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Abstract. Public key cryptography has been invented to overcome some
key management problems in open networks. Although nearly all aspects
of public key cryptography rely on the existence of trapdoor one-way
functions, only a very few candidates of this primitive have been ob-
served yet. In this paper, we introduce a new trapdoor one-way permu-
tation based on the hardness of factoring integers of p2q-type. We also
propose a variant of this function with a different domain that provides
some advantages for practical applications. To confirm this statement,
we develop a simple hybrid encryption scheme based on our proposed
trapdoor permutation that is CCA-secure in the random oracle model.
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1 Introduction

Informally, a one-way permutation is a bijective function that is “easy” to com-
pute but “hard” to invert. If there is some token of information that makes the
inversion also an easy task, then we call the function trapdoor. Trapdoor one-
way permutations are used as building blocks for various kind of cryptographic
schemes, e.g. asymmetric encryption, digital signatures, and private information
retrieval. There is no doubt that the concept of trapdoor one-way permutations
is of particular importance especailly in public key cryptography. Nevertheless,
just a relatively small number of promising candidates can be found in the litera-
ture. Promising means that the one-wayness of the trapdoor permutation can be
reduced to a presumed hard problem such as the integer factorization problem.
As not even the pure existence of one-way functions can be proven today1, this
kind of provable secure trapdoor permutations is the best alternative solution at
present.

1.1 Previous Work

The oldest and still best known candidate trapdoor permutation is the RSA
function, i.e. modular exponentiation with exponents coprime to the order of
1 Interestingly, the current knowledge in complexity theory does not even allow to

prove the existence of one-way functions assuming P 6= NP.



the multiplicative residue group [RSA78]. The factors of the modulus can serve
as a trapdoor to invert the RSA function, but the opposite direction is unknown.
Thus RSA is not provably equivalent to factoring, and there are serious doubts
that this equivalence holds indeed [BV98]. Anyway, as the RSA problem has
been extensively studied for decades, nowadays inverting the RSA function is
widely accepted as a hard problem itself. Slightly later, M. O. Rabin observed
that the special case of modular squaring can be reduced to factoring [Rab79].
Modular squaring, however, is not a permutation, it is 4-to-1 (if a two-factor
modulus is used). This can be overcome: squaring modulo a Blum integer2 n is a
permutation of the quadratic residues modulo n. The resulting trapdoor permu-
tation is referred to as Blum-Williams function in the literature, and an extension
(exponent 2e, where e is coprime to λ(n)) is denoted Rabin-Williams function.
More factorization-based trapdoor permutations were proposed by Kurosawa et
al [KIT88], Paillier [Pai99a,Pai99b], and Galindo et al [GMMV03]. A survey on
trapdoor permutations including some less established candidates can be found
in [PG97].

1.2 Our Contribution

In this paper, we introduce a rather simple trapdoor one-way permutation equiv-
alent to factoring integers of the shape n = p2q. As many previous candidates,
our proposed trapdoor function is also a variant of the RSA function, namely
in our case the public exponent is the same as the modulus n = p2q. With
the domain Z×n the function x 7→ xn mod n is p-to-one, but restricted to the
subgroup of n-th residues modulo n, it is indeed a permutation. This property
is similar to the Blum-Williams function (where n-th residues are replaced by
quadratic residues). Analogical to the quadratic residuosity assumption, we as-
sume that without knowledge of the factorization of n, it is hard to distinguish
n-th residues from non-residues, whereas it is efficient if the factors of n are
known. However, the restricted domain has some shortcomings that also ap-
ply to Blum-Williams and Rabin-Williams functions: in practical applications,
the data has to be preprocessed into the set of n-th resp. quadratic residues.
Supposably this is one reason why the RSA function (with domain Zn) is by
far more widespread in commercial applications than Rabin-type functions. But
fortunately, we can prove that for n of p2q-type the set of n-th residues is iso-
morphic to Z×pq, thus our proposed trapdoor function is also a bijection between
the easy-to-handle domain Z×pq and the set of n-th residues. No such property is
known for Rabin-type functions. Indeed, we can show that our proposed trap-
door permutation easily provides practical applications by constructing a hy-
brid encryption scheme based on Abe et al’s Tag-KEM/DEM framework that is
chosen-ciphertext (CCA) secure in the random oracle model.

2 A Blum integer is a product of two distinct primes each congruent to 3 modulo 4.
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2 A Trapdoor One-way Permutation Equivalent to
Factoring

In this section, we introduce a new trapdoor one-way permutation. We also
give a short account on its mathematical background in order to deepen the
understanding about the special properties of the group Z×n for n of p2q-type.

2.1 Notations and definitions

Let n be a positive integer. We write Zn for the ring of residue classes modulo
n, and Z×n for its multiplicative group, i.e. the set of invertible elements modulo
n. For x ∈ Z×n , ordn(x) denotes the multiplicative order of x modulo n, i.e. the
smallest positive integer k with xk = 1 mod n. Furthermore, ϕ : N → N means
Euler’s totient function.
For any homomorphism h, we denote the kernel and the image with ker(h) and
im(h), respectively.
As usual, a probability Pr(k) is called negligible if Pr(k) decreases faster than
the reciprocal of any polynomial in k, i.e. ∀c∃kc(k > kc ⇒ Pr(k) < k−c).
Unless indicated otherwise, all algorithms are randomized, but we don’t men-
tion the random coins as an extra input. If A is a probabilistic algorithm, then
A(y1, . . . , yn) refers to the probability space which to the string x assigns the
probability that A on input y1, . . . , yn outputs x. For any probability space S,
the phrase x ←[ S denotes that x is selected at random according to S. In par-
ticular, if S is a finite set, then x←[ S is the operation of picking x uniformly at
random from S.
Finally, we write |n|2 for the bit-length of the integer n.
For the sake of completeness, we formally define the notion of trapdoor one-way
permutation.

Definition 1 (Collection of trapdoor one-way permutations). Let I be
a set of indices such that for each i ∈ I the sets Di and Let F = {fi|fi : Di →
D̃i}i∈I be a family of permutations. Then F is said to be a collection of trapdoor
one-way permutations if

1. There exists a polynomial p and a probabilistic polynomial time key generator
KeyGen such that KeyGen on input 1k (the security parameter) outputs a pair
(i, ti) where i ∈ {0, 1}k ∩ I, |ti|2 < p(k). The data ti is denoted the trapdoor
information of fi.

2. The domains Di are samplable: There exists a probabilistic polynomial time
sampling algorithm S that on input i ∈ I outputs x ∈ Di uniformly chosen
at random.

3. The members of F are easy to evaluate: There exists a deterministic poly-
nomial time evaluator Eval that on input i ∈ I, x ∈ Di outputs fi(x).

4. Inverting the members of F is easy if the trapdoor information is known:
There exists a deterministic polynomial time inverter Inv such that for all
x ∈ Di we have Inv(ti, fi(x)) = x.
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5. Inverting the members of F is hard if the trapdoor information is unknown:
For every probabilistic polynomial time algorithm AI the following probability
is negligible in k:

Pr[(i, ti)←[ 1k;x←[ Di : AI(fi(x)) = x].

Note that in contrast to strictly mathematical parlance we do not require that
permutations are maps onto itself.

2.2 Our proposed trapdoor one-way permutation

Throughout this section, let p, q be primes with p - q− 1 and q - p− 1 and define
n = p2q.

All of our constructions are based on the following group homomorphism:

Definition 2 (The homomorphism h). Let p, q be primes with p - q − 1, q -
p− 1 and n = p2q. Then we define:

h : Z×n −→ Z×n
x 7→ xn mod n

The reason why we don’t use standard RSA moduli is the observation that in
Z×n with n = p2q there are members of order p:

Lemma 1. Let p, q be primes with p - q − 1 and n = p2q. Define the set S as

S := {x ∈ Z×n |x = 1 + kpq for an integer k, 0 < k < p}.

Then S consists of exactly the elements of multiplicative order p in Z×n .

Proof. Let x be an element of multiplicative order p in Z×n . Then we have

xp = 1 mod n⇒ (xp = 1 mod p ∧ xp = 1 mod q)
⇒ (x = 1 mod p ∧ x = 1 mod q).

Hence pq|x− 1 must hold, and we conclude x ∈ S.
On the other hand, from the binomial expansion formula it is obvious that for
all x ∈ S we have xp = 1 mod n ∧ x 6= 1, thus the assertion follows.

From Lemma 1 we can easily deduce that each element of order p in Z×n re-
veals the factorization of n. On this fact we will base the one-wayness of our
proposed trapdoor permutations. Next, we analyze the relationship between the
homomorphism h and the set S:

Lemma 2. Let h and S be defined as above. Then we have

ker(h) = {1} ∪ S.
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Proof. Note that as p is the only non-trivial common factor of n and ϕ(n) =
p(p− 1)(q − 1), we must have

xn = 1 mod n ⇐⇒ x = 1 ∨ ordn(x) = p

Hence the kernel of h consists of 1 and exactly the elements of multiplicative
order p in Z×n , i.e the elements of S as defined in Lemma 1.

As the magnitude of the kernel of h is exactly p, we obtain

Corollary 1. The homomorphism h as defined above is p-to-1.

Now we will prove that h is collision-resistant, because a collision leads to a
non-trivial element of ker(h).

Theorem 1. For x, y ∈ Z×n we have

xn = yn mod n ⇐⇒ h(x) = h(y) ⇐⇒ x = y mod pq.

Proof. “if”: Let y = x + kpq for k ∈ Z. Then, (x + kpq)n = xn + nxn−1kpq =
xn mod n.

“only if”: xn = yn mod n leads to xy−1 ∈ ker(h), consequently xy−1 = 1 mod
pq using Lemma 1 and Lemma 2.

Thus we have

Corollary 2. If factoring integers of the shape p2q is hard, then the homomor-
phism h is collision-resistant.

Proof. Assume thatA is a polynomial time algorithm that on input n determines
x, y ∈ Z×n with x 6= y and h(x) = h(y). From Theorem 1 we conclude gcd(x −
y, n) = pq, which completely reveals the factorization of n.

Next, we formally define the set of n-th residues modulo n.

Definition 3 (N-R(n)). Let N-R(n) = {x ∈ Z×n |x = yn mod n for a y ∈ Z×n } =
im(h) denote the set of the n-th residues modulo n.

N-R(n) is a subgroup of Z×n of order (p− 1)(q− 1) (as there are exactly ϕ(pq) =
(p − 1)(q − 1) pairwise different n-th residues modulo n, namely the elements
{xn mod n|x ∈ Z×pq}).

Now we can state the main results of this section:

Theorem 2. 1. Let I = {n|n = p2q, |p|2 = |q|2, p - q − 1, q - p − 1} be a set
of indices. The family FN-R = {f (n)

N-R}n∈I is a collection of trapdoor one-way
permutations, where f

(n)
N-R is defined as

f
(n)
N-R : N-R(n)→ N-R(n)

x 7→ xn mod n.
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2. Let I be defined as above. The family Fpq = {f (n)
pq }n∈I is a collection of

trapdoor one-way permutations, where f
(n)
pq is defined as

f (n)
pq : Z×pq → N-R(n)

x 7→ xn mod n.

In both cases, the trapdoor is the factorization of n and the one-wayness is based
on the factorization assumption. For individual members, we omit the superscript
(n) whenever it is clear from the context.

Proof. 1. We first show that the fN-R are indeed permutations. Define d =
n−1 mod ϕ(pq) (note that gcd(n, ϕ(pq)) = 1). Let x be an element of N-R(n),
i.e. x = yn mod n for an appropriate y ∈ Z×n . Then we have (xn)d = yn2d =
x mod n, because of n2d = n mod ϕ(n) (equality holds modulo p and modulo
ϕ(pq)). Thus, x 7→ xn mod n is a permutation of N-R(n). Properties 1. to 3.
of Definition 1 are obviously fulfilled. It is clear that d (resp. the factorization
of n) can be used as a trapdoor to invert fN-R. The one-wayness (property
5.) is a consequence of Corollary 2: To factor n with access to an oracle that
inverts fN-R, we choose an element x ∈ Z×n at random and query the oracle
on h(x) = xn mod n. With probability 1− 1/p we have x 6∈ N-R(n) and the
oracle will answer x′ ∈ N-R(n) with x 6= x′ mod n such that x and x′ collide
under h. Hence gcd(x− x′, n) = pq reveals the factorization of n.

2. Define d as above. Then it is easy to see that (fpq(x))d = x mod pq holds for
all x ∈ Zpq. Thus fpq is a bijection. The remaining properties can be shown
along the lines of the proof given above.

Remark 1. The fact that modular exponentiation with n = p2q can be inverted
uniquely modulo pq has been implicitely exploited in [Pai99b], where P. Paillier
introduced a trapdoor permutation based on the Okamoto-Uchiyama trapdoor
mechanism. However, the results and the proof techiques used in [Pai99b] are
substantial different from our proposal.

We want to point out the similarities among exponentiation modulo n = p2q and
Rabin-type modular squaring. In both cases, we have a group homomorphism
with a non-trivial kernel. Moreover, one-wayness holds because each non-trivial
kernel element reveals the factorization of the modulus. Obviously, the Rabin-
Williams permutation on quadratic residues corresponds to our permutation
fN-R on n-th residues. In the case of modular squaring, however, there is no ana-
logue to the bijection fpq. The latter is interesting for practical applications, as
no preprocessing into the set of n-th residues is necessary. In particular, fpq can
be used to encrypt arbitrary strings like keys. We provide an application in Sec-
tion 3. Further advantages of our proposal are due to the fact that the magnitude
of the kernel is larger. For instance, it is possible to construct fail-stop signature
schemes [SS04] and trapdoor commitments [SST05] from the homomorphism
h. To emphasize the analogy to modular squaring even more, we assume that
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without knowledge of the factors of n distinguishing N-R(n) from Z×n is hard3

(cf. the well-known quadratic residuosity assumption). Given p and q, however,
deciding n-th residuosity is efficient.

Theorem 3. For all x ∈ Z×n , x > 1 we have

x ∈ N-R(n) ⇐⇒ xp−1 = 1 mod p2.

Proof. See Appendix A.

3 An Exemplary Application: Chosen-ciphertext Secure
Hybrid Encryption

Although the concept of public key cryptography (aka asymmetric cryptogra-
phy) is pretty appealing and has many organizational advantages, secret key
cryptography (aka symmetric cryptography) is still much more efficient. Thus
for practical applications the combination of both concepts, i.e. hybrid encryp-
tion is quite popular.

In this section, we will prove that our proposed trapdoor function is not only
of theoretical interest by constructing a simple chosen-ciphertext secure hybrid
encryption scheme as an exemplary application. In particular, we show that our
novel scheme offers notable advantages compared to the members of the well-
known EPOC family [FKM+,OP00]. We choose these schemes as a candidate
because they all rely on the Okamoto-Uchiyama trapdoor mechanism that like
ours is based on the hardness of factoring integers n = p2q [OU98]. However, as
EPOC-1 has a worse security reduction than EPOC-2 and a similar performance,
we focus on EPOC-2 and EPOC-3.

3.1 The Okamoto-Uchiyama trapdoor mechanism and EPOC-2/3

For the sake of self-containedness of this paper, we briefly sketch the Okamoto-
Uchiyama trapdoor mechanism (see [OU98] for details). Let n be of the shape
n = p2q for two large primes p, q. Consider the Sylow group Γp = {x ∈ Zp2 |x =
1 mod p} of Z×p2 . The crucial observation is that the L-function defined on Γp

as For fixed h ∈ N-R(n) and g ∈ Z×n with p| ordp2(g) the Okamoto-Uchiyama
encryption of m ∈ {0, 1, . . . , p− 1} is as follows: choose randomness r ∈ Zn and
compute c = gmhr mod n. If p is known, then m can be recovered from c in the
following way: c′ = cp−1 mod p2, gp = gp−1 mod p2,m = L(c′)L(gp)−1 mod p.
The correctness is deduced from the additive homomorphic properties of the
L-function because we have c′ = gm

p mod p2 and gp ∈ Γp. In [OU98] it is shown
that breaking the one-wayness of this scheme is as hard as factoring the modulus.

3 In case of RSA modulus n, this assumption is known as Decisional Composite Resid-
uosity Assumption, and it is the basis for the semantic security of Paillier’s homo-
morphic encryption scheme [Pai99a].

7



EPOC-3 is obtained by applying the REACT-conversion [OP01] to the Okamoto-
Uchiyama encryption scheme. The REACT-conversion builds an CCA-secure (in
the random oracle model) hybrid encryption scheme from any one-way-PCA se-
cure asymmetric encryption scheme combined with a symmetric cryptosystem se-
mantically secure against passive attacks. Here, PCA denotes plaintext-checking
attack. In this model, the adversary has access to an oracle that on input a
message m and a ciphertext c answers if c is a possible encryption of m. Of
course, this oracle is only helpful if the encryption is probabilistic, otherwise
the adversary can answer the queries himself. Thus, in the deterministic sce-
nario, one-wayness-PCA is equivalent to one-wayness under the weakest attack,
i.e. chosen-plaintext-attack (CPA). The benefit of REACT is that the security
reduction is tight and that the decryption process is very fast, as only the compu-
tation of a single hash-value is necessary to check if the ciphertext is well-formed.
In previous conversion techniques, a costly re-encryption was necessary to fulfill
this purpose. In the case of EPOC-3, note that although the one-wayness of
the Okamoto-Uchiyama encryption is equivalent to factoring integers p2q, the
security of the converted scheme is only based on the probably stronger Gap-
High-Residuosity assumption. This is due to the fact that Okamoto-Uchiyama
is probabilistic and thus one-way-PCA is not equivalent to one-way-CPA4.

EPOC-2 is the outcome of combining the Okamoto-Uchiyama encryption and
a semantically secure (against passive adversaries) symmetric encryption scheme
using the Fujisaki-Okamoto conversion technique [FO99]. In contrast to EPOC-
3, EPOC-2 is CCA secure under the p2q-factoring assumption in the ROM.
Although in general the security reduction of the Fujisaki-Okamoto conversion
technique is not very tight, Fujisaki observed a tight reduction proof tailored
to the special application EPOC-2 [Fuj01]. A disadvantage of EPOC-2 is that
in the decryption phase a re-encryption is necessary as an integrity check. For
efficiency reasons, this re-encryption is only performed modulo q instead mod-
ulo n (accepting a small error probability). Nevertheless, the decryption is less
efficient than in case of EPOC-3. There is also a second drawback due to the
re-encryption: poor implementation makes EPOC-2 vulnerable against reject-
timing attacks [ST03,Den02]. In this attack, the adversary can find the secret
key if he is able to distinguish the two different kinds of rejections of invalid
ciphertexts (if the enciphered text does not meet length restrictions on the one
hand, or if the re-encryption test fails on the other hand). As the re-encryption
involves the costly public key operations and hence takes a suitable amount of
time, careless implementation makes it possible for an adversary to distinguish
between the two cases by measuring the time of rejection.

4 One could ask why the randomization is not removed before applying REACT (this
would lead to the enciphering c = gm mod n, and the same decryption as in the orig-
inal scheme). But note that in this case, we cannot reduce one-wayness to factoring
as before, because the distributions of {gm mod n|m > p} and {gm mod n|m < p}
are not necessarily the same.
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3.2 The Tag-KEM/DEM framework for hybrid encryption

Beside the technique of applying specific generic constructions to suitable asym-
metric and symmetric primitives, a more general solution of hybrid encryption
has been introduced by Cramer and Shoup in [CS04]. In this paper, Cramer and
Shoup formalize the so-called KEM/DEM framework where KEM is a prob-
abilistic asymmetric key-encapsulation mechanism, and DEM is a symmetric
encryption scheme (a data encapsulation mechanism) used to encrypt messages
of arbitrary length with the key given by the KEM. Needless to say, such combi-
nations of public and secret key schemes have been folklore for years, but Cramer
and Shoup for the first time gave a rigorously analyzed formal treatment of this
subject. Note that a KEM is not the same as a key agreement protocol: the
encapsulated key is designated to be used once only, therefore the DEM is only
required to be secure in the one-time scenario. For more details on security def-
initions and requirements the reader is referred to [CS04]. Roughly speaking, if
both the KEM and the DEM part are CCA-secure, then the same holds for the
whole KEM/DEM scheme.

At this year’s Eurocrypt, Abe et al enhanced Cramer and Shoup’s framework
by introducing the notion of a Tag-KEM, which is a KEM equipped with a spe-
cial piece of information, the tag [AGK05]. In their novel framework for hybrid
encryption, this tag as part of an CCA-secure Tag-KEM is assigned to protect
the non-malleability of the DEM part. Consequently, for the CCA-security of
the whole Tag-KEM/DEM hybrid scheme with an CCA-secure Tag-KEM, it is
only required that the DEM part is secure against passive adversaries. This is an
obvious improvement compared to the KEM/DEM framework, but the flip-side
of the coin is that proving a Tag-KEM to be CCA-secure is somewhat more
involved than the analogue proof for a “plain” KEM. In [AGK05,AGKS05], the
authors provide some generic constructions for Tag-KEMs built from combina-
tions of primitives like KEM, MAC, hash-functions and public key encryption.

In the following, we construct a new Tag-KEM based on our proposed trap-
door permutation and prove its CCA-security in the ROM. Then we show how
this leads to a CCA-secure hybrid encryption scheme in the Tag-KEM/DEM
framework. Finally, we compare this novel scheme with EPOC-2/3.

3.3 The proposed Tag-KEM

In [AGK05,AGKS05], the notion of Tag-KEM is formally defined. Here – to
prevent redundancy – we only give the concrete description of our proposed
Tag-KEM that, in our opinion, should be self-explanatory.

TKEM.Gen(1k): Let k be a security parameter. Choose two distinct k bit
primes p, q with p - q − 1, q - p− 1 such that each of p− 1, q − 1 has a large
prime factor5. Build the product n = p2q, compute d = n−1 mod ϕ(pq) and

5 meaning that the bit-length of p− 1 (resp. q − 1) divided through its largest prime
factor is O(log k)
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define rLen = 2k − 2. Select a key derivation function KDF that maps bit-
strings into the key-space of the designated DEM and a hash-function H,
which outputs bit-strings of length hashLen. Return a pair (pk, sk) of public
and secret key, where pk = (n, rLen,KDF,H) and sk = (d, p, q).

TKEM.Key(pk): Choose ω ∈ {0, 1, . . . , 2rLen− 1} uniformly at random, com-
pute dk = KDF(ω) and return (ω, dk).

TKEM.Enc(ω, τ): Given the key carrier ω and a tag τ , compute c1 = ωn mod
n, c2 = H(ω, τ) and return Ψ = (c1, c2).

TKEM.Decsk(Ψ, τ): Given the encapsulated key Ψ and a tag τ , parse Ψ to
c1, c2 and compute r = cd

1 mod pq. If |r|2 > rLen or H(r, c1) 6= c2, then
return ⊥, return KDF(r), otherwise.

In the first step, a key pair is generated. Then a one-time key dk for the DEM
part is constructed by applying a key derivation function to a random bit string.
Note that the role of KDF is not only to format the bit string according to the key
space of the designated DEM, but also KDF is required to destroy all algebraic
relations between its input and the encapsulated key. In the security proof, both
of KDF and H are modeled as random oracles [BR93]. In the step TKEM.Enc,
the one-time key (which in some sense is embedded in ω) is encrypted together
with the tag τ . Finally, using TKEM.Decsk the one-time key dk can be recovered
from the encapsulation Ψ and the tag τ .

Remark 2. In the decapsulation procedure, it is necessary to check if r indeed
meets the length requirements (|r|2 ≤ rLen = 2k − 2), because otherwise a
simple chosen-ciphertext attack can be mounted to obtain the secret factor pq
by binary search [JQY01].

CCA-security of a Tag-KEM requires that an adversary with adaptive oracle
access to TKEM.Decsk has no chance to distinguish whether a given one-time
key dk is encapsulated in a challenge (Ψ, τ) or not, even if the tag τ is chosen
by the adversary himself. As usual, this is defined via an appropriate game. The
following definition is almost verbatim from [AGKS05]:

Definition 4 (Security of Tag-KEM). Let KD be the key space of an appro-
priate DEM, O be the decapsulation oracle TKEM.Decsk(., .) and let AT be an
adversary against Tag-KEM playing the following game:
GAME.TKEM:

Step 1. (pk, sk)←[ TKEM.Gen(1k)
Step 2. ν1 ←[ AOT (pk)
Step 3. (ω, dk1)←[ TKEM.Key(pk),dk0 ←[ KD, b←[ {0, 1}
Step 4. (τ, ν2)←[ AOT (ν1,dkb)
Step 5. Ψ ←[ TKEM.Enc(ω, τ)
Step 6. b̃←[ AOT (ν2, Ψ)

In Step 6. the adversary is restricted not to query the decapsulation oracle on
the challenge Ψ, τ , but queries Ψ, τ̃ for τ 6= τ̃ are permitted. The values ν1, ν2

are internal state informations. We define the advantage of the adversary AT
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as εAT
=

∣∣∣Pr[b̃ = b]− 1
2

∣∣∣ and ε as maxAT
(εAT

), where the maximum is taken
over all adversaries modeled as polynomial time Turing machines. Tag-KEM is
said to be CCA-secure, if ε is negligible in the security parameter k.

In Appendix B, we prove the following theorem:

Theorem 4. If factoring integers of the shape n = p2q is hard, then the Tag-
KEM defined above is CCA-secure in the random oracle model.

More formally: If there exists an adversary AT attacking the proposed Tag-
KEM in the random oracle model as in Definition 4

- in time t,
- with advantage ε,
- querying the random oracle representing the key derivation function at most

qK times,
- querying the random oracle representing the hash function at most qH times,
- invoking the decapsulation oracle at most qD times,

then there exists an adversary AFact who factors n = p2q in time t′ and with
advantage ε′, where

t′ ≤ t + tgcd(qH) + tfpq
qD,

ε′ ≥
(

ε− qK

KLen
− 2qD

HashLen
− qD

n + HashLen

) (
1− 1

p

)
,

where tgcd is the time needed to perform a gcd computation with inputs O(n)
and tfpq

is the time needed to evaluate fpq.

3.4 The proposed hybrid encryption scheme

As before, to avoid lengthy recurrences, we do not review the generic Tag-
KEM/DEM framework, but we only describe the concrete hybrid encryption
scheme that is obtained when combining our proposed Tag-KEM with an ap-
propriate DEM. The interested reader is referred to [AGKS05,AGK05] for the
general treatment. Let (Esym

K ,Dsym
K ) be any symmetric cryptosystem with key

K that is secure in the sense of [AGKS05,AGK05] (roughly speaking, this means
that (Esym

K ,Dsym
K ) is semantically secure against passive adversaries when K is

used once only). Assume that the message space of Esym
K is given as {0, 1}mLen.

Key Generation: The key generation is the same as in TKEM.Gen(.).
Encryption and decryption is performed as follows:

Epk(m) :

ω ←[ {0, 1}RLen

dk := KDF(ω)
τ ←[ Esym

dk (m)
Ψ := (ωn mod n, H(ω, τ))
Return (Ψ, τ)

Dsk(Ψ, τ) :

(c1, c2) := Ψ
r := cd

1 mod pq
if |r|2 > RLen or H(r, τ) 6= c2 return ⊥
m := Dsym

KDF(r)(τ)
Return m

11



Note that the DEM ciphertext of the message m encrypted with the encapsu-
lated one-time key serves as the tag. Thus non-malleability of the DEM part
is intuitively fulfilled because a CCA-secure Tag-KEM provides integrity of the
tag. From the results of [AGK05,AGKS05] we derive

Theorem 5. If factoring integers of the type p2q is hard and if (Esym
K ,Dsym

K ) is
one-time secure, then the proposed hybrid encryption scheme is CCA-secure in
the random oracle model. More precisely, we have εhy ≤ 2εKEM + εDEM , where
εhy, εKEM and εDEM denote the maximum advantage of an attack against the
CCA security of proposed hybrid encryption scheme, against the CCA security
of our new Tag-KEM, resp. against the one-time security of (Esym

K ,Dsym
K ).

In the above theorem, CCA-security of hybrid encryption is defined in the
standard sense, i.e. indistinguishability of ciphertexts under adaptive chosen-
ciphertext attacks. Note that the reduction to factoring is tight.

Remark 3. Interestingly, the proposed hybrid encryption scheme is very similar
to the scheme obtained from applying the REACT-conversion to fpq [OP01].
The only difference in the REACT-case is that the inputs of the hash function
H would be m,ω and c1. This is a small disadvantage because it decreases the
efficiency and it is necessary to recover m before the second integrity check can be
performed. As noted above, reject-timing attacks like [ST03,Den02] are possible
if the timing difference between two different reject events is too large. However,
this threat can be easily dealt with on the implementation level (for instance by
using a flag). As the trapdoor function fpq is deterministic, the REACT version
of our scheme can be tightly reduced to factoring, too.

3.5 Comparison

In this section, we give a brief comparison of EPOC-2/3 and our proposed hybrid
encryption scheme.Table 1 summarizes the most important parameters regard-
ing security and performance. The efficiency of encryption and decryption is
measured in modular multiplications, where MM(k) denotes a modular mul-
tiplication modulo a k-bit number. We do not distinguish between multiplica-
tions and squarings, and we assume that a modular exponentiation with a k
bit exponent takes approximately 3k/2 modular multiplications, whilst a double
exponentiation as necessary for performing the Okamoto-Uchiyama encryption
takes approximately 7k/4 modular multiplications using standard techniques.
We have not considered exponent recoding techniques, which are applicable in
our scheme due to the fixed exponents. Chinese remaindering is taken into ac-
count if possible. Hashing, evaluations of the key derivation function and the
symmetric key operations are not measured, because these magnitudes are com-
parable in all schemes. For evaluating the public key sizes, we compare n, g, h on
the EPOC-2/3 side with n in our proposed scheme. The secret key sizes are the
same (p, gp for EPOC-2/3, resp. p, d for our proposed scheme). All quantities are
measured in terms of the security parameter k (i.e. the bit-length of the prime

12



Scheme Assumption encrypt decrypt sk pk

EPOC-2 FACT ≥ 7k/2 MM(3k) ≈ 3k/2 MM(2k) + 7k/4 MM(k) 3k 9k

EPOC-3 Gap-HR ≥ 7k/2 MM(3k) ≈ 3k/2 MM(2k) 3k 9k

Proposed FACT ≈ 9k/2 MM(3k) ≈ 3k MM(k) 3k 3k
Table 1. Comparison of important parameters

factors p, q). In case of EPOC-2/3, we assume that rLen = k and HashLen ≥ 2k
hold (these are the values determining the exponent sizes).
As modular multiplication is quadratic in the length of the modulus, we conclude
that our scheme is the most efficient one in decryption, whilst in encryption
it is slightly less efficient than EPOC-2/3. Furthermore, the public key is 3
times shorter in our proposed scheme, and the underlying security assumption
is optimal (as it is the case for EPOC-2). Another advantage of our scheme is
the following: If one-time pad is used for the symmetric part, then the message
length in our scheme is 2k compared to k in EPOC-2/3. This is because the
bandwidth of fpq is twice as large as the bandwidth of the Okamoto-Uchiyama
trapdoor function.

4 Conclusion

In this paper we introduced a new simple trapdoor one-way permutation based
on the hardness of factoring. As provable secure trapdoor one-way permutations
are so rare and nevertheless of outstanding importance in public key cryptog-
raphy, the development of new candidates is a fundamental issue on its own.
Moreover, to constitute the claim that our proposed trapdoor function is not
only of theoretical interest, we constructed a novel CCA-secure hybrid encryp-
tion scheme as an exemplary application. To do so, we made use of the recently
published Tag-KEM/DEM framework for hybrid encryption. We were able to
show that already our proposed ad-hoc construction compares favorably with
the members of the well-known EPOC family which are based on the same in-
tractability assumption as our proposal.
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A Proof of Theorem 3

First we show an auxiliary proposition:

x ∈ N-R(n) ⇐⇒ x(p−1)(q−1) = 1 mod n.

From p - q− 1, q - p− 1 we deduce gcd((p− 1)(q− 1), n) = 1. Hence there exists
z ∈ Z with z(p− 1)(q − 1) = 1 mod n, leading to −z(p− 1)(q − 1) + 1 = kn for
a suitable k ∈ Z. Thus we have

x(p−1)(q−1) = 1 mod n⇒ x−z(p−1)(q−1)+1 = x mod n

⇒ xnk = x mod n.

This finishes the proof of the auxiliary proposition, as the opposite direction is
straightforward.

Therefore we have the following for x > 1:

x ∈ N-R(n) ⇐⇒ x(p−1)(q−1) = 1 mod n

⇐⇒ x(p−1)(q−1) = 1 mod p2 and x(p−1)(q−1) = 1 mod q (1)

⇐⇒ x(p−1)(q−1) = 1 mod p2 (2)

⇐⇒ x(p−1) = 1 mod p2. (3)

Note that (2) ⇒(1) holds because x(p−1)(q−1) = 1 mod q is true for all x ∈ Z×n .
(2) ⇒(3) is deduced from gcd(q − 1, ϕ(p2) = 1).
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B Proof of Theorem 4

Proof. We prove Theorem 4 using a series of games. Let AT be an attacker
against the CCA-security of the proposed Tag-KEM and let y∗ be defined as
y∗ = fpq(ω∗) for ω∗ ∈ Z×pq. Furthermore, let KLen denote the length of valid
DEM keys. In each game “Game i”, let Si be the event that the attacker correctly
guesses the hidden bit b. Without loss of generality, we assume that the adversary
does not ask the same query more than once to the decapsulation oracle.

Game 0: This is the original attack game as defined in Definition 4. Thus we
have

εAT
= |Pr[S0]− 1/2|. (4)

Game 1: This game is the same as above, with the exception that the random
oracles are simulated as follows6:
KDF: An initially empty list KList is prepared. Given a query x, the follow-

ing steps are performed: If (x, K) is in KList, then return K. Otherwise
randomly generate K ′, a bit-string of length KLen, add (x, K ′) to KList,
and return K ′.

H: An initially empty list HList is prepared. Given a query (x, τ), the follow-
ing steps are performed: If ((x, τ), hash) is in HList, then return hash.
Otherwise randomly generate hash′, a bit-string of length HashLen, add
((x, τ), hash′) to HList, and return hash′.

From the ideal assumptions to the random oracles in Game 0 we deduce that
Game 0 and Game 1 are perfectly indistinguishable. Hence, we conclude

Pr[S0] = Pr[S1]. (5)

Game 2: This game is the same as above, with the only difference that the
challenge Ψ∗ := (y∗, c∗2) is fixed at the beginning of the game, where c∗2 is
a randomly generated bit-string of length HashLen. It is easy to see that
Game 1 and Game 2 are indistinguishable from the adversary’s point of view
if none of the following events takes place:
– The adversary ever queries the oracle H on ω∗. We call this event Ask2.
– The adversary ever queries the KDF oracle on x with KDF(x) = dkb,

where dkb is the challenge key given to the adversary in Step 4. The
probability of this event is upperbounded by qK/KLen.

– The decapsulation oracle is queried on (Ψ∗, τ), where τ is the tag on
which the adversary wishes to be challenged. From the restrictions on
the adversary, this is only allowed before Step 6. However, in this case
Ψ∗ is hidden to the adversary and thus the probability of this event is
upperbounded by qD/(n + HashLen).

– The decapsulation oracle is queried on (Ψ∗, τ ′), where τ 6= τ ′ and H(ω∗, τ ′) =
c2 holds (i.e. (Ψ∗, τ ′) is a valid encapsulation). The probability of this
event and ¬Ask2 is upperbounded by qD/HashLen.

6 This affects the adversary’s oracle queries as well as the generation of the challenge
encapsulation.
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As the challenge in Game 2 is independent from everything the adversary
knows, we conclude

Pr[S2] =
1
2
. (6)

To compare Game 1 and Game 2, we use the following Lemma from [Sho04]:

Lemma 3 (Difference Lemma). Let A,B, F be events defined in some
probability distribution, and suppose that A ∧ ¬F ⇐⇒ B ∧ ¬F . Then
|Pr[A]− Pr[B]| ≤ Pr[F ].

From this lemma, we conclude

|Pr[S1]−Pr[S2]| ≤ Pr(Ask2)+qK/KLen+qD/(n+HashLen)+qD/HashLen.
(7)

Game 3: This game is the same as above, except that instead of having access
to the “real” decapsulation oracle, the adversary’s queries are responded
using the following simulation: If a query Ψ, τ is given, then the following
steps are performed: Parse Ψ to (c1, c2). Search HList, if there is an entry
((x, τ), hash) with |x|2 ≤ rLen and fpq(x) = c1. If yes and if hash = c2,
then return KDF(x) (simulated as above). Otherwise return ⊥.
Let E3 be the event that the adversary invokes the decapsulation oracle on
a valid query (c1, c2), τ without f−1

pq (c1) having been asked to H. Obviously,
we have Pr[E3] ≤ qD/HashLen. If ¬E3 is true, then Game 2 and Game
3 are perfectly indistinguishable from the adversary’s point of view. Define
Ask3 as the event that the adversary ever queries H or KDF on ω∗. Again
using the Difference Lemma, we have

|Pr[Ask2]− Pr[Ask3]| ≤ qD/HashLen. (8)

It remains to bound Pr[Ask3]. For that reason, we describe an adversary AFact

against the p2q factorization problem with advantage ε′ ≥ Pr[Ask3]. Adversary
AFact proceeds at follows: On input n, AFact chooses r ∈ Zn at random and
computes y∗ = rn mod n. Then AFact lets the adversary AT run Game 3 on
the public key n. In Step 4, a randomly generated bit-string of length KLen is
passed to AT . When AT invokes the encapsulation oracle in Step 5, the challenge
Ψ∗ := (y∗, c2) with a randomly generated bit-string c2 of length HashLen is
responded to AT . The oracle queries are responded by AFact exactly as in Game
3 except the following modification of the H oracle:

H: Given a query (x, τ), the following steps are performed: If ((x, τ), hash) is in
HList, then return hash. Otherwise compute gcd(r − x, n). If gcd(r − x, n)
is a non-trivial factor of n, return this factor and halt. Randomly generate
hash′, a bit-string of length HashLen, add ((x, τ), hash′) to HList, and
return hash′.

It is obvious that AFact perfectly simulates the attack environment of AT in
Game 5 and finds a non-trivial factor of n with probability ε′ ≥ Pr[Ask3](1−1/p)
(The attack may fail if r < pq holds, which occurs with probability 1/p. Also
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note the events r < pq and Ask3 are independent, because the distributions of
{xn mod n|n ∈ Z×n } and {xn mod n|n ∈ Z×pq} are identical.). Thus we conclude

Pr[Ask3] ≤ ε′

1− 1/p
. (9)

Finally, from the equations (4), (5), (6), (7), (8), and (9) the assertion follows.

Remark 4. The gcd-trick exploited in the proof above is due to Fujisaki [Fuj01].
The benefit here is that fpq evaluations are replaced by cheaper gcd-computations.
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