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Abstract: This paper proposes a ratio-cum-dual to ratio 

estimator of finite population mean. The bias and mean 

squared error of the proposed estimator are obtained. It has 

been shown that the proposed estimator is more efficient than 

the simple mean estimator, usual ratio estimator and dual to 

ratio estimator under certain given conditions. An Asymptotic 

optimum estimator in the class of estimator is identified with 

its mean squared error formula. To judge the merits of the 

proposed estimator over other estimators an empirical study is 

carried out. 
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I.  INTRODUCTION 

n sample surveys, auxiliary information is used at both 

selections as well as estimation stages to improve the 

efficiency of the estimators. When the correlation between 

study variate and auxiliary variate is positive (high), the 

ratio method of estimation is used for estimating the 

population mean. On the other hand, if the correlation is 

negative, the product method of estimation is used. Cochran 

(1940) used auxiliary information at estimation stage and 

proposed ratio estimator. Robson (1957) and Murthy (1964) 

envisaged product estimator, Searls (1964) used coefficient 

of variation of study variate, motivated by Searls (1964), 

Sisodia and Dwivedi (1981) utilized coefficient of variation 

of auxiliary variate. Srivenkataramana (1980), first proposed 

dual to ratio estimator. Singh and Tailor (2005) and Tailor 

and Sharma (2009) worked on ratio-cum-product estimators. 

These motivates author to propose a new ratio-cum–dual to 

ratio estimator utilizing dual to ratio estimator of finite 

population mean. Let )...,,( 21 NUUUU   be a finite 

population of size N and y and x be the study and auxiliary 

variates respectively. A sample of size n is drawn using 

simple random sampling without replacement to estimate 

the population mean 
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of study variate y. 
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The classical ratio estimator for Y is given by 
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variate is known.  

Using the transformation )/()( nNnxXNx ii 
, 

(i=1,2,3,….,N), Srivenkataramana (1980) obtained dual to 

ratio estimator as 
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where )/()( nNnxXNx 
 

Bias and mean squared error of ratio estimator Ry  and dual 

to ratio estimator 
)(d

Ry  are respectively given as 
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Where yC , xC  and   are coefficient of variation of y, 

coefficient of variation of x and correlation coefficient 

between y and x respectively and defined as 
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In this paper we have suggested ratio-cum-dual to ratio type 

estimator.  

II. PROPOSED RATIO-CUM-DUAL TO RATIO ESTIMATOR  

The proposed ratio-cum-dual to ratio estimator of population 

mean Y  is  
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where   is a suitably chosen scalar. It is to be noted that for 

 =1 and  = 0, 1

ˆ
bkY  reduces to the estimators Ry  and 

)(d

Ry  respectively. Thus Ry  and 
)(d

Ry   are particular case 

of proposed estimator 1

ˆ
bkY . 

To obtain the bias and MSE of 1

ˆ
bkY , we write  

)1( 0eYy  and )1( 1eXx  suchthat 
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Expressing (2.1) in terms of sei

'
 we have (i=1,2) 
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To the first degree of approximation, the bias and mean 

squared error of 1

ˆ
bkY  are respectively obtained as  
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Thus the estimator 1

ˆ
bkY  with )1/(  KgKgK  is 

almost unbiased. It is also observed from (2.3) that the bias 

of 1

ˆ
bkY  is negligible for large sample. 

Mean squared error of 1

ˆ
bkY in (2.4) is minimized for     

0
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Substitution of (2.5) in (2.1) yields the asymptotically 

optimum estimator (AOE) for Y as                                                  
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Putting  (2.5) in (2.3) and (2.4), we get the bias and mean 

squared error of 
)(

1

ˆ opt

bkY  respectively as 
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Equation (2.8) shows that mean squared error of 
)(

1

ˆ opt

bkY  is 

same as that of the approximate variance of the usual linear 

regression estimator )(ˆ xXyylr   , where ̂  is the 

sample regression coefficient of y on x. 

III.  EFFICIENCY COMPARISONS   

Under simple random sampling without replacement 

(SRSWOR), variance of sample mean y  is    

22)1(
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n

f
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From (2.4) and (3.1), it is observed that 1

ˆ
bkY  is more 

efficient than usual unbiased estimator y  if  
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Comparison of  (2.4) and (1.5) shows that 1

ˆ
bkY is more 

efficient than usual ratio estimator  
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Comparing (2.4) and (1.6), it is observed that 1

ˆ
bkY  is more efficient than usual dual to ratio estimator 
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Ry  if 
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IV. EMPIRICAL STUDY  

To analyze the performance of the proposed estimator in comparison to other estimators, eleven natural population data sets 

are being considered. The descriptions of the populations are given below.   

 

Population-I [Source: Steel and Torrie (1960, p. 282)] 

N=30           y : log of leaf burn in secs 

n=6              x : chlorine perecentage 

Y =0.6860,   X =0.8077,   yC =0.700123 ,  xC =0.7493,    =-0.4996,   and     f=0.20 

Population II. [Source: Sukhatme and Sukhatme (1970), p. 256] 

N = 89          y = Number of villages in the circles and 

n=12             x = A circle consisting more than five villages. 

Y  =3.360,    X   = 0.1236,    Cy = 0.60400,  xC  = 2.19012   and   yx  = 0.766, 

Population-III [Source: Maddala (1977)] 

N=30            y : Consumption per capita 

n=6               x :  Deflated prices of veal 

Y =7.6375,  X =75.4313,  yC =0.2278   xC =0.0986   and   =-0.6823 

Population-IV [Source: Das (1988)]  

x : The number of agricultural labourers for 1961 

y : The number of agricultural labourers for 1971 

Y =39.0680,  X =25.1110,  yC =1.4451,  xC =1.6198  and    =0.7213 

Population-V [Source: Das (1988)] 

It consists of 142 cities of India with population (number of persons) 100,000 and above; the character x and y being 

x : Census population in the year 1961 

y : Census population in the year 1971 

Y =4015.2183,  X =2900.3872,  yC =2.1118,  xC =2.1971 and  =.9948 

Population-VI [Source: Cochran  (1977)] 
y : The number of  persons per block 

x : The number of  rooms per block 

Y =101.1,  X =58.80,  yC =0.14450,  xC =0.1281 and  =0.6500 

Population-VII [Source: Pandey and Dubey (1988)] 

N=20,   n=8,  Y = 19.55,  X =18.8,   
2

yC =0.1262,  
2

xC =0.1555   and  yx =-0.9199, 

Population- VIII [Source: Kadilar and Singi (2006)] 

N=104,       y: the level of  apple production 

n=20,          x: the  number of apple  trees 

Y =625.37,     X =13.93 yC =1.866,    xC =1.653    and   =0.865 
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Population –IX : Murthy (1967, p. 228) 

N= 80,        y: Output 

n = 20,              x: Fixed Capital 

7507.0,3542.0,2646.11,8264.51  xy CCXY    and  ,9413.0  

Population –X : Murthy (1967,  p. 228) 

N= 80,         y: Output 

n = 20,   x: Number of Workers 9484.0,3542.0,8513.2,8264.51  xy CCXY  

and    9150.0  

Population- XI [Source: Kadilar and Cingi (2004)] 

N=106,    n=20,   Y =15.37,   X =243.76,   yC =4.18,   xC =2.02   and    =0.82    . 

Table – 4.1 

Ranges of   in which 1

ˆ
bkY  is better than y ,  ry  and 

)(d

Ry  

Populatio

n 

Range of  in which is 1

ˆ
bkY    better than 

Optimum    

value of   

y  
Ry  

)(d

Ry  0  

I (-0.33, 1.464) (0.13,  1) ( , 1.130) 0.5653 

II -0.184, 0.316) 
(-0.869,  

1)) 
( , 0.131) 0.0656 

III (-0.5, -0.522) 
(-6.729 , 

1)) 
( , -5.729) 2.8645 

IV 
(-0.138, 

1.327) 

(0.1889 , 

1)) 
( , 1.1889) 0.5944 

V (-0.138,2.038) (0.900. 1) ( , 1.900) 0.9501 

VI 
(-0.138, 

1.053) 
(.3930,  1) ( , 1.393) 0.6965 

VII (-2.0, -6.972) 
(-9.9720,  

1) 
( , -8.972) -4.4860 

VIII 
(-0.303, 

2.241) 
(0.938,  1) ( , 1.939) 0.9693 

IX (-0.5, 0.832) (-0.667,  1) ( , 0.332) 0.1662 

X (-0.5, 0.525) (-0.975,  1) ( , 0.025) 0.0126 

XI 
(-0.303, 

4.119) 
(2.816,  1) ( , 3.816) 1.9078 

               

Table -4. 2 

Percent relative efficiencies of  y , ry  
)(d

Ry and  1

ˆ
bkY  (

)(

1

ˆ opt

bkY ) with respect to y  

Population 

 

 

 

Estimator 

 I  II III IV V VI VII VIII IX X XI 

y  100 100 100 100 100 100 100 100 100 100 100 

Ry  166.26 11.64 56.24 156.40 8031.10 157.87 23.40 396.50 66.59 30.59 226.76 
)(d

Ry  145.86 220.45 82.12 121.54 130.64 114.67 34.37 145.76 591.38 612.44 120.73 

1

ˆ
bkY ( )(

1

ˆ opt

bkY ) 208.45 241.99 187.10 208.45 9640.45 173.16 650.26 397.18 877.54 614.34 305.25 



Global Journal of Science Frontier Research   Vol. 10 Issue 1 (Ver 1.0), April 2010   P a g e  | 31 

 
 

 

Table 4.2 shows that there is a significant gain in efficiency 

by using proposed estimator  1

ˆ
bkY

 or (

)(

1

ˆ opt

bkY
) over unbiased 

estimator
y

, usual ratio estimator Ry
 and  dual to ratio 

)(d

Ry
. 

Table 4.1 provides the wide range of   in which suggested 

estimator  1

ˆ
bkY

 or (

)(

1

ˆ opt

bkY
) is   more efficient then all 

estimators considered in this paper.  This shows that even if 

the scalar   deviates from its optimum value ( opt
), the 

suggested estimator 1

ˆ
bkY

 will yield better estimates than
y

, 

Ry
and

)(d

Ry
. Therefore, suggested estimator 1

ˆ
bkY

 or (

)(

1

ˆ opt

bkY
) is recommended for use in practice.     
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