross) is an even number (Fig 1, cases C, D, E) the point must lie outside 
the polygon. 

When the polygon is degraded to a triangle, the above-mentioned problem can be 
solved by the following algorithm shown in Fig. 2. We assume the three vertices A, B 
and C are oriented counterclockwise. If point P lies inside ABC, then it must lie to the 
left of all three vectors AB, BC and CA. Otherwise, p must lie outside ABC. This 
algorithm may also be applied to any convex polygon, in principle without holes, if 
the vertices of the polygon are ordered counterclockwise or clockwise. 
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Fig. 2. Conditions for the location of P. (a) P lies to the left of all vectors AB, BC an CD. (b) 
P lies to the right of vector BC 

 
An equivalent algorithm is based on the inner product among the vectors defined by 
the viewpoint of the query point and the normal vectors of the edges. This algorithm 
can be used for convex polygons, and extended for the degenerate case of convex 
polygons with holes in its interior. The main criterion of this algorithm is based on the 
analysis of the sign of the inner products among the normal vectors of the edges of the 
polygon, with the unitary vector whose direction is determined by the query point and 
any point of the edge (normally the middle point of the edge is taken). 
 
 

+

 + 

+ 

- 

+
+ 

+ 

+ + + 
 
 
 
 
 
 
 
 
 
 (b) (a) 
 

Fig. 3. Inner product as a criterion to determine the point-in-polygon problem for the case of 
convex polygons 

If all the inner products are positive, the query point lies in the interior of the polygon, 
whereas if all the products are positive except one that is null, the point could lie on 
the edge whose associated product is null. If all the products are positive except two 
that are null, the point lies in the vertex associated with the edges whose inner 
products are null. In any other case the point is outside the polygon. 
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3 A Quick Point Location Algorithm 

The method we present here is based on a recursive quaternary partition of the space 
by means of a quadtree data structure. In essence it is not very different from the 
methods presented previously, though it does have some important characteristics. On 
one hand the following method uses a “Bounding Quad-tree Volume, (BQV)” in 
seeking to obtain O(log n) to solve the point location problem as the best methods do, 
but on the other hand it tries to resolve commonly encountered problems with some 
adaptive characteristics to the particular problem. 

Given P as a partition of the space, as for example a polygon, the objective of the 
BQV method is to define a set of two-dimensional intervals, Vi, Ei, Ii, Oi in order to 
define a partition Q of all the space, in such a way that for any query point, we return 
an interval of the partition Q in which the query point is located. If the query point is 
in a box Vi or Ei we can calculate with just a simple operation--in fact an inner 
product--the location of the point regarding the whole polygon P and for points 
located in an interval Ii or Oi  we resolve directly with a simple comparison.. 
Additionally, in order to define an optimum method we should be able to index this 
set of intervals with at least O(log n). 
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Fig. 4. The different types of intervals defined to cover the space; (a) interval Vi, just with a 
vertex of P, (b) interval Ei,  just with an edge of P, (c) interval Ii, wholly inside the polygon, or 
interval Oi, wholly outside the polygon 

 
Although the sizes of the intervals shown in Fig. 4 have been represented with the 
same size, this factor depends on the partition of the space created by the quadtree. 
Note also, that for the case of polygons we define and order the vertices of the 
polygon, for the sake of simplicity of implementation. For the case of traversing 
polygons it is easier to use an array as a storage data structure instead of typical data 
structures for graphs in the case of a general partition. 
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Fig. 5. Creation of a quaternary partition with identification of intervals Vi. (a) Each Vi 
interval identifies in the creation of the quad-tree is marked as Vi interval, in the figure 
shadowed intervals. (b) Intermediate data structure for the creation of the quaternary tree 
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Given a polygon P, the first step is to create a recursive quaternary partition of the 
space for the identification of the Vi intervals. To do that we create a quadtree 
associated to the space in which we embed the polygon with the simple condition that 
any node must have associated either one vertex or zero. In the creation of the 
quadtree, every node of the tree has a list associated with the points inside of its 
associated area as shown in figure 5. Once the tree has been created these lists are not 
useful and can be deleted. 

For the identification of the intervals Ei, once the Vi intervals have been identified 
we proceed to calculate the intervals Ei between each two consecutive Vi intervals as 
shown in Fig. 6. The property we will use for making this calculus is twofold: on one 
hand we will calculate the intersection point between the intervals and the edge 
defined by two consecutive vertices and, on the other hand, we will use 
neighbourhood properties between intervals. 
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Fig. 6. Identification of Ei intervals of the space partition for a polygon P 

 
For the calculus of the successive intersection points among edges and the intervals 
we need to calculate previously the angle B defined between the edge ei-j and the x 
axis. Note that B is an invariant for each Ei interval. After obtaining each intersection 
point we identify the neighbour to that common intersection point as the following Ei 
interval. The process continues until reaching the interval Vi+1. 

For the calculus of the intersection points we start from a Vi interval. For this 
calculus we will define a reference system centred on the same vertex as shown in 
Fig. 7. For knowing at which edge will be the intersection point we will need to 
calculate the angles Ai as shown in Fig. 7. 
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Fig. 7. Space and interval Vi are divided in four areas by the angles A1, A2, A3 and A4 

 
In order to identify the intersection point of the edge Vi-Vi+1 with the sides of the 
interval Vi, we firstly identify the intersection side by comparing the angle B with the 
angles Ai. The angles A1, A2, A3, A4 and B are given by the following formulas, in 
which we have taken into account the negative sense of the axis y as it is usual in 
graphics libraries.  
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Table 1. Calculus of the angle B 

Defining ∆x and ∆y as the differences between the coordinate points of the vertices 
Vi, Vi+1, given by  

xvxv i ..∆x 11 −= +  
yvyv i ..∆y 11 −= +  

 
once we have identified the side of the interval in which the intersection point c lies, 
we are prepared for the particular calculus of the intersection point c. Taking into 
consideration the angles Ai, we identify for each side of the interval Vi a positive part 

as well as a negative one , as indicated in Figure 8. +
iA −

iA
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Fig. 8. Splitting of the sides of the interval Vi 

 
Once identified the side in which the intersection point lies, we explicitly obtain the 
coordinates of the intersection point c. For example, if B is lower than A1 and greater 
or equal to 0 --which means that c lies over  as shown in Fig. 8-- we calculate the 
coordinates of the intersection point c; c.x and c.y, as follows2 

+
1A

 

.x)v-.x(c tan(B)vc.y
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i1i

1

−=
=

 

 
After obtaining the intersection point ci, the following step is to find the interval Ei 
neighbour to Vi on the side of the intersection point ci. Assuming δ is the length of the 
minimum side of any interval of the space partition Q that we have created with the 
quadtree structure, then we can ensure that the point q defined in Table 2 is inside of 
the neighbour Ei. This fact allows us to locate the neighbour interval Ei by simply 
traversing the quadtree in order to locate the interval in which that point q is 
contained. 

 
Side q.x q.y Side q.x q.y 
  +

1A c.x+d/2 c.y   +
3A c.x-d/2 c.y 

  −
1A c.x+d/2 c.y   −

3A c.x-d/2 c.y 

  +
2A c.x c.y-d/2  +

4A  c.x c.y+d/2 

  −
2A c.x c.y-d/2  −

4A  c.x c.y+d/2 

Table 2. Calculus of a point q, inner to the interval Ei neighbour to Vi 

 
                                                           
2 The detailed calculus as well as an implementation of the more relevant algorithms can be 

found in [13] 
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If the interval Ei found, is Vi+1 the calculus process for the intervals Ei that cover the 
edge ViVi+1 has finished, and there is no any interval Ei between the vertices Vi and 
Vi+1, which is the case of vertices V5V6 or V6V1 in Fig. 6. If the interval found is not a 
vertex Vi we mark this interval in the quadtree as interval Ei and we proceed in a 
similar way to calculate the neighbour of this new interval, which shares an 
intersection point. For the calculus of neighbour intervals from an interval Ei we 
consider in each Ei interval, two angles A1 and A2, and four possible sides in which 
the intersection point can lie (see Fig. 9). The reference system now, as is shown in 
Fig. 9, is centred on the same intersection point. 
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Fig. 9 . Definition of reference systems for the calculus of Ei intervals 

 
At the beginning of the process, previous to the identification of the Ei intervals, in 
the identification process of Vi all the intervals of the spatial partition are created and 
labelled as outer intervals to the polygon if they do not correspond to a Vi interval, 
which in practice means to do nothing.  

Once the process for the identification of the Vi intervals and Ei intervals has 
completed, for the labelling of inner intervals to the polygon P we must define what is 
inside and what is outside of P, by defining an inner point of the polygon and after 
that by means of a seed algorithm we will be able to fill the inner space to the polygon 
labelling all the inner intervals. After the process defined what we have, as result, is a 
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partition of the space in which we can find four types of intervals; Vi if the interval 
contains only one and only one vertex of the polygon, Ei if the interval is cut by any 
edge of the polygon, Ii if the interval is wholly inside the polygon and finally Oi if the 
interval is wholly outside the polygon. 

4 Computational Cost 

The cost of BQV algorithm is determined by the access to the interval in which the 
query point is located, plus a constant cost for each interval that in principle we 
ignore. As the intervals are indexed with a quaternary tree, in the average case in 
which we suppose a uniform spatial distribution of the vertex of the polygon over the 
initial space, the average cost of BQV method corresponds to the average height of 
the tree, log(m), where m is the number of intervals, always greater for a polygon but 
in the same order than the number of vertices for a graph.  

However, surprisingly we find that there is no a direct relationship between the 
number of vertices of the polygon and the computational cost required to solve by the 
BQV method. This fact has to do with the adaptability presented by the BQV method. 
Let us calculate the worst case of the cost of the BQV method and we shall see that it 
corresponds to the depth of the tree. Then we will compare for the average case, the 
cost for a regular polygon inside a circle of a given radius. 

The depth of a quadtree for a set of points P in the plane is as maximum 
log(D/d)+3/2, where d is the minimum distance between any two points of P and D is 
the length of the initial square that contains P. 

In a quadtree the length of the side associated to each node is half of the length of 
the parent. In general can be said that the length of the associated square to a node of 
depth i, will be D/2i. On the other hand, the maximum distance between two inner 
points to a square is as maximum the distance of the diagonal, given by  

 

i2
2D  

 
for the area associated to the node of depth i. Take into consideration that an inner 
node of the quadtree has as minimum two points in its interior and the minimum 
distance between two point is d, at level i the inner nodes must satisfy  

 

di2
2D ≥  

 
which implies  

 

1/2log(D/d)d
2Dlogi +=






≤  
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and from the fact that the depth of a quadtree is exactly the maximum of the inner 
nodes plus one, we conclude that as maximum the depth of the quadtree will be  

 
3/2log(D/d)11/2log(D/d) +=++  

 
and therefore the cost of the BQV algorithm, in the worst case, will be as maximum 

 
3/2log(D/d)+  

 
From the previous relationship we observe that if d tends toward zero the maximum 
cost tends to infinity, the more relevant cost on which we must focus attention is the 
average cost, that can be calculated as follows 

 
)c(Q)p(Qc i

i
i∑=  

 
In general it can be proven that for a closed polygon with a number n of vertices this 
cost is finite and corresponds to a small value. So, for example for an regular polygon 
built inside a circle of radius 300 pixels, the average cost with a number of vertices 
over 10000, is on the order of just three comparisons. 

5 Conclusions 

We have presented a new algorithm for the solution of the well-known point location 
problem and for the more specific problem of point-in-polygon determination. Far 
from the O(log n) of other algorithms presented in the literature, we have obtained an 
extraordinary cost that does not depend directly of the number of vertices of the 
polygon for the average case.  

The worst case of the BQV method depends on the factor D/d in which the 
minimum distance between the vertices of the polygon is crucial, though for the 
average case can be demonstrated that the worst cases do not contribute relevantly. 
Although the focus of this paper has been centred on polygons, for simplicity reasons, 
the BQV method can be extended in the same way to any spatial partition.  

Regarding the storage and the building cost, the costs obtained are higher than the 
optimum O(n) obtained for other algorithms for particular cases seen in early sections 
of this paper, but are lower than the O(n2) of other algorithms as for example the slab 
method. The BQV method does not offer an implementation as simple as other 
particular algorithms seen in this paper, but the use of the BQV algorithm could be 
suitable to solve the point-in-polygon problem in cases of high frequency queries and 
typical real-time constraint situations.  
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