
A New Quick Point Location Algorithm

José Poveda, Michael Gould, Arlindo Oliveira*

Departamento de Lenguajes y Sistemas Informáticos
Universitat Jaume I, Castellón, Spain

albalade@uji.es, gould@uji.es

*Departamento de Engenharia Informática. Instituto Superior Técnico
Universidade Técnica de Lisboa, Lisboa, Portugal

aml@inesc-id.pt

Abstract. We present a new quick algorithm for the solution of the well-known
point location problem and for the more specific problem of point-in-polygon
determination. Previous approaches to this problem are presented in the first
sections of this paper. In the remainder of the paper, we present a new quick
location algorithm based on a quaternary partition of the space, as well as its
associated cost and data structures.

1 Introduction

In this paper we present a new quick algorithm for the general solution of the point
location problem1 and the specific solution of the point-in-polygon problem [1] on
which we will focus our attention. Some of the most efficient solutions for the point-
in-polygon problem reduce the solution to that of other fundamental problems in
computational geometry, such as computing the triangulation of a polygon or
computing a trapezoidal partition of a polygon to solve, then, in an efficient way, the
point-location problem for that trapezoidal partition. Two different methods for
solving the point-in-polygon problem have become popular: counting ray-crossings
and computing “winding” numbers. Both algorithms lead to solutions with a less-
than-attractive cost of O(n), however the first one is significantly better than the
second [2]. An implementation comparison by Haines [3] shows the second to be
more than twenty times slower.

Methods of polygon triangulation include greedy algorithms [2], convex hull
differences by Tor and Middleditch [4] and horizontal decompositions [5]. Regarding
solutions for the point-location problem, there is a long history in computational
geometry. Early results are surveyed by Preparata and Shamos [1]. Of all the methods
suggested for the problem, four basically different approaches lead to optimal
O(log(n)) search time, and O(n) storage solutions. These are the chain method by
Edelsbrunner et al. [6], which is based on segment trees and fractional cascading, the

1 The well-known point-location problem could be more appropriately called point-inclusion

problem.

mailto:albalade@uji.es
mailto:gould@uji.es
mailto:aml@inesc-id.pt

2 José Poveda, Michael Gould, Arlindo Oliveira*

triangulation refinement method by Kirkpatrick [7], and the randomised incremental
method by Mulmuley [8]. Recent research has focused on dynamic point location,
where the subdivision can be modified by adding and deleting edges. A survey of
dynamic point location is given by Chiang and Tamassia [9]. Extension beyond two
dimensions of the point-location problem is still an open research topic.

2 Point Location Problems in Simple Cases

Several algorithms are available to determine whether a point lies within a polygon or
not. One of the more universal algorithms is counting ray crossings, which is suitable
for any simple polygons with or without holes. The basic idea of the counting ray
crossings algorithm is as follows:

B

E

D

C

A

L5

L4

L3
L2

L1

Fig. 1. Ray-crossings algorithm

Let L be the scan-line crossing the given point, Lcross is the number of left-edge ray
crossings and Rcross is the number of right-edge ray crossings. First, we need to
determine whether the given point is a vertex of the polygon or not; if not, we
calculate Lcross and Rcross. If the parities of Lcross and Rcross are different (Fig.1,
case B) then this point lies on the edge of the polygon. Otherwise, if Lcross (or
Rcross) is an odd number, (Fig.1 case A) the point must lie inside the polygon. If
Lcross (or Rcross) is an even number (Fig 1, cases C, D, E) the point must lie outside
the polygon.

When the polygon is degraded to a triangle, the above-mentioned problem can be
solved by the following algorithm shown in Fig. 2. We assume the three vertices A, B
and C are oriented counterclockwise. If point P lies inside ABC, then it must lie to the
left of all three vectors AB, BC and CA. Otherwise, p must lie outside ABC. This
algorithm may also be applied to any convex polygon, in principle without holes, if
the vertices of the polygon are ordered counterclockwise or clockwise.

A New Quick Point Location Algorithm 3

•
 P

C

A

•
 P

C

B

B
A

Fig. 2. Conditions for the location of P. (a) P lies to the left of all vectors AB, BC an CD. (b)
P lies to the right of vector BC

An equivalent algorithm is based on the inner product among the vectors defined by
the viewpoint of the query point and the normal vectors of the edges. This algorithm
can be used for convex polygons, and extended for the degenerate case of convex
polygons with holes in its interior. The main criterion of this algorithm is based on the
analysis of the sign of the inner products among the normal vectors of the edges of the
polygon, with the unitary vector whose direction is determined by the query point and
any point of the edge (normally the middle point of the edge is taken).

+

 +

+

-

+
+

+

+ + +

 (b) (a)

Fig. 3. Inner product as a criterion to determine the point-in-polygon problem for the case of
convex polygons

If all the inner products are positive, the query point lies in the interior of the polygon,
whereas if all the products are positive except one that is null, the point could lie on
the edge whose associated product is null. If all the products are positive except two
that are null, the point lies in the vertex associated with the edges whose inner
products are null. In any other case the point is outside the polygon.

4 José Poveda, Michael Gould, Arlindo Oliveira*

3 A Quick Point Location Algorithm

The method we present here is based on a recursive quaternary partition of the space
by means of a quadtree data structure. In essence it is not very different from the
methods presented previously, though it does have some important characteristics. On
one hand the following method uses a “Bounding Quad-tree Volume, (BQV)” in
seeking to obtain O(log n) to solve the point location problem as the best methods do,
but on the other hand it tries to resolve commonly encountered problems with some
adaptive characteristics to the particular problem.

Given P as a partition of the space, as for example a polygon, the objective of the
BQV method is to define a set of two-dimensional intervals, Vi, Ei, Ii, Oi in order to
define a partition Q of all the space, in such a way that for any query point, we return
an interval of the partition Q in which the query point is located. If the query point is
in a box Vi or Ei we can calculate with just a simple operation--in fact an inner
product--the location of the point regarding the whole polygon P and for points
located in an interval Ii or Oi we resolve directly with a simple comparison..
Additionally, in order to define an optimum method we should be able to index this
set of intervals with at least O(log n).

 (a) (b) (c)

vi-1

ni-1,i
ni,i+1

vi+1

vi

Fig. 4. The different types of intervals defined to cover the space; (a) interval Vi, just with a
vertex of P, (b) interval Ei, just with an edge of P, (c) interval Ii, wholly inside the polygon, or
interval Oi, wholly outside the polygon

Although the sizes of the intervals shown in Fig. 4 have been represented with the
same size, this factor depends on the partition of the space created by the quadtree.
Note also, that for the case of polygons we define and order the vertices of the
polygon, for the sake of simplicity of implementation. For the case of traversing
polygons it is easier to use an array as a storage data structure instead of typical data
structures for graphs in the case of a general partition.

A New Quick Point Location Algorithm 5

V1

V3

V4

V5V6

V7

V8

V9

V2

(a)

v6

v7 v8 v9 v1 v2

v9 v8 v7

v5 v4

v2 v3

v6

v1

v8 v9 v7 v5 v4 v3 v2

root

(b)

Fig. 5. Creation of a quaternary partition with identification of intervals Vi. (a) Each Vi
interval identifies in the creation of the quad-tree is marked as Vi interval, in the figure
shadowed intervals. (b) Intermediate data structure for the creation of the quaternary tree

6 José Poveda, Michael Gould, Arlindo Oliveira*

Given a polygon P, the first step is to create a recursive quaternary partition of the
space for the identification of the Vi intervals. To do that we create a quadtree
associated to the space in which we embed the polygon with the simple condition that
any node must have associated either one vertex or zero. In the creation of the
quadtree, every node of the tree has a list associated with the points inside of its
associated area as shown in figure 5. Once the tree has been created these lists are not
useful and can be deleted.

For the identification of the intervals Ei, once the Vi intervals have been identified
we proceed to calculate the intervals Ei between each two consecutive Vi intervals as
shown in Fig. 6. The property we will use for making this calculus is twofold: on one
hand we will calculate the intersection point between the intervals and the edge
defined by two consecutive vertices and, on the other hand, we will use
neighbourhood properties between intervals.

2-1
1E

2-1
2E 2-1

3EV6

v5 V4
V3

V2

V1

Fig. 6. Identification of Ei intervals of the space partition for a polygon P

For the calculus of the successive intersection points among edges and the intervals
we need to calculate previously the angle B defined between the edge ei-j and the x
axis. Note that B is an invariant for each Ei interval. After obtaining each intersection
point we identify the neighbour to that common intersection point as the following Ei
interval. The process continues until reaching the interval Vi+1.

For the calculus of the intersection points we start from a Vi interval. For this
calculus we will define a reference system centred on the same vertex as shown in
Fig. 7. For knowing at which edge will be the intersection point we will need to
calculate the angles Ai as shown in Fig. 7.

A New Quick Point Location Algorithm 7

 y

x

ei-j

vi+1

vi-1

vi

A1 A2

B

A4
A3

Fig. 7. Space and interval Vi are divided in four areas by the angles A1, A2, A3 and A4

In order to identify the intersection point of the edge Vi-Vi+1 with the sides of the
interval Vi, we firstly identify the intersection side by comparing the angle B with the
angles Ai. The angles A1, A2, A3, A4 and B are given by the following formulas, in
which we have taken into account the negative sense of the axis y as it is usual in
graphics libraries.

 0>∆y 0<∆y

0>∆x

x
y

atan 2B
∆
∆

−= π

x
y

atan B
∆
∆

=

0<∆x

x
y

atan B
∆
∆

−= π

x
y

atan B
∆
∆

+= π

Table 1. Calculus of the angle B

Defining ∆x and ∆y as the differences between the coordinate points of the vertices
Vi, Vi+1, given by

xvxv i ..∆x 11 −= +
yvyv i ..∆y 11 −= +

once we have identified the side of the interval in which the intersection point c lies,
we are prepared for the particular calculus of the intersection point c. Taking into
consideration the angles Ai, we identify for each side of the interval Vi a positive part

as well as a negative one , as indicated in Figure 8. +
iA −

iA

8 José Poveda, Michael Gould, Arlindo Oliveira*

+
1A

−
2A +

2A

+
3A

−
3A

−
4A +

4A

−
1A

vi+1

c

c4
c3

c2 c1

vi

Fig. 8. Splitting of the sides of the interval Vi

Once identified the side in which the intersection point lies, we explicitly obtain the
coordinates of the intersection point c. For example, if B is lower than A1 and greater
or equal to 0 --which means that c lies over as shown in Fig. 8-- we calculate the
coordinates of the intersection point c; c.x and c.y, as follows2

+
1A

.x)v-.x(c tan(B)vc.y
.xcc.x

i1i

1

−=
=

After obtaining the intersection point ci, the following step is to find the interval Ei
neighbour to Vi on the side of the intersection point ci. Assuming δ is the length of the
minimum side of any interval of the space partition Q that we have created with the
quadtree structure, then we can ensure that the point q defined in Table 2 is inside of
the neighbour Ei. This fact allows us to locate the neighbour interval Ei by simply
traversing the quadtree in order to locate the interval in which that point q is
contained.

Side q.x q.y Side q.x q.y
 +

1A c.x+d/2 c.y +
3A c.x-d/2 c.y

 −
1A c.x+d/2 c.y −

3A c.x-d/2 c.y

 +
2A c.x c.y-d/2 +

4A c.x c.y+d/2

 −
2A c.x c.y-d/2 −

4A c.x c.y+d/2

Table 2. Calculus of a point q, inner to the interval Ei neighbour to Vi

2 The detailed calculus as well as an implementation of the more relevant algorithms can be

found in [13]

A New Quick Point Location Algorithm 9

If the interval Ei found, is Vi+1 the calculus process for the intervals Ei that cover the
edge ViVi+1 has finished, and there is no any interval Ei between the vertices Vi and
Vi+1, which is the case of vertices V5V6 or V6V1 in Fig. 6. If the interval found is not a
vertex Vi we mark this interval in the quadtree as interval Ei and we proceed in a
similar way to calculate the neighbour of this new interval, which shares an
intersection point. For the calculus of neighbour intervals from an interval Ei we
consider in each Ei interval, two angles A1 and A2, and four possible sides in which
the intersection point can lie (see Fig. 9). The reference system now, as is shown in
Fig. 9, is centred on the same intersection point.

2A +
1Aci 1A

2A

3A

−
1A

c c2

c3
c4

A3
A4

B

A2 A1
vi+1

vi

vi-1

vi+1

Fig. 9 . Definition of reference systems for the calculus of Ei intervals

At the beginning of the process, previous to the identification of the Ei intervals, in
the identification process of Vi all the intervals of the spatial partition are created and
labelled as outer intervals to the polygon if they do not correspond to a Vi interval,
which in practice means to do nothing.

Once the process for the identification of the Vi intervals and Ei intervals has
completed, for the labelling of inner intervals to the polygon P we must define what is
inside and what is outside of P, by defining an inner point of the polygon and after
that by means of a seed algorithm we will be able to fill the inner space to the polygon
labelling all the inner intervals. After the process defined what we have, as result, is a

10 José Poveda, Michael Gould, Arlindo Oliveira*

partition of the space in which we can find four types of intervals; Vi if the interval
contains only one and only one vertex of the polygon, Ei if the interval is cut by any
edge of the polygon, Ii if the interval is wholly inside the polygon and finally Oi if the
interval is wholly outside the polygon.

4 Computational Cost

The cost of BQV algorithm is determined by the access to the interval in which the
query point is located, plus a constant cost for each interval that in principle we
ignore. As the intervals are indexed with a quaternary tree, in the average case in
which we suppose a uniform spatial distribution of the vertex of the polygon over the
initial space, the average cost of BQV method corresponds to the average height of
the tree, log(m), where m is the number of intervals, always greater for a polygon but
in the same order than the number of vertices for a graph.

However, surprisingly we find that there is no a direct relationship between the
number of vertices of the polygon and the computational cost required to solve by the
BQV method. This fact has to do with the adaptability presented by the BQV method.
Let us calculate the worst case of the cost of the BQV method and we shall see that it
corresponds to the depth of the tree. Then we will compare for the average case, the
cost for a regular polygon inside a circle of a given radius.

The depth of a quadtree for a set of points P in the plane is as maximum
log(D/d)+3/2, where d is the minimum distance between any two points of P and D is
the length of the initial square that contains P.

In a quadtree the length of the side associated to each node is half of the length of
the parent. In general can be said that the length of the associated square to a node of
depth i, will be D/2i. On the other hand, the maximum distance between two inner
points to a square is as maximum the distance of the diagonal, given by

i2
2D

for the area associated to the node of depth i. Take into consideration that an inner
node of the quadtree has as minimum two points in its interior and the minimum
distance between two point is d, at level i the inner nodes must satisfy

di2
2D ≥

which implies

1/2log(D/d)d
2Dlogi +=

≤

A New Quick Point Location Algorithm 11

and from the fact that the depth of a quadtree is exactly the maximum of the inner
nodes plus one, we conclude that as maximum the depth of the quadtree will be

3/2log(D/d)11/2log(D/d) +=++

and therefore the cost of the BQV algorithm, in the worst case, will be as maximum

3/2log(D/d)+

From the previous relationship we observe that if d tends toward zero the maximum
cost tends to infinity, the more relevant cost on which we must focus attention is the
average cost, that can be calculated as follows

)c(Q)p(Qc i

i
i∑=

In general it can be proven that for a closed polygon with a number n of vertices this
cost is finite and corresponds to a small value. So, for example for an regular polygon
built inside a circle of radius 300 pixels, the average cost with a number of vertices
over 10000, is on the order of just three comparisons.

5 Conclusions

We have presented a new algorithm for the solution of the well-known point location
problem and for the more specific problem of point-in-polygon determination. Far
from the O(log n) of other algorithms presented in the literature, we have obtained an
extraordinary cost that does not depend directly of the number of vertices of the
polygon for the average case.

The worst case of the BQV method depends on the factor D/d in which the
minimum distance between the vertices of the polygon is crucial, though for the
average case can be demonstrated that the worst cases do not contribute relevantly.
Although the focus of this paper has been centred on polygons, for simplicity reasons,
the BQV method can be extended in the same way to any spatial partition.

Regarding the storage and the building cost, the costs obtained are higher than the
optimum O(n) obtained for other algorithms for particular cases seen in early sections
of this paper, but are lower than the O(n2) of other algorithms as for example the slab
method. The BQV method does not offer an implementation as simple as other
particular algorithms seen in this paper, but the use of the BQV algorithm could be
suitable to solve the point-in-polygon problem in cases of high frequency queries and
typical real-time constraint situations.

12 José Poveda, Michael Gould, Arlindo Oliveira*

6 Acknowledgements

This work was partially supported by European Union projects Esprit 25029
(GeoIndex) and IST-2001-37724 (ACE-GIS). We would like to thank in particular
Dr. Antonio Rito da Silva from INESC-ID, Universidade Técnica de Lisboa for the
unconditional support given during the development of this work.

7 References

1. Preparata, Franco and Shamos, Michael. “Computational geometry, an introduction”,
Springer-Verlag 1985.

2. O’Rourke, Joseph. “Computational geometry in C”, Cambridge University Press 2001.
3. Haines, Eric.. “Point in polygon strategies”. In Paul Heckbert, editor, Graphics Gems IV,

pages 24-46. Academic Press, Boston, 1994.
4. Tor, S. B: and Middleditch, A. E.. “Convex decomposition of simple polygons”. ACM

Trans. on Graphics, 3(4):244-265, 1984.
5. Seidel, R.. “A simple and fast incremental randomised algorithm for computing trapezoidal

decomposition and for triangulating polygons”, Comput. Geom. Theory Appl. 1991.
6. Edelsbrunner, H., Guibas, L. J. and Stolfi, J., “Optimal point location in a monotone

subdivision”, SIAM J. Comput.1986.
7. Kirkpatrick, D. G., “Optimal search in planar subdivisions”, SIAM J. Comput., 1983.
8. Mulmuley, K. and Schwarzkopf, O.. “ Randomized algorithms”, in J. E. Goodman and J.

O’Rourke, eds., Handbook of Discrete and Computational Geometry, CRC Press LLC, Boca
Raton, 1997.

9. Chiang, Yi-Jen, Tamassia, Roberto. “Dynamization of the trapezoid method for planar point
location”. Seventh annual symposium on computational geometry. ACM Press, New York,
NY, USA, 1991.

10. de Berg, M., van Kreveld M., Overmars, M., Schwarzkopf, O.. “Computational Geometry,
Algorithms and applications”, Springer-Verlag 2000, Second Edition.

11. Dobkin, D. P. and Lipton, R. J. “Multidimensional searching problems”, SIAM J. Comput.,
1976.

12. Kirkpatrick, D. G., Klawe, M. M. and Tarjan R. E. “Polygon triangulation in O(n log log n)
time with simple data structures”, In Proc. 6th Annu. ACM Sympos. Comput. Geom., 1990.

13. Poveda, J.. “Contributions to the Generation, Visualisation and Storage of Digital Terrain
Models: New Algorithms and Spatial Data Structures”, PhD. dissertation, Universitat Jaume
I, Castellon Spain. 2004.

