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A New Randomized Block-Coordinate Primal-Dual Proximal

Algorithm for Distributed Optimization

Puya Latafat, Nikolaos M. Freris, Panagiotis Patrinos

Abstract—We consider the problem of minimizing the sum of a
Lipschitz differentiable function and two nonsmooth proximable
functions one of which is composed with a linear mapping.
We propose a novel primal-dual algorithm that takes into
account a metric for the Lipschitz continuity instead of a scalar.
Moreover, we devise a randomized block-coordinate version of
our scheme that captures many random coordinate activation
scenarios in a unified fashion. The block-coordinate version of
the algorithm converges under identical stepsize conditions as the
full algorithm. We show that both the full and block-coordinate
schemes feature linear convergence rates if the functions in-
volved are either piecewise linear-quadratic, or if they satisfy a
quadratic growth condition. We apply the proposed algorithms
to the problem of distributed multi-agent optimization, thus
yielding synchronous and asynchronous distributed algorithms.
The proposed algorithms are fully distributed in the sense that the
stepsizes of each agent only depend on local information. In fact,
no prior global coordination is required. Finally, we showcase
our distributed algorithms for Network Utility Maximization.

Index Terms—Primal-dual algorithms, block-coordinate mini-
mization, distributed optimization, asynchronous algorithms.

I. INTRODUCTION

In this paper we consider the optimization problem

minimize
x∈IRn

f(x) + g(x) + h(Lx) (1)

where L is a linear mapping, h and g are proper closed convex

(possibly nonsmooth) functions, and f is convex, continuously

differentiable with Lipschitz-continuous gradient. We further

assume that the proximal mappings associated with h and g
are efficiently computable [1]. This setup is quite general and

captures a wide range of applications in signal processing,

machine learning, and control.

A primal-dual algorithm was proposed separately by Vũ

and Condat [2], [3] to tackle problem (1). The idea is to

show that the algorithm takes the form of forward-backward

splitting and thus to use Krasnosel’skiı̌-Mann iterations. In

both aforementioned papers, the gradient of f is assumed to

have a scalar Lipschitz constant. However, in many cases of

practical interest, a scalar Lipschitz constant can not properly

capture the Lipschitz continuity of ∇f . For this reason, we
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consider a Lipschitz metric Q ≻ 0, i.e., for all x, y ∈ IRn we

assume that:

‖∇f(x)−∇f(y)‖Q−1 ≤ ‖x− y‖Q. (2)

For example, in distributed multi-agent optimization where f
is separable, i.e., f(x) =

∑m
i=1 fi(xi), the metric Q is block

diagonal, with blocks containing the Lipschitz constants of

∇fi’s. Adapting the proof of [2], [3] to the case of general

Lipschitz condition (2), leads to conservative conditions for

selecting stepsizes that depend on ‖Q‖ (see [3, proof of Thm.

3.1]): for instance, for separable f , ‖Q‖ equals the maximum

of the individual Lipschitz constants. In [4], the authors

consider a preconditioned variable metric forward-backward

iteration with the stepsize matrix set to be proportional to

Q−1; consequently, the selection of stepsizes is limited to a

narrow special case. In contrast, we assume a general stepsize

matrix, and our convergence analysis yields less conservative

conditions for the stepsizes.

Our main contribution is a new primal-dual algorithm for

solving (1). The method is based on applying a special case

of Asymmetric Forward-Backward Adjoint (AFBA) splitting,

proposed recently by the authors [5, Algorithm 1], to the

primal-dual optimality conditions for (1). The sequence gen-

erated by the proposed algorithm is Fejér monotone with

respect to ‖ · ‖S where S is a block diagonal positive definite

matrix. This is the key property that is exploited to develop a

block-coordinate version of the algorithm without introducing

additional variables. In addition, the dynamic stepsize in [5,

Algorithm 1] is replaced with a constant matrix Λ: this is

especially important for distributed optimization in large-scale

systems where global coordination may be infeasible.

Block-Coordinate (BC) minimization is a simple approach

to tackling large-scale optimization problems. In BC schemes,

at each iteration, a subset of the coordinates is updated while

the others are held fixed. In particular, we are interested in

randomized BC algorithms. Such schemes can be divided into

two categories: a) algorithms in which only one coordinate is

randomly activated and updated at each iteration [6]–[8], and

b) algorithms where several coordinates are randomly activated

and simultaneously updated [9], [10]. Our proposed method

captures both cases in a unified way (cf. Section III).

A key property of the randomized BC versions of gradient

and proximal gradient methods [6], [7], is that the stepsizes are

inversely proportional to the coordinate-wise Lipschitz con-

stant rather than the global one. This leads to larger stepsizes in

directions with smaller Lipschitz constant and results in faster

convergence. In [9], [10] random BC is applied to α-averaged

operators by establishing stochastic Fejér monotonicity. In

[9], [11] the authors use this analysis to derive random BC

algorithms based on the primal-dual algorithm of Vũ and
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Condat [2], [3]. The main drawback of these approaches is

that (just as in the full version of the algorithms), the metric

of Lipschitz continuity is not captured by the algorithms thus

yielding conservative ranges for the stepsizes.

In the recent paper [8], the authors seek to overcome

this issue by proposing a scheme based on the Vũ-Condat

algorithm: their analysis does not require the cost functions

to be separable and uses a different Lyapunov function for

establishing convergence. However, in its general form, the

method requires introducing duplicate dual variables; this is

because unlike the new primal-dual algorithm proposed here,

the Fejér monotonicity of the Vũ-Condat algorithm holds with

respect to ‖ · ‖S , where S is not diagonal (cf. (28)).

In the BC version of our algorithm, we use the same

metric Q for the Lipschitz continuity as in the full algo-

rithm. This is in contrast to [6]–[8] where coordinate-wise

Lipschitz continuity is used. In the special case when f is

separable, the two assumptions are equivalent and we have

Q = blkdiag(β1In1
, . . . , βmInm

), where m is the number

of blocks of coordinates, ni is the dimension of the i-th
coordinate block, and βi denotes the Lipschitz constant of fi.
In this setting, our proposed block-coordinate algorithm leads

to less restrictive conditions as compared to [8, Assumption

1(e)], in that the stepsizes of the new algorithm are inversely

proportional to βi

2 rather than βi. Notice that in the general

case [6, Lemma 2] can be used to establishes the connection

between the metric Q and coordinate-wise Lipschitz assump-

tion. However, in many cases such as the separable case this

result is conservative.

As an application, we consider the distributed optimization

problem over a network of agents. Each agent has its own

private cost function of the form (1), and the communication

between agents is characterized by a graph G = (V, E):

minimize
xi∈IRni

m
∑

i=1

fi(xi) + gi(xi) + hi (Lixi) (3a)

subject to Aijxi +Ajixj = b(i,j) (i, j) ∈ E (3b)

Throughout the paper (i, j) is used to denote the unordered

pair of i, j; and ij for the ordered pair. The goal is to solve

the global optimization problem through local exchange of

information. Notice that the linear constraints (3b) prescribe

relations between neighboring agents’ variables. This type

of edge constraints is considered in [12]. Most notably, for

two agents i = 1, 2, with fi, hi ≡ 0, such constrains are

reminiscent of the Alternating Direction Method of Multipliers

(ADMM). A special case of particular interest is consensus,

when Aij = I , Aji = −I and b(i,j) = 0.

Another primal-dual algorithm was introduced in [13] for

problem (3) when fi ≡ 0 and with consensus constraints. The

approach in that work is different and consists of a transfor-

mation to replace the edge variables with node variables. The

main drawback of the algorithm is that as in the Vũ-Condat

algorithm the Fejér monotonicity of the generated sequence

holds with respect to ‖ · ‖S where S is not diagonal.

The multi-agent optimization problem (3) arises in many

contexts such as sensor networks, power systems, transporta-

tion networks, robotics, water networks, distributed data-

sharing, etc. [14]–[16]. In most of these applications, there

are computation, communication, real-time constraints and/or

physical limitations on the system that render centralized man-

agement infeasible. This motivates devising fully distributed

asynchronous algorithms for problem (3). Therefore, random-

ized BC methods are of particular interest: they amount to a

random activation of nodes (independent of each other) that

perform local calculations and, subsequently, communicate

updated values to their neighbors at the end of each iteration.

Contributions and Paper Structure

The main contributions of the paper can be summarized as

follows:

• In Section II we propose a new primal-dual algorithm with

Gauss-Seidel type updates for solving structured optimiza-

tion problem (1). The proposed algorithm considers a metric

for Lipschitz continuity rather than a scalar. Furthermore, we

show how our analysis can be applied to the primal-dual

method of Vũ-Condat, and emphasize that we obtain less

conservative conditions in selecting stepsizes than [2]–[4].

• We establish linear convergence under an additional metric

subregularity assumption on the monotone operator defin-

ing the primal-dual optimality conditions (cf. Theorem 2).

Moreover, we show that the metric subregularity assumption

holds if the involved functions f , g and h are either (1):

piecewise linear-quadratic (cf. Lemma 3), or if (2): they

satisfy a quadratic growth condition (cf. Lemma 2).

• In Section III, we propose a randomized block-coordinate

(BC) version of our algorithm with identical stepsize con-

ditions as in the original scheme. Our proof relies heavily

on the fact that the sequence generated by our algorithm is

stochastic Fejér monotone with respect to ‖ · ‖S , where S is

a diagonal matrix. This is a particularly attractive feature

of our method that allows us to devise fully distributed

asynchronous schemes.

• In Section IV we adapt the developed algorithm to the dis-

tributed optimization problem (3). The resulting algorithm

is fully distributed in the sense that the stepsizes of each

agent is selected based on local information without any

prior global coordination (cf. Theorem 6). In fact, the edge

weight κ(i,j) is the only parameter that must be fixed by the

neighboring agents i and j. In addition, an asynchronous

version of the algorithm is developed based on an instance of

the block-coordinate algorithm in Section III. In this setting,

at each iteration agents wake up at random independently of

one another, i.e., several agents might update their values at

a given iteration. Moreover, under the metric subregularity

assumption both synchronous and asynchronous versions of

the algorithm achieve linear convergence rates. Finally, in

Section V we consider the Network Utility Maximization

problem as an application.

Notation and Preliminaries

We first introduce definitions and notation used throughout

the paper; we refer the reader to [17], [18] for more details.

For an extended-real-valued function f , we use dom f to

denote its domain. For a set C, we denote its relative interior
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by riC. For a symmetric positive definite matrix P ∈ IRn×n,

we define the induced Euclidean norm ‖ · ‖P : for x ∈ IRn,

‖x‖P =
√
x′Px.

An operator (or set-valued mapping) A : IRn
⇒ IRd maps

each point x ∈ IRn to a subset Ax of IRd. We denote the

domain of A by domA = {x ∈ IRn | Ax 6= ∅}, its graph by

graA = {(x, y) ∈ IRn× IRd | y ∈ Ax}, the set of its zeros by

zerA = {x ∈ IRn | 0 ∈ Ax}, and the set of its fixed points by

fixA = {x | x ∈ Ax}. The mapping A is called monotone if

〈x−x′, y− y′〉 ≥ 0 for all (x, y), (x′, y′) ∈ graA, and is said

to be maximally monotone if its graph is not strictly contained

by the graph of another monotone operator. The inverse of A
is defined through its graph: graA−1 := {(y, x) | (x, y) ∈
graA}. The resolvent of A is defined by JA := (Id+A)−1,

where Id denotes the identity operator.

Let f : IRn 7→ IR := IR∪{+∞} be a proper closed, convex

function. Its subdifferential is the operator ∂f : IRn
⇒ IRn

∂f(x) = {y | ∀z ∈ IRn, 〈z − x, y〉+ f(x) ≤ f(z)}.

The subdifferential is a maximally monotone operator. The

resolvent of ∂f is called the proximal operator (or proximal

mapping), and is single-valued. Let V denote a symmetric

positive definite matrix. The proximal mapping of f relative

to ‖ · ‖V is uniquely determined by the resolvent of V −1∂f :

proxVf (x) := (Id+V −1∂f)−1x

= argmin
z∈IRn

{f(z) + 1
2‖x− z‖2V }.

The Fenchel conjugate of f , denoted by f∗, is defined

by f∗(v) := supx∈IRn{〈v, x〉 − f(x)}. The Fenchel-Young

inequality states that 〈x, u〉 ≤ f(x) + f∗(u) holds for all

x, u ∈ IRn; we use it throughout in the special case when

f = 1
2‖ · ‖2V for some symmetric positive definite matrix V .

The distance from a proper closed convex set X with respect

to ‖ · ‖V is denoted by dV (·, X). We denote by PV
X (·) the

projection onto set X with respect to ‖ · ‖V .

II. A NEW PRIMAL-DUAL ALGORITHM

The following are assumed throughout Sections II and III:

Assumption 1.

(i) g : IRn → IR, h : IRr → IR are proper, closed, convex

functions, and L ∈ IRr×n is a matrix.

(ii) f : IRn → IR is convex, continuously differentiable, and

∇f is Lipschitz continuous with respect to the metric

Q ≻ 0 , i.e., for all x, y ∈ IRn:

‖∇f(x)−∇f(y)‖Q−1 ≤ ‖x− y‖Q,
or, equivalently, ∇f is cocoercive:

‖∇f(x)−∇f(y)‖2Q−1 ≤ 〈∇f(x)−∇f(y), x− y〉. (4)

(iii) The set of solutions to (1) is nonempty. Moreover, there

exists x ∈ ri dom g such that Lx ∈ ri domh.

The primal-dual optimality condition for problem (1) is
{

0 ∈ ∂h∗(u)− Lx,
0 ∈ ∂g(x) +∇f(x) + L⊤u.

(5)

With a slight abuse of terminology, we say that (u⋆, x⋆) is a

primal-dual solution (in place of dual-primal) if it satisfies (5),

where u⋆ solves the dual problem and x⋆ solves the primal

problem (1). We denote the set of primal-dual solutions by

S . Assumption 1(iii) guarantees that S is non empty (see [19,

Corollary 31.2.1] and [20, Proposition 4.3(iii)]).

Let us define the following operators

D :(u, x) 7→ (∂h∗(u), ∂g(x)), (6a)

M :(u, x) 7→ (−Lx,L⊤u), (6b)

F :(u, x) 7→ (0,∇f(x)). (6c)

The optimality condition (5) can be written in the form of the

monotone inclusion

0 ∈ Dz +Mz + Fz, (7)

where z = (u, x). The linear operator M is monotone since it

is skew-symmetric, i.e., M⊤ = −M . It is straightforward to

see that the operator D is maximally monotone [18, Theorem

21.2 and Proposition 20.23], while operator F , being the

gradient of f̃(u, x) = f(x), is cocoercive.

Consider the operator T defined as follows:

Tz := z + S−1(H +M⊤)(z̄ − z), (8)

where

z̄ = (H +D)−1(H −M − F )z, (9)

and H = P +K, is the sum of a symmetric positive definite

matrix P , and a skew-symmetric matrix K. This structure of

H is the key to deriving Gauss-Seidel type updates. The matrix

S in (8) is another design parameter and is symmetric positive

definite. Notice that when M ≡ 0, (9) can be viewed as

an asymmetrically preconditioned forward-backward update.

Furthermore, from (8), (9) it follows that z ∈ S if and only if

z = Tz, i.e.,

S = {z | 0 ∈ Dz +Mz + Fz} = fixT. (10)

Set:

P =

[

Σ−1 1
2L

1
2L

⊤ Γ−1

]

, K =

[

0 − 1
2L

1
2L

⊤ 0

]

. (11)

Note that H = P +K is lower block triangular. Therefore, in

view of [5, Lemma 3.1] the backward step (H+D)−1 in (9) is

carried out sequentially, in that the dual vector ū is computed

(through proximal mapping) using (u, x), and the primal x̄
is subsequently computed using ū, as well as x, cf. (14).

Furthermore, it follows from (8) that this selection results in

H + M⊤ being upper block triangular which allows to take

S block diagonal while maintaining efficiently computable

iterations. We let Σ ∈ IRn×n and Γ ∈ IRr×r be two symmetric

positive definite matrices, and set

S = blkdiag(Σ−1,Γ−1), (12)

whence we have

S−1(H +M⊤) =

[

I ΣL
0 I

]

. (13)

We emphasize that the diagonal structure of S is the key

property used in developing the block-coordinate version of

the algorithm (cf. Section III).



4

In proximal form, the operator T defined in (8) for prob-

lem (1) is given by:

ū = proxΣ
−1

h∗ (u+ΣLx) (14a)

x̄ = proxΓ
−1

g (x− Γ∇f(x)− ΓL⊤ū) (14b)

Tz = (ū+ΣL(x̄− x), x̄), (14c)

where z = (u, x). The next lemma establishes a very important

property of the operator T and is essential in our convergence

analysis.

Lemma 1. Consider the operator T in (14). Suppose that Σ
and Γ are such that

P̃ :=

[

Σ−1 − 1
2L

− 1
2L

⊤ Γ−1 − 1
4Q

]

≻ 0. (15)

Then for any z⋆ ∈ S and any z ∈ IRn+r we have

‖Tz − z‖2
P̃
≤ 〈z − z⋆, z − Tz〉S . (16)

Proof. Consider the definition of the operator T in (8). From

monotonicity of D at z⋆ and z̄ along with (9) we have

0 ≤ 〈−Mz⋆ − Fz⋆ +Mz + Fz −Hz +Hz̄, z⋆ − z̄〉. (17)

On the other hand, we have

〈Fz − Fz⋆, z⋆ − z̄〉 = 〈∇f(x)−∇f(x⋆), x⋆ − x̄〉
= 〈∇f(x)−∇f(x⋆), x− x̄〉

+ 〈∇f(x)−∇f(x⋆), x⋆ − x〉
≤ ‖∇f(x)−∇f(x⋆)‖2Q−1 + 1

4‖x− x̄‖2Q
+ 〈∇f(x)−∇f(x⋆), x⋆ − x〉

≤ 〈∇f(x)−∇f(x⋆), x− x⋆〉+ 1
4‖x− x̄‖2Q

+ 〈∇f(x)−∇f(x⋆), x⋆ − x〉,
= 1

4‖x− x̄‖2Q, (18)

where we have used the Fenchel-Young inequality for 1
4‖ · ‖2Q

in the first and (4) in the second inequality, respectively.

Using (18) in (17), along with the skew-symmetricity of K
and M , we have

0≤〈−Mz⋆−Fz⋆+Mz+Fz−Hz+Hz̄,z⋆− z̄〉
≤〈(M−K)(z−z⋆)+P (z̄−z),z⋆− z̄〉+ 1

4‖x− x̄‖2Q
=〈(M−K)(z−z⋆)+P (z̄−z),z⋆−z〉+ 1

4‖x− x̄‖2Q
+〈(M−K)(z−z⋆)+P (z̄−z),z− z̄〉

=〈P (z̄−z),z⋆−z〉+ 1
4‖x− x̄‖2Q−‖z̄−z‖2P

+〈(M−K)(z−z⋆),z− z̄〉
=1

4‖x−x̄‖2Q−‖z̄−z‖2P +〈z−z⋆,(H+M⊤)(z− z̄)〉. (19)

By definition S−1(H +M⊤)(z̄ − z) = Tz − z. Thus

〈z − z⋆, (H +M⊤)(z − z̄)〉 = 〈z − z⋆, z − Tz〉S . (20)

On the other hand, we have z̄− z = (H +M⊤)−1S(Tz− z).
Using (11), (13) and (14c) we conclude

‖z̄ − z‖2P − 1
4‖x̄− x‖2Q = ‖Tz − z‖2

P̃
, (21)

where P̃ is defined in (15). Combining (19), (20) and (21)

completes the proof.

Let us define a relaxation matrix Λ = blkdiag(Λd,Λp),
where Λd ∈ IRr×r and Λp ∈ IRn×n satisfy the following

assumption:

Assumption 2 (Parameters).

(i) The matrices Λ, Σ, and Γ are symmetric positive definite.

(ii) Both ΣΛd and ΓΛp are symmetric.

Note that Assumption 2(ii) implies that ΣΛd and ΓΛp are

positive definite (see [21, Theorem 7.6.3]).

In the case when Λ, Γ, and Σ are selected to be diago-

nal positive definite matrices, Assumption 2 is automatically

satisfied. Furthermore, in this case S, defined in (12), is also

diagonal. This choice of parameters is exploited in Section

III to derive block-coordinate algorithms, which are further

used in Section IV to develop a randomized fully distributed

algorithm. The proposed primal-dual algorithm is described

next:

Algorithm 1 A new primal-dual algorithm

Inputs: x0 ∈ IRn, u0 ∈ IRr

for k = 0, . . . do

ūk = proxΣ
−1

h∗ (uk +ΣLxk)

x̄k = proxΓ
−1

g (xk − Γ∇f(xk)− ΓL⊤ūk)
uk+1 = uk + Λd(ū

k − uk +ΣL(x̄k − xk))
xk+1 = xk + Λp(x̄

k − xk)

Compactly, Algorithm 1 is written as

zk+1 = zk + Λ(Tzk − zk),

where the operator T is defined in (14) and zk := (uk, xk).

Theorem 1. Let Assumptions 1 and 2 hold true. Consider

the sequence (zk)k∈IN generated by Algorithm 1. Let Λ =
blkdiag(Λd,Λp) ≺ 2I and assume that the following condi-

tion holds:

Γ−1(2I − Λp)− 1
2Q− L⊤(2I − Λd)

−1ΣL ≻ 0. (22)

Then the sequence (zk)k∈IN converges to some (u⋆, x⋆) ∈ S .

Proof. We establish convergence by showing that the sequence

(zk)k∈IN is Fejér monotone with respect to S = fixT . By

Assumption 2(ii), Λ−1S is symmetric positive definite. For

any z⋆ ∈ S we have

‖zk+1 − z⋆‖2Λ−1S =‖zk + Λ(Tzk − zk)− z⋆‖2Λ−1S

=‖zk − z⋆‖2Λ−1S + ‖Λ(Tzk − zk)‖2Λ−1S

+ 2〈zk − z⋆, T zk − zk〉S
≤‖zk − z⋆‖2Λ−1S + ‖Tzk − zk‖2

2P̃−SΛ

− 2‖Tzk − zk‖2
P̃
, (23)

where the inequality follows from Lemma 1. Next notice that

2P̃ − SΛ =

[

Σ−1(2I − Λd) −L
−L⊤ Γ−1(2I − Λp)− 1

2Q

]

,

and by Schur complement it is symmetric positive-definite if

and only if (22) holds. This together with (23) shows that the

sequence (zk)k∈IN is Fejér monotone with respect to S in the
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space equipped with inner product 〈·, ·〉S . Therefore, (zk)k∈IN

is bounded. Furthermore, it follows from (23) and the fact that

2P̃ − SΛ is positive definite, that

‖Tzk − zk‖ → 0. (24)

The operator T is continuous (since it involves proximal

and linear mappings, that are continuous, and since ∇f is

continuous). Let zc be a cluster point of (zk)k∈IN. It follows

from the continuity of T and (24) that Tzc − zc = 0, i.e.,

zc ∈ fixT . The result follows from Fejér monotonicity of

(zk)k∈IN with respect to S = fixT and [18, Theorem 5.5].

We next proceed to establish (local) linear convergence rate,

often observed in practice. We first recall the notion of metric

subregularity.

Definition 1 (Metric subregularity). A mapping R is metri-

cally subregular at x̄ for ȳ if (x̄, ȳ) ∈ graR and there exists

η ∈ [0,∞), and neighborhoods U of x̄ and Y of ȳ such that

d(x,R−1ȳ) ≤ ηd(ȳ, Rx ∩ Y), ∀x ∈ U . (25)

If in addition x̄ is an isolated point of R−1ȳ, i.e., R−1ȳ∩U =
{x̄}, then R is said to be strongly subregular at x̄ for ȳ.

Metric subregularity of the subdifferential operator has been

studied thoroughly and is equivalent to the quadratic growth

condition [22], [23]. In particular, for a proper closed convex

function f , the subdifferential ∂f is metrically subregular at x̄
for ȳ with (x̄, ȳ) ∈ gra ∂f if and only if there exists a positive

constant c and a neighborhood U of x̄ such that the following

quadratic growth condition holds [22, Theorem 3.3]:

f(x) ≥ f(x̄) + 〈ȳ, x− x̄〉+ cd2(x, (∂f)−1(ȳ)), ∀x ∈ U
Furthermore, ∂f is strongly subregular at x̄ for ȳ with (x̄, ȳ) ∈
gra ∂f , if and only if there exists a positive constant c and a

neighborhood U of x̄ such that [22, Theorem 3.5]:

f(x) ≥ f(x̄) + 〈ȳ, x− x̄〉+ c‖x− x̄‖2, ∀x ∈ U (26)

Note that strongly convex functions satisfy (26), but (26) is

much weaker than the strong convexity requirement as it only

holds in a neighborhood of x̄, and only for ȳ. We refer the

reader to [17, Chapter 9] and [24, Chapter 3] for further

discussion on metric subregularity.

In Theorem 2 we establish linear convergence under metric

subregularity of the monotone operator D + M + F . We

omit the proof here for length considerations, and note that

it follows the same steps as in Theorem 5. In the sequel,

we provide sufficient conditions for metric subregularity of

D+M +F expressed in terms of conditions on the functions

f , g and h; cf. Lemmas 2 and 3.

Theorem 2 (Linear convergence). Consider Algorithm 1

under the assumptions of Theorem 1. Suppose that D +
M + F is metrically subregular at all z⋆ ∈ S for 0.

Then (dΛ−1S(z
k,S))k∈IN converges Q-linearly to zero, and

(zk)k∈IN converge R-linearly to some z⋆ ∈ S1.

1The sequence (xn)n∈IN converges to x⋆ Q-linearly, with Q-factor
σ ∈ (0, 1), if for n sufficiently large ‖xn+1 − x⋆‖ ≤ σ‖xn − x⋆‖ holds.

The sequence (xn)n∈IN converges to x⋆ R-linearly if there is a sequence
of nonnegative scalars (vn)n∈IN such that ‖xn − x⋆‖ ≤ vn and (vn)n∈IN

converges to zero Q-linearly.

Lemma 2 provides a sufficient condition for the metric

subregularity of D+M +F in terms of the quadratic growth

of f + g and h, cf. (26), under which the linear convergence

of Algorithm 1 follows from Theorem 2.

Lemma 2. Let Assumption 1 hold true, and let z⋆ =
(u⋆, x⋆) ∈ S . Suppose that ∇f + ∂g is strongly subregular at

x⋆ for −L⊤u⋆, and ∂h∗ is strongly subregular at u⋆ for Lx⋆.

Then D+M+F (cf. (6)) is metrically subregular at z⋆ for 0.

Furthermore, if such a point exists then the set of primal-dual

solutions is a singleton, S = {z⋆}.

Proof. See Appendix A.

Our next objective is to show that the metric subregularity

of D + M + F holds everywhere when the functions f , g
and h are piecewise linear-quadratic (PLQ). Note that this

assumption does not imply that the set of solutions, S , is a

singleton, however, linear convergence can still be established.

Let us recall the definition of PLQ functions [17].

Definition 2 (Piecewise Linear-Quadratic fucntion). A func-

tion f : IRn → IR is called piecewise linear-quadratic (PLQ)

if its domain can be represented as the union of finitely many

polyhedral sets, and in each such set f(x) is given by an

expression of the form 1
2x

⊤Qx + d⊤x + c, for some c ∈ IR,

d ∈ IRn, and symmetric matrix Q ∈ IRn×n.

The class of PLQ functions is closed under scalar mul-

tiplication, addition, conjugation and Moreau envelope [17].

A wide range of functions used in optimization applications

belong to this class, for example: affine functions, quadratic

forms, indicators of polyhedral sets, polyhedral norms such as

ℓ1, and regularizers such as elastic net, Huber loss, hinge loss,

and many more.

Lemma 3. Let Assumption 1 hold true. In addition, assume

that f , g and h are piecewise linear-quadratic. Then D +
M + F (cf. (6)) is metrically subregular at any z for any z′

provided that (z, z′) ∈ gra(D +M + F ).

Proof. Since f , g and h are closed, proper, convex PLQ, the

subdifferentials ∂g, ∇f and ∂h∗ are piecewise polyhedral

mappings [17, Proposition 12.30(b), Theorem 11.14(b)]. The

graph of M is polyhedral, since M is linear. Therefore, the

sum D+M+F is also a piecewise polyhedral mapping. Since

the inverse of a piecewise polyhedral mapping is piecewise

polyhedral, it follows from [24, Proposition 3H.1 and 3H.3]

that D + M + F is metrically subregular at z for any z′,
provided that (z, z′) ∈ gra(D +M + F ).

Vũ-Condat Primal-Dual Algorithm

In this section, we show how the primal-dual algorithm of

Vũ and Condat [2], [3] can be recovered using the operator

defined in (8). This analysis yields less restrictive stepsizes

conditions and provide further insights into how Algorithm 1

differs from other closely related primal-dual algorithms. In

particular, we highlight the non-diagonal structure of S for

the Vũ-Condat algorithm (compare (12) and (28)).
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In [3] the author considers problem (1), while in [2], the

nonsmooth term h, is replaced with h @ l where l is strongly

convex and @ denotes the infimal convolution [18].

minimize
x∈IRn

f(x) + g(x) + (h @ l)(Lx) (27)

In this setting, in addition to Assumption 1, we assume the

function l to be strongly convex with respect to the metric

R−1 ≻ 0 or equivalently, ∇l∗ to be Lipschitz continuous with

respect to the metric R.

In both [2], [3], the metrics Q and R are assumed to be

scalar. In [4] the authors propose a variable metric version

of the algorithm with a preconditioning that accounts for the

general Lipschitz metric. This is done by setting the stepsizes

to be proportional to the inverse of the Lipschitz metrics. In

comparison, our approach yields a wider range of parameters,

where the stepsizes are not limited to be proportional to the

inverse of the Lipschitz metric, and can take larger values thus

achieving generally faster convergence.

The Vũ-Condat scheme can be cast in the setting of (8), (9),

for a different selection of H = P +K and S:

S =

[

Σ−1 L
L⊤ Γ−1

]

, (28)

P =

[

Σ−1 L
L⊤ Γ−1

]

, K =

[

0 −L
L⊤ 0

]

.

Noticing that S−1(H + M⊤) = I , the operator defined

in (8), (9) becomes:

ū = proxΣ
−1

h∗ (u− Σ∇l∗(u) + ΣLx) (29a)

x̄ = proxΓ
−1

g (x− Γ∇f(x)− ΓL⊤(2ū− u)) (29b)

Tz = (ū, x̄). (29c)

The proof of the next lemma and theorem follow the same

lines as Lemma 1 and Theorem 1 and therefore are omitted.

Lemma 4. Consider the operator T in (29). Suppose that Σ
and Γ are such that

P̃ :=

[

Σ−1 − 1
4R L

L⊤ Γ−1 − 1
4Q

]

≻ 0.

Then for any z⋆ ∈ S and any z ∈ IRn+r we have

‖Tz − z‖2
P̃
≤ 〈z − z⋆, z − Tz〉S .

The iterates of the algorithm are written as follows:

zk+1 = zk + λ(Tzk − zk), (30)

where T is defined in (29). When Σ and Γ are scalar the

algorithm of [2] is recovered; if in addition l = δ{0}, it reduces

to the algorithm of [3, Algorithm 3.2] (where in both cases a

fixed relaxation parameter λ is used.)

It is possible to replace λ with a matrix Λ similar to

Algorithm 1 under the assumption that SΛ is symmetric

positive definite. However, this is not useful given that (unlike

Section II), S is not block diagonal.

Theorem 3. Let Assumption 1 hold true. In addition, assume

that ∇l⋆ is Lipschitz continuous with respect to the metric

R ≻ 0. Consider the sequence (zk)k∈IN generated according

to (30). Let λ ∈ (0, 2), and assume that the following

conditions hold:

(i) Σ−1 − 1
2(2−λ)R ≻ 0.

(ii) Γ−1 − 1
2(2−λ)Q− L⊤

(

Σ−1 − 1
2(2−λ)R

)−1

L ≻ 0.

Then the sequence (zk)k∈IN converges to some (u⋆, x⋆) ∈ S .

When l = δ{0}, problem (27) boils down to problem (1),

and the convergence conditions of Theorem 3 become

Γ−1 − 1
2(2−λ)Q− L⊤ΣL ≻ 0.

This generalizes the result in [3, Theorem 3.1] and [5, Propo-

sition 5.1(ii)] where the Lipschitz metric and the stepsizes are

assumed to be scalar. We emphasize that modifying the proof

of [3, Theorem 3.1] to account for the metric of Lipschitz

continuity and stepsize matrices leads to more conservative

conditions, even in the scalar case (see [5, Remark 5.6]).

In order to compare our results to [4], [11], we note that the

stepsize matrices in their approach are fixed to be Γ = µQ−1

and Σ = νR−1 for some µ, ν > 0. With such a special choice

the conditions of Theorem 3 simplify to λ ∈ (0, 2− ν
2 ) and

(µ−1 − 1
2(2−λ) )(ν

−1 − 1
2(2−λ) )Q− L⊤R−1L ≻ 0, (31)

whereas the condition required in [4], [11] is λ ∈ (0, 1] and

δ

1 + δ
>

max{µ, ν}
2

with δ = 1√
νµ‖R−1/2LQ−1/2‖−1 − 1.

(32)

It is not hard to check that our condition, (31), is always less

restrictive than (32). As an example, let R−1/2LQ−1/2 = I
and set λ = 1, µ = 1.5, then (31) simplifies to ν < 1

6.5
whereas (32) becomes ν < 1

24 .

III. A RANDOMIZED BLOCK-COORDINATE ALGORITHM

Throughout this section (Ω,F ,P) is a probability space,

where Ω, F and P denote the sample space, σ-algebra, and

probability measure, respectively. Let F = (Fk)k∈IN be a

filtration of F , i.e., a sequence of sub-sigma algebras of F
such that Fk ⊂ Fk+1 for all k ∈ IN. The set of sequences of

[0,+∞)-valued random variables is denoted by ℓ+(F ) and

ℓ1+(F ) := {(ξk)k∈IN ∈ ℓ+(F ) | ∑k∈IN ξk < ∞ a.s.}. The

conditional expectation E [· | Fk] is denoted by Ek [·], while

almost surely is abbreviated as a.s.

We proceed to devise a randomized block-coordinate ver-

sion of our algorithm where the ‘coordinates’ are the primal

and dual variables in Algorithm 1. Let us fix a partitioning of

the primal and dual variables into m blocks of coordinates.

Let I = {1, . . . ,m} and denote by 2I its power set. Set

Ui := blkdiag(Ui,d, Ui,p), i ∈ I

where Ui,p ∈ IRn×n is a diagonal matrix with 0-1 entries such

that Ui,px selects a subset of primal variables (and sets the rest

equal to zero), and similarly, Ui,d ∈ IRr×r is a diagonal matrix

that selects a subset of dual variables.

At the kth iteration, the algorithm draws a random activation

vector ǫk ∈ {0, 1}m, which determines which blocks of

coordinates will be updated. We assume that ǫk is drawn
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from some Φ ⊆ 2I , following probability measure P. We

summarize our assumptions next.

Assumption 3.

(i) The matrices Ui,p and Ui,d are such that

m
∑

i=1

Ui,p = In,

m
∑

i=1

Ui,d = Ir.

Furthermore, Ui satisfy UiUj = 0 for all i 6= j.

(ii) ǫk = (ǫki )i={1,...,m} is an identically distributed Φ-valued

random variable such that for each i ∈ I
∑

ε∈Φ,εi=1

P(ǫk = ε) = pi > 0.

Furthermore, ǫk, ǫl are independent for k 6= l.

(iii) The stepsize matrices Σ,Γ are diagonal.

Let us also define the coordinate activation probability

matrix Π, and relaxation matrix Λ = blkdiag(Λd,Λp)

Π =

m
∑

i=1

piUi, Λp =

m
∑

i=1

λiUi,p, Λd =

m
∑

i=1

λiUi,d, (33)

where λi is the relaxation parameter used in updating coordi-

nate block i ∈ I.

The Block-Coordinate (BC) primal-dual algorithm is as

follows:

Algorithm 2 Block-coordinate algorithm

Inputs: x0 ∈ IRn, u0 ∈ IRr

for k = 0, . . . do

Select Φ-valued r.v. ǫk ∈ {0, 1}m
Calculate Tzk according to (14)

zk+1 = zk +
∑m

i=1 ǫ
k
i λiUi(Tz

k − zk)

The random model we consider is very general, and can

capture many randomized mechanisms of selecting primal and

dual variables, at each iteration. To showcase, consider two

important cases:

• Several active coordinates: Φ = {0, 1}m. This model is

equivalent to the case in which at each iteration coordinate

i is randomly activated with probability pi independent of

other coordinates (cf. Assumption 3(ii)).

• Single active coordinate:

Φ= {(1,0,...,0),(0,1,0,...,0)...,(0,...,0,1)}. (34)

In this case, only one coordinate is updated at each

iteration: coordinate i will be updated with probability pi.
In addition, notice that in this case the probabilities must

satisfy
∑m

i=1 pi = 1.

The next lemma establishes a fundamental equality for our

scheme by exploiting the diagonal structure of S, Λ and Π.

Lemma 5. Let Assumptions 1 and 3 hold true. Consider the

sequence (zk)k∈IN generated by Algorithm 2. Let λi ∈ (0, 2)
for i = 1, . . . ,m and assume that (22) holds. Consider P̃
defined in (15). Then for any z⋆ ∈ S we have:

Ek

[

‖zk+1 − z⋆‖2Λ−1Π−1S

]

≤‖zk − z⋆‖2Λ−1Π−1S

− ‖Tzk − zk‖2
2P̃−SΛ

(35)

Proof. See Appendix A.

Remark 1. The relaxation matrix Λ can be selected as arbitrary

diagonal so long as it is positive definite and Λ ≺ 2I; we

select the same relaxation parameter λi for all variables in

block i, as this simplifies our notation. Additionally, note

that in Algorithm 2 the probabilities pi are fixed, i.e., the

matrix Π is constant through the iterations. This is a non-

restrictive assumption and can be relaxed by considering

varying probabilities pki and replacing λi in Algorithm 2 with,

for instance, λi

mpk
i

. This modification results in the following

stochastic Fejér monotonicity:

Ek

[

‖zk+1 − z⋆‖2Λ−1S

]

≤‖zk − z⋆‖2Λ−1S

− ‖Tzk − zk‖2
1
m

(2P̃− 1
mSΛΠ(k)−1)

,

where Π(k) denotes the probability matrix at iteration k,

defined as in (33) using pki . The subsequent convergence

analysis holds with minor modifications and is omitted. ♦

The proof of the next lemma is based on the Robbins-

Siegmund lemma [25], and is similar to that of [9, Theorem

3].

Theorem 4. Let Assumptions 1 and 3 hold true. Consider

the sequence (zk)k∈IN generated by Algorithm 2. Let λi ∈
(0, 2) for i = 1, . . . ,m and assume that (22) holds. Then the

sequence (zk)k∈IN converges almost surely to an S-valued

random variable, i.e., converges to some (u⋆, x⋆) ∈ S a.s.

Proof. From (35) and the Robbins-Siegmund lemma, [25], we

have that ‖zk−z⋆‖2Λ−1Π−1S converges a.s. to a [0,∞)-valued

random variable. By the same argument as in [10, Proposition

2.3(iii)], there exists an event Ω̃ such that P(Ω̃) = 1 and, for

every ω ∈ Ω̃ and every z⋆ ∈ S ,

(‖zk(ω)− z⋆‖Λ−1Π−1S)k∈IN converges,

and thus (zk(ω))k∈IN is bounded.

A second consequence of the Robbins-Siegmund lemma

is that
∑∞

k=0 ‖Tzk − zk‖2
2P̃−SΛ

< +∞ a.s., i.e., ‖Tzk −
zk‖2

2P̃−SΛ
converges to zero a.s. Thus, there exists Ω̂ with

P(Ω̂) = 1 and, for every ω ∈ Ω̂ we have

Tzk(ω)− zk(ω) → 0. (36)

The mapping T is continuous since it is defined by prox-

imity operators. With a slight abuse of the notation, define

Ω = Ω̂ ∩ Ω̃, where P(Ω) = 1. Let ω ∈ Ω and take zc to

be a cluster point of zk(ω). It follows from continuity of

T and (36) that Tzc − zc = 0, i.e., zc ∈ fixT , whence

zc ∈ S . Since (‖zk(ω)−z⋆‖Λ−1Π−1S)k∈IN converges for every

z⋆ ∈ S we conclude that ‖zk(ω) − zc‖Λ−1Π−1S converges.

Thus ‖zk(ω)−zc‖Λ−1Π−1S converges to zero since it does so

on some subsequence.

Theorem 5 (Linear Convergence). Consider the sequence

(zk)k∈IN generated by Algorithm 2 under the assumptions of

Theorem 4. Suppose that D+M +F is metrically subregular

at all z⋆ ∈ S for 0. Then almost surely (dΛ−1Π−1S(z
k,S))k∈IN

converges Q-linearly in expectation to zero.

Proof. See Appendix A.
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We remark that the result of Theorem 5 holds if either (1):

f , g, h are piecewise linear-quadratic (see Lemma 3), or if

(2): the growth conditions in Lemma 2 hold at all z⋆ ∈ S .

IV. DISTRIBUTED OPTIMIZATION

In this section, we devise both synchronous and asyn-

chronous algorithms for the multi-agent optimization prob-

lem (3). The synchronous version is based on Algorithm 1

while the asynchronous one is based on Algorithm 2 in the

case Φ = {0, 1}m. For length considerations other possibilities

of random activation are not presented here. For example, if Φ
is set as in (34), the analysis can be carried out via exponential

clocks [26], [27]: agents are assumed to ‘wake-up’ based on

independent exponentially distributed tick-down timers.

Let G = (V, E) be an undirected graph over a vertex set

V = {1, . . . ,m} with edge set E ⊂ V × V . Each node i ∈
V is associated with an agent, and maintains its own local

primal variable xi ∈ IRni and dual variables yi ∈ IRri and

w(i,j),i ∈ IRl(i,j) , where the former corresponds to Li and the

latter is the local dual variable of agent i corresponding to

the edge-constraint (3b) for (i, j) ∈ E . We assume that agent

i can both send and receive information from its neighbors

j ∈ Ni := {j ∈ V | (i, j) ∈ E}. The only information that

agent i shares with its neighbor j is Aijxi, along with edge

variable w(i,j),i. The cost functions fi, gi, hi, along with the

matrix Li and all other variables are kept private.

Let us restate the distributed optimization problem (3):

minimize
x∈IRn

m
∑

i=1

fi(xi) + gi(xi) + hi (Lixi) (37a)

subject to Aijxi +Ajixj = b(i,j) (i, j) ∈ E (37b)

where x = (x1, . . . , xm). For every i = 1, . . . ,m, xi ∈
IRni , and for every (i, j) ∈ E , b(i,j) ∈ IRl(i,j) . Let the

following assumptions hold:

Assumption 4. For i = 1, . . . ,m:

(i) Aij ∈ IRl(i,j)×ni for j ∈ Ni, and Li ∈ IRri×ni .

(ii) gi : IR
ni → IR, hi : IR

ri → IR are proper closed convex

functions.

(iii) fi : IRni → IR are convex, continuously differentiable,

and ∇fi are Lipschitz continuous with respect to the

metric Qi ≻ 0, i.e., for all x, y ∈ IRni

‖∇fi(x)−∇fi(y)‖Q−1
i

≤ ‖x− y‖Qi
.

(iv) The graph G is connected.

(v) The set of solutions of (37) is nonempty. Moreover, there

exists xi ∈ ri dom gi such that Lixi ∈ ri domhi, for

i = 1, . . . ,m, and Aijxi +Ajixj = b(i,j) for (i, j) ∈ E .

For each edge (i, j), let κ(i,j) > 0 denote the corresponding

weight that is inherent to the communication graph. In essence,

this can be used to capture edge’s ‘fidelity,’ for example the

channel quality in a communication link. Edge weights affect

agents’ stepsizes, cf. (41).

Define the linear operator

N(i,j) : x 7→ (Aijxi, Ajixj).

We define N ∈ IR2
∑

(i,j)∈E
l(i,j)×

∑m
i=1 ni by stacking N(i,j):

N : x 7→ (N(i,j)x)(i,j)∈E .

Its transpose is given by

N⊤ : (w(i,j))(i,j)∈E 7→ x̃ =
∑

(i,j)∈E
N⊤

(i,j)w(i,j),

with x̃i =
∑

j∈Ni
A⊤

ijw(i,j),i. We have set w(i,j) =
(w(i,j),i, w(i,j),j), i.e., we consider two dual variables for each

constraint, where w(i,j),i ∈ IRl(i,j) is maintained by agent i

and w(j,i),j ∈ IRl(i,j) by agent j.

Consider the set

C(i,j) = {(z1, z2) ∈ IRl(i,j) × IRl(i,j) | z1 + z2 = b(i,j)}.

The problem (37) can be expressed as

minimize
m
∑

i=1

(fi(xi) + gi(xi) + hi (Lixi))

+
∑

(i,j)∈E
δC(i,j)

(

N(i,j)x
)

(38)

where δX denotes the indicator function of a closed nonempty

convex set.

Let C =×(i,j)∈E C(i,j), L = blkdiag(L1, . . . , Lm), and

Lx = (Lx,Nx) =: (ỹ, w̃) ∈ IRnd with nd =
∑

(i,j)∈E 2l(i,j) +
∑m

i=1 ri. Rewrite problem (38) in the following compact form:

minimize f(x) + g(x) + h̃(Lx) (39)

where f(x) =
∑m

i=1 fi(xi), g(x) =
∑m

i=1 gi(xi), h̃(ỹ, w̃) =
h(ỹ) + δC(w̃), h(ỹ) =

∑m
i=1 hi(ỹi).

In this section, S refers to the primal-dual solution of (39).

As in Section II the primal-dual optimality conditions are

written in the form of monotone inclusion (7) with

D :(y,w, x) 7→ (∂h∗(y), ∂δ∗C(w), ∂g(x)), (40a)

M :(y,w, x) 7→ (−Lx,−Nx, L⊤y + N⊤w), (40b)

F :(y,w, x) 7→ (0, 0,∇f(x)), (40c)

where u = (y,w) is the dual vector. Let us define the edge

weight matrix as follows

W = blkdiag
(

(κ(i,j)I2l(i,j))(i,j)∈E
)

,

where the weights κ(i,j) are repeated twice, once for each

agent. Furthermore, set

Σ = blkdiag(σ1Ir1 , . . . , σmIrm ,W ),

Γ = blkdiag(τ1In1 , . . . , τmInm
),

Q = blkdiag(Q1, . . . , Qm),

where σi, τi > 0 are the stepsizes, and Qi for i = 1, . . . ,m
are defined in Assumption 4(iii).

The next step is to apply Algorithms 1 and 2 to (39). We

simplify the proximal updates in (14) using separability of the

involved functions.
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Algorithm 3 Synchronous & asynchronous distributed primal-dual algorithm

Inputs: x0
i ∈ IRni , y0i ∈ IRri , and w(i,j),i ∈ IRl(i,j) , for j ∈ Ni, i = 1, . . . ,m.

for k = 0, . . . do

I: Synchronous version

for all agents i = 1, . . . ,m do

II: Asynchronous version
draw r.v. ǫki according to P(ǫ0i = 1) = pi
for all agents i with ǫki = 1 do

w̄k
(i,j),i=

1
2

(

wk
(i,j),i + wk

(i,j),j

)

+
κ(i,j)

2

(

Aijx
k
i +Ajix

k
j − b(i,j)

)

, ∀j ∈ Ni

ȳki = proxσihi
⋆

(

yki + σiLix
k
i

)

x̄k
i = proxτigi

(

xk
i − τiL

⊤
i ȳ

k
i − τi

∑

j∈Ni
A⊤

ijw̄
k
(i,j),i − τi∇fi(x

k
i )
)

yk+1
i = yki + λi

(

ȳki − yki + σiLi(x̄
k
i − xk

i )
)

wk+1
(i,j),i= wk

(i,j),i + λi

(

w̄k
(i,j),i − wk

(i,j),i + κ(i,j)Aij(x̄
k
i − xk

i )
)

, ∀j ∈ Ni

xk+1
i = xk

i + λi(x̄
k
i − xk

i )

Since prox
h̃⋆
(y,w) = (prox

h⋆
(y),w − PC(w)) (using

proxδC (·) = PC(·) along with Moreau decomposition) we

have

ȳi = proxσihi
⋆(yi+σiLixi)

w̄(i,j)= w(i,j)+κ(i,j)(N(i,j)x−ΠC(i,j)
(κ−1

(i,j)w(i,j)+N(i,j)x))

x̄i = proxτigi(xi−τiL
⊤
i ȳi−τi(N

⊤w̄)i−τi∇f(xi))

Note that for w1, w2 ∈ IRl(i,j) the projection onto C(i,j) is

PC(i,j)
(w1, w2) =

1

2

(

w1 − w2 + b(i,j),−w1 + w2 + b(i,j)
)

.

By assigning the coordinates xi, yi and w(i,j),i for all j ∈ Ni

to agent i we propose Algorithm 3. In the synchronous version

of Algorithm 3, at each iteration all the agents must update

their values. In the asynchronous version, at every iteration

agents wake up randomly. In both versions agent i only

requires Ajix
k
j and wk

(i,j),j from neighbors j ∈ Ni to compute

w̄k
(i,j),i. Notice that when an agent is activated, it updates its

values and subsequently broadcasts the relevant information

to its neighbors, then goes idle until next activation.

The next theorem establishes convergence of our distributed

algorithm based on the theory developed in Sections II and III.

Theorem 6. Let Assumption 4 hold true. Denote by S the

set of primal-dual solutions of (37). Consider the sequences

(xk)k∈IN = (xk
1 , . . . , x

k
m)k∈IN, (yk)k∈IN = (yk1 , . . . , y

k
m)k∈IN

and (wk)k∈IN = ((w(i,j))
k
(i,j)∈E)k∈IN generated by Algorithm

3-I (or 3-II), and set (zk)k∈IN = (yk,wk, xk)k∈IN. Suppose

that the following stepsize condition holds:

τi <
2− λi

‖Qi‖
2 + 1

2−λi
‖σiL⊤

i Li +
∑

j∈Ni
κ(i,j)A

⊤
ijAij‖

. (41)

Then, in the case of Algorithm 3-I (zk)k∈IN converges to z⋆,

and in the case of Algorithm 3-II it converges a.s. to a z⋆-

valued random variable, for some z⋆ ∈ S .

An important feature of Algorithm 3 is that according to

(41) the stepsizes τi, σi, and the relaxation parameter λi for

each agent only depend on the local parameters such as ‖Qi‖,

the edge weights, κ(i,j), and the linear operators Li, and

Aij , which are all known to agent i and require no global

coordination.

The linear convergence of Algorithm 3-I (or 3-II) is estab-

lished next under the metric subregularity assumption.

Theorem 7 (Linear Convergence). Consider Algorithm 3-I (or

3-II), under the assumptions of Theorem 6. Set (zk)k∈IN =
(yk,wk, xk)k∈IN. Suppose that D + M + F , defined in (40),

is metrically subregular at all z⋆ ∈ S for 0. Then

(i) In the case of Algorithm 3-I, (dΛ−1S(z
k,S))k∈IN con-

verges Q-linearly to zero, and (zk)k∈IN converges R-

linearly to some z⋆ ∈ S .

(ii) In the case of Algorithm 3-II, a.s. (dΛ−1Π−1S(z
k,S))k∈IN

converges Q-linearly in expectation to zero.

Furthermore, if the functions fi, gi and hi, for i = 1, . . . ,m,

are piecewise linear-quadratic then metric subregularity as-

sumption holds at any z for any z′ provided that (z, z′) ∈
gra(D +M + F ).

V. APPLICATION: NETWORK UTILITY MAXIMIZATION

In this section, we showcase an application of our dis-

tributed algorithm to Network Utility Maximization (NUM),

a popular framework used for resource allocation in multi-

commodity networks, with applications ranging from wireline

and wireless communication networks [28], to industrial as-

sembly lines and smart transportation systems. For illustration,

we assume a wireless communication network with topology

captured by an undirected graph G = (V, E), where node i can

transmit data to node j if and only if (i, j) ∈ E . For a node

i ∈ V we define its neighborhood Ni := {j | (i, j) ∈ E}.

Let ⊆ V × V be a set of source-destination pairs, alter-

natively called users, which correspond to end-to-end traffic

flows in the network. For simplicity, we allow for two users

to share a common source node or destination node, but not

both. We denote by S ⊆ V and D ⊆ V the set of source and

destination nodes respectively. For every i ∈ S , Di denotes

the set of nodes d ∈ D for which (i, d) ∈ F , i.e., the set of

destination nodes whose source is node i. If i /∈ S , i.e., if i is

not the source of any user, then we define Di = ∅. For i ∈ V ,

we denote by D−i := D \ {Di ∪ {i}} the set of destination

nodes different than i with a source other than i. For each

i ∈ S , d ∈ Di, we use xd
i to denote the flow rate for user

(i, d) ∈ F .

For each (i, j) ∈ E , we call the directed pair ij the link with

node i being the transmitter and node j the receiver. We define
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link rates, separately for each destination2 [28] as follows:

for (i, j) ∈ E , let rdij be the transmission rate from node i to

node j, cumulative over all flows with common destination d;

these are decision variables related to scheduling (MAC) as

well as dynamic routing (when user routes are not determined

beforehand). The total link rate (over all flows) is given by

rij :=
∑

d r
d
ij ; without any loss of generality, we adopt a link

bandwidth constraint rij ≤ 1 .

Each user (i, d) ∈ is assigned a utility function Ud
i of its

rate xd
i , which is assumed to be upper-semicontinuous, proper,

concave and non-decreasing. Indicative choices are Ud
i (x) =

wU(x) with w ≥ 0 and U is chosen as [28]: a) U(x) =
log x (proportional fairness), b) U(x) = (1−α)−1x1−α, 0 <
α < 1 (generalized fairness), and many more. The goal of

NUM is twofold: i) the users (i, d) ∈ select the flow rates

{xd
i } (congestion control), and ii) the nodes i ∈ V select the

link rates {rdij} (joint routing and MAC), so as to maximize

the sum of user utilities subject to stability and interference

constraints.

The NUM problem that we consider is given by:

minimize
{xd

i
},{rd

ij
}

∑

i∈S

∑

d∈Di

−Ud
i (x

d
i )

subject to
∑

j∈Ni

rdji+xd
i ≤

∑

j∈Ni

rdij , i ∈ S, d ∈ Di (42a)

∑

j∈Ni

rdji ≤
∑

j∈Ni

rdij , i ∈ V , d ∈ D−i (42b)

∑

d∈D

∑

j∈Ni

(rdij+rdji)≤ 1, i ∈ V , d ∈ D (42c)

rdij ≥ 0, (i,j) ∈ E , d ∈ D,

rdij = 0, (i,j) ∈ E , i= d ∈ D, (42d)

xd
i ≥ 0, i ∈ S, d ∈ Di

Notice that constraint (42d) captures that a user destination

is a sink node with no outgoing traffic for that flow.

Stability refers to the requirement for bounded queues (i.e.,

bounded delays), and is defined separately for each destination

d: for each node i ∈ V the cumulative incoming rate of traffic

is less than or equal to the outgoing traffic. This is captured

by the constraints (42a), (42b).

In case the routes are predetermined, we may use a link-

centric model: for each user f let Hf be a M−dimensional

0-1 vector indicating whether each link is used by user f , i.e.,

Hf
ij = 1 if the route for flow f contains link ij, and Hf

ij = 0,

else. Then, each link maintains a single queue and the stability

is captured by the (in-flow ≤ out-flow) constraint:

∑

f∈
Hf

ijxf ≤ rij .

Interference captures conflict constraints in simultaneous

transmissions over the same frequency band. We adopt here

a simplistic interference model (see [28] for a more general

2Note that two different users may have the same destination (but different
source). It is customary to maintain, for each link, a single queue for the
cumulative traffic towards a given destination, which justifies the convention
for per-destination rates {rdij}.

model) in which a node cannot simultaneously a) transmit data

to more than one nodes, b) receive data from more than one

nodes, and c) transmit and receive at the same time, cf. (42c).

The traditional cross-layer optimization [28] amounts to

solving the above minimization via dual decomposition, which

gives rise to the celebrated backpressure (or MaxWeight) algo-

rithm [28], [29]. The algorithm has a natural intepretation of

Lagrange multipliers as queue lengths. Nevertheless, in general

(including the simplified interference model that we consider

here), it requires solving a combinatorial problem at each

iteration which is not amenable to distributed implementation.

In contradistinction, our method is fully distributed and entails

simple operations.

We now show how to cast NUM into the setup of Prob-

lem (37). For each node i, we define the primal vector zi
to contain the incoming and outgoing link rates, as well as

the exogenous flow rates (if some flows originate at node i).
In essence, a link rate variable “belongs” to the node from

which it originates. We introduce “replicas,”, i.e., define rdij,i
and rdij,j , where the first variable “belongs” to node i and the

second is its estimate at node j. Therefore, the local decision

vector for node i ∈ V is defined as

zi :=
(

(rdij,i, r
d
ji,i)j∈Ni,d∈D, (x

d
i )d∈Di

)

,

and its dimension is ni = |Ni||D|+|Di|. Note that, throughout

this section the variables are stacked by increasing order.

The edge-based consensus constraint (3b) is given by:

rdij,i = rdij,j , rdji,i = rdji,j , d ∈ D, (i, j) ∈ E .

In terms of the notation defining the generic distributed

optimization problem (37), for (i, j) ∈ E one has b(i,j) = 0,

and (assuming i < j without loss of generality):

Aij : zi 7→ (rdij,i,−rdji,i)d∈D,

Aji : zj 7→ (−rdij,j , r
d
ji,j)d∈D.

Utility functions are typically smooth, but may not have

Lipschitz gradients so we set fi ≡ 0, and proceed to define

gi
3 to incorporate utilities and non-negativity constraints. The

objective function for agent i ∈ V is given by:

gi(zi) =
∑

d∈Di

−Ud
i (x

d
i ) + δZi

(zi).

where

Zi = {
(

(rdij,i, r
d
ji,i)j∈Ni,d∈D, (x

d
i )d∈Di

)

∈ IRni

+ ,

and rdij,i = 0, i = d ∈ D}.

We define hi : IR|D\{i}|+1 → IR to capture the con-

straints (42a)-(42c). Let hi = δCi
, with

Ci =
{

(v(1), v(2)) ∈ IR|D\{i}| × IR | v(1) ≥ 0, v(2) ≤ 1
}

.

Therefore, proximal mapping of hi is inexpensive.

3The negative utility is a scalar function and has therefore inexpensive
proximal operator, which in several cases (e.g., logarithm) may be computed
analytically.
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We proceed by defining Li := (L
(1)
i , L

(2)
i ). Let us first

define the following notation:

cdi (x) =

{

x d ∈ Di

0 d ∈ D−i

If i ∈ S then

L
(1)
i : zi 7→ v

(1)
i =

(

∑

j∈Ni

(rdij,i − rdji,i)− cdi (x
d
i )
)

d∈D\{i}
.

Otherwise, if i ∈ V \ S then

L
(1)
i : zi 7→ v

(1)
i =

(

∑

j∈Ni

(rdij,i − rdji,i)
)

d∈D\{i}
.

As for, L
(2)
i we have

L
(2)
i : zi 7→ v

(2)
i =

∑

d∈D

∑

j∈Ni

(rdij,i + rdji,i) ∈ IR.

The transpose of Li is given by:

L⊤
i : ((ydi )d∈D\{i},y

(2)
i ) 7→

(

(ud
ij,i,u

d
ji,i)j∈Ni,d∈D,(−ydi )d∈Di

)

where

ud
ij,i = y

(2)
i + ydi , u

d
ji,i = y

(2)
i − ydi , ∀d ∈ D \ {i},

and ud
ij,i = ud

ji,i = y
(2)
i if i = d ∈ D.

It remains to write
∑

j∈Ni
A⊤

ijw̄(i,j),i explicitly:

∑

j∈Ni

A⊤
ijw̄(i,j),i =

(

(w̄d
ij,i,−w̄d

ji,i)j∈Ni,d∈D, (0)d∈Di

)

. (43)

Algorithm 4 summarizes the result of applying Algorithm 3

to the NUM problem. For simplicity, all relaxation parameters

λi are set equal to 1.

Since for the NUM problem the smooth terms fi ≡ 0,

in (41), the term ‖Qi‖ vanishes. Furthermore, it is an easy

exercise to check that ‖L⊤
i Li‖ = ‖LiL

⊤
i ‖ = 2|Ni||D|. Given

the definition of Aij , a sufficient condition for convergence is

to have

τi <
1

2σi|Ni||D|+maxj∈Ni
κ(i,j)

. (44)

In our simulations we consider small, medium, and large

networks with m = 5, 10, 50 nodes/agents, respectively. In all

three cases we consider 5 random flows. The communication

graphs are generated randomly according to the Erdős-Renyi

model with parameter 0.05. We report the performance of

Algorithm 4 for three cases: U(x) = log(x), U(x) = (1 −
α)−1x1−α, with α = 0.5, and linear utility U(x) = x.

For the stepsizes, we set κ(i,j) = 2|D| for all (i, j) ∈ E ,

and σi = 2/|Ni|, τi = 0.99/(6|D|) (cf. (44)). These values

were selected empirically based on better performance of the

algorithm, noting that in general larger stepsizes yield faster

convergence.

First, we consider the synchronous version of the algorithm.

The performance of the algorithm is reported in Table 1 and

Figure 1. The termination criteria is based on achieving a given

relative error, ‖Rk‖/‖R0‖, where Rk = v̄k − vk, and v is the

stacked primal and dual variables of all agents. It is observed

that with all three utilities Algorithm 4 achieves a moderate

relative error fairly quickly, even for the large network. In fact,

in most of the cases the residue is becoming three orders of

magnitude smaller in less than 3000 iterations. Furthermore,

a higher accuracy is harder to achieve in the larger network,

Figure 1 (right). This is not unexpected, since Algorithm 4 is

a first order method.

In Figure 2 we compare the synchronous and asynchronous

versions of the algorithm for the logarithmic utility function

in the network with m = 10. The x-axis denotes the total

number of local updates (note that in the synchronous case at

each iteration m local updates are performed). For the asyn-

chronous case, the activation probabilities of all the agents,

i = 1, . . . ,m, are set equal to pi = 0.5. We observe that the

algorithm takes roughly the same number of total local updates

as the full version, i.e., even with random activation of agents

the algorithm maintains its speed. This behavior is consistent

and is observed for other utility functions and larger networks.

VI. CONCLUSIONS

The primal-dual algorithm introduced in this paper enjoys

several structural features that distinguish it from other related

primal-dual algorithms. The main property that has allowed

us to develop a block-coordinate version of the algorithm

is the diagonal structure of the metric under which Fejér

monotonicity is established. In addition, linear convergence

is achieved under a metric subregularty assumption that does

not require uniqueness of the saddle point solution. The

developed algorithms are employed to derive a fully distributed

asynchronous algorithm for optimization over graphs. Future

works include extending the SuperMann scheme, [30], to the

block-coordinate case and for quasi-nonexpansive operators.

This algorithm enjoys superlinear convergence rates, therefore,

we can achieve faster convergence and consequently less

communication rounds. Investigating the effects of commu-

nication delays and efficient strategies for selecting activation

probabilities and stepsizes are other open research directions.

APPENDIX A

OMITTED PROOFS

Proof of Lemma 2. From the equivalent characterization of

strong subregularity in (26) we have that there exists a

neighborhood Ux⋆ of x⋆ such that for all x ∈ Ux⋆

(f + g)(x) ≥(f + g)(x⋆) + 〈−L⊤u⋆, x− x⋆〉
+ c1‖x− x⋆‖2 (45)

and a neighborhood Uu⋆ of u⋆ such that for all u ∈ Uu⋆

h∗(u) ≥ h∗(u⋆) + 〈Lx⋆, u− u⋆〉+ c2‖u− u⋆‖2. (46)

Fix z = (u, x) with u ∈ Uu⋆ and x ∈ Ux⋆ . Consider v =
(v1, v2) ∈ T̃ z := Dz +Mz + Fz. By definition (cf. (6)) we

have
{

v1 ∈ ∂h∗(u)− Lx,
v2 ∈ ∂g(x) +∇f(x) + L⊤u.

Using this together with the definition of subdifferential yields:

〈v1 + Lx, u− u⋆〉 ≥ h∗(u)− h∗(u⋆), (47)

〈v2 − L⊤u, x− x⋆〉 ≥ (f + g)(x)− (f + g)(x⋆). (48)
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Table 1: Number of iterations to reach ‖Rk‖/‖R0‖ < ǫtol = 10−2, 10−3, 10−4.

Logarithmic Linear Generalized fairness

m 10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4

5 40 137 229 28 145 353 118 1360 1748
10 45 317 663 36 168 350 132 2491 7818
50 290 3210 17760 320 2360 15980 310 21390 95510

0 300 600 900 1,200 1,500

10−4
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100

101

102

no. of iterations

‖R
k
‖/
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0
‖

0 300 600 900 1,200 1,500

10−3

10−2

10−1

100

101

102

no. of iterations
‖R

k
‖/
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Linear

logarithm
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Figure 1: The relative error for m = 10 (left), and m = 50 (right).

Algorithm 4 Synchronous & asynchronous distributed primal-dual algorithm for NUM

Inputs: z0i ∈ IRni , y0i ∈ IR|D\{i}|+1, and wd,0
ij,i, w

d,0
ji,i, r

d,0
ij,i, r

d,0
ji,i ∈ IR, for j ∈ Ni, d ∈ D, i = 1, . . . ,m.

for k = 0, . . . do

I: Synchronous version

for all agents i = 1, . . . ,m do

II: Asynchronous version
draw r.v. ǫki according to P(ǫ0i = 1) = pi
for all agents i with ǫki = 1 do

Local updates:

w̄d,k
ij,i =

1
2

(

wd,k
ij,i + wd,k

ij,j

)

+
κ(i,j)

2

(

rd,kij,i − rd,kij,j

)

, ∀j ∈ Ni, ∀d ∈ D
w̄d,k

ji,i =
1
2

(

wd,k
ji,i + wd,k

ji,j

)

+
κ(i,j)

2

(

− rd,kji,i + rd,kji,j

)

, ∀j ∈ Ni, ∀d ∈ D
ȳki = yki + σiLiz

k
i − σiPCi

(

σ−1
i yki + Liz

k
i

)

zk+1
i = proxτigi

(

zki − τiL
⊤
i ȳ

k
i − τi

∑

j∈Ni
A⊤

ijw̄
k
(i,j),i

)

, where the last term is given by (43).

yk+1
i = ȳki + σiLi(z

k+1
i − zki )

wd,k+1
ij,i = w̄d,k

ij,i + κ(i,j)(r
d,k+1
ij,i − rd,kij,i), ∀j ∈ Ni, ∀d ∈ D

wd,k+1
ji,i = w̄d,k

ji,i − κ(i,j)(r
d,k+1
ji,i − rd,kji,i), ∀j ∈ Ni, ∀d ∈ D

Broadcast of information:

Send rd,k+1
ij,i , rd,k+1

ji,i , wd,k+1
ij,i , and wd,k+1

ji,i to agent j, for all j ∈ Ni, d ∈ D.

Combining (47), (48) with (45), (46) and noting that

〈L⊤(u⋆ − u), x− x⋆〉+ 〈L(x− x⋆), u− u⋆〉 = 0,

yields:

〈v, z − z⋆〉 = 〈v1, u− u⋆〉+ 〈v2, x− x⋆〉
≥ c2‖u− u⋆‖2 + c1‖x− x⋆‖2 ≥ c‖z − z⋆‖2,

where c = min{c1, c2}. Therefore, by the Cauchy-Schwarz

inequality ‖v‖ ≥ c‖z − z⋆‖. Since ‖z − z⋆‖ ≥ d(z, T̃−10),
and v ∈ T̃ z was selected arbitrarily, we have

d(z, T̃−10) ≤ 1
cd(0, T̃ z), ∀z ∈ Uu⋆ × Ux⋆

which is equivalent to metric subregularity of T̃ at z⋆ for 0
[24, Excersize 3H.4].

For the second part, consider the Lagrangian:

L(u, x) := (f + g)(x) + 〈Lx, u〉 − h∗(u).

Sum (45) and (46) to derive

L(u⋆, x)− L(u, x⋆) ≥ c‖z − z⋆‖2, ∀z ∈ Uu⋆ × Ux⋆ (49)

Let z̄⋆ = (ū⋆, x̄⋆) ∈ S such that z̄⋆ ∈ Uu⋆ × Ux⋆ . Since z̄⋆ is

also a primal-dual solution we have L(ū⋆, x⋆)−L(u⋆, x̄⋆) ≥ 0.

Therefore, using (49) at z̄⋆ yields z̄⋆ = z⋆. The convexity of

S concludes the proof.

Proof of Lemma 5. The update equation in Algorithm 2 can

be equivalently written as:

zk+1 = zk + ΛEk(Tzk − zk), (50)
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Figure 2: The relative error for the logarithmic utility, syn-

chronous and asynchronous schemes (m = 10).

where Ek =
∑m

i=1 ǫ
k
i Ui is a diagonal 0-1 matrix. We have

Ek

[

Ek
]

=
∑

ε∈Ψ

P(ǫk = ε)

m
∑

j=1

εjUj =

m
∑

j=1

∑

ε∈Ψ

P(ǫk = ε)εjUj

=

m
∑

j=1

∑

ε∈Ψ,εj=1

P(ǫk = ε)Uj =

m
∑

j=1

pjUj = Π,

where we used Assumptions 3(i) and 3(ii). Furthermore, it

is plain to check that Ek is symmetric and idempotent, i.e.,

Ek = (Ek)⊤ = (Ek)2. Therefore

E[Ek] = E[(Ek)⊤Ek] = Π. (51)

Given the update (50) we have:

Ek

[

‖zk+1 − z⋆‖2Λ−1Π−1S

]

= Ek

[

‖zk + ΛEk(Tzk − zk)− z⋆‖2Λ−1Π−1S

]

= ‖zk − z⋆‖2Λ−1Π−1S + Ek

[

‖Ek(Tzk − zk)‖2Π−1SΛ

+2〈zk − z⋆, Ek(Tzk − zk)〉Π−1S

]

= ‖zk − z⋆‖2Λ−1Π−1S + ‖Tzk − zk‖2SΛ

+ 2〈zk − z⋆, T zk − zk〉S ,

where we used (51) and that Λ,Π are diagonal. Lemma 1

completes the proof. We have

Ek

[

‖zk+1 − z⋆‖2Λ−1Π−1S

]

=Ek



‖zk + Λ

m
∑

j=1

ǫkjUj(Tz
k − zk)− z⋆‖2Λ−1Π−1S





=‖zk − z⋆‖2Λ−1Π−1S + Ek



‖
m
∑

j=1

ǫkjUj(Tz
k − zk)‖2Π−1SΛ

+2〈zk − z⋆,

m
∑

j=1

ǫkjUj(Tz
k − zk)〉Π−1S



 . (52)

Let Ψ = {0, 1}m. Then we have

Ek



‖
m
∑

j=1

ǫkjUj(Tz
k − zk)‖2Π−1SΛ





=
∑

ε∈Ψ

P(ǫk = ε)‖
m
∑

j=1

εjUj(Tz
k − zk)‖2Π−1SΛ

=

m
∑

j=1

∑

ε∈Ψ

P(ǫk = ε)‖εjUj(Tz
k − zk)‖2Π−1SΛ

=
m
∑

j=1





∑

ε∈Ψ,εj=1

P(ǫk = ε)‖Uj(Tz
k − zk)‖2Π−1SΛ





=
m
∑

j=1

pj‖Uj(Tz
k − zk)‖2Π−1SΛ

= ‖Tzk − zk‖2SΛ, (53)

where we used the fact Π−1SΛ is diagonal and Ujs don’t

overlap in the second equality. Following the same argument

for the inner product yields:

Ek



〈zk − z⋆,

m
∑

j=1

ǫkjUj(Tz
k − zk)〉Π−1S





=
∑

ε∈Ψ

P(ǫk = ε)〈zk − z⋆,

m
∑

j=1

εjUj(Tz
k − zk)〉Π−1S

=

m
∑

j=1

∑

ε∈Ψ

P(ǫk = ε)〈zk − z⋆, εjUj(Tz
k − zk)〉Π−1S

=

m
∑

j=1

∑

ε∈Ψ,εj=1

P(ǫk = ε)〈zk − z⋆, Uj(Tz
k − zk)〉Π−1S

=

m
∑

j=1

pj〈zk − z⋆, Uj(Tz
k − zk)〉Π−1S

= 〈zk − z⋆, T zk − zk〉S . (54)

Combining (52), (53) and (54) yield:

Ek

[

‖zk+1 − z⋆‖2Λ−1Π−1S

]

≤‖zk − z⋆‖2Λ−1Π−1S

+ ‖Tzk − zk‖2SΛ

+ 2〈zk − z⋆, T zk − zk〉S .
Lemma 1 completes the proof.

Proof of Theorem 5. For notational convenience let S̄ =
Λ−1Π−1S and T̃ = D + M + F , noting that S = zer T̃
(cf.(10)). By definition we have ‖zk−P S̄

S (z
k)‖S̄ = dS̄(z

k,S)
(where the minimum is attained since S is a closed convex
set). Consequently, it follows from (35) that

Ek

[

d
2

S̄(z
k+1

,S)
]

≤ Ek

[

‖zk+1 − P S̄
S (z

k)‖2S̄

]

≤ ‖zk − P S̄
S (z

k)‖2S̄ − ‖Tzk − z
k‖2

2P̃−SΛ

= d
2

S̄(z
k
,S)− ‖Tzk − z

k‖2
2P̃−SΛ

. (55)

By definition (8) we have

‖z̄k − z
k‖2 = ‖(H +M

⊤)−1
S(Tzk − z

k)‖2

≤ ‖(H +M
⊤)−1

S‖2‖(2P̃ − SΛ)
−1

‖‖Tzk − z
k‖2

2P̃−SΛ
, (56)
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where z̄k is defined by (9) applied at z = zk. Consider the projection
of z̄k onto S, PS(z̄

k). By definition ‖z̄k−PS(z̄
k)‖ = d(z̄k,S), and

we have

d
2

S̄(z
k
,S) ≤ ‖zk − PS(z̄

k)‖2S̄ ≤ ‖S̄‖‖zk − PS(z̄
k)‖2

≤ ‖S̄‖
(

‖z̄k − PS(z̄
k)‖+ ‖z̄k − z

k‖
)2

= ‖S̄‖
(

d(z̄k,S) + ‖z̄k − z
k‖

)2

. (57)

In what follows we bound d(z̄k,S) by ‖z̄k − zk‖ using the metric
subregularity assumption. Define

v
k := −(H −M)(z̄k − z

k) + F z̄
k − Fz

k
.

It follows from (9) that (H − M − F )zk ∈ (H + D)z̄k, which in
turn implies

v
k ∈ T̃ z̄

k = (D +M + F )z̄k. (58)

Let Ω be defined as in the proof of Theorem 4. Let ω ∈ Ω.
Combine (8) and (36) together with the fact that S−1(H+M⊤) has
full rank to derive

z̄
k(ω)− z

k(ω) → 0. (59)

On the other hand, metric subregularity of T̃ at all z⋆ ∈ S = zer T̃
for 0 implies that there exists a neighborhood U of z⋆ such that (see
the equivalent formulation of metric subregularity in [24, Exercise
3H.4]):

d(x,S) ≤ ηd(0, y), ∀x ∈ U , and y ∈ T̃ x, (60)

for some η ∈ [0,∞). From (59) and Theorem 4 we have that

z̄k(ω) → z⋆ ∈ S = zer T̃ which implies that there exists k̄ ∈ IN
such that for k > k̄ a neighborhood U of z⋆ exists with z̄k(ω) ∈ U .
Consequently (58) and (60) yield

d(z̄k(ω),S) ≤ η‖vk(ω)‖. (61)

From triangle inequality and Lipschitz continuity of F we derive

‖vk‖ = ‖(H −M)(z̄k − z
k)− F z̄

k + Fz
k‖

≤ ‖(H −M)(z̄k − z
k)‖+ ‖F z̄

k − Fz
k‖ ≤ ξ‖z̄k − z

k‖,

where ξ is a constant depending on ‖H − M‖ and the Lipschitz
constants βi for i = 1, . . . ,m. Therefore, using (61) we derive

d(z̄k(ω),S) ≤ ξη‖z̄k(ω)− z
k(ω)‖.

Using this in (57) together with (56) yields

d
2

S̄(z
k(ω),S) ≤ φ‖Tzk(ω)− z

k(ω)‖2
2P̃−SΛ

, (62)

where φ = (ξη + 1)2‖(H + M⊤)−1S‖2‖(2P̃ − SΛ)
−1

‖‖S̄‖.
Combine (62) with (55) to derive

Ek

[

d
2

S̄(z
k+1(ω),S)

]

≤ d
2

S̄(z
k(ω),S)− 1

φ
d
2

S̄(z
k(ω),S).

This concludes the proof.
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[2] B. C. Vũ, “A splitting algorithm for dual monotone inclusions involving

cocoercive operators,” Advances in Computational Mathematics, vol. 38,
no. 3, pp. 667–681, 2013.

[3] L. Condat, “A primal-dual splitting method for convex optimization
involving Lipschitzian, proximable and linear composite terms,” Journal

of Optimization Theory and Applications, vol. 158, no. 2, pp. 460–479,
2013.

[4] P. L. Combettes, L. Condat, J.-C. Pesquet, and B. C. Vũ, “A forward-
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