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ABSTRACT Mean arterial pressure (MAP) is an important clinical parameter to evaluate the health of 
critically ill patients in intensive care units. Thus, the real time clinical decision support systems detecting 
anomalies and deviations in MAP enable early interventions and prevent serious complications. The state-of-
the-art decision support systems are based on a three-phase method that applies offline training, transfer 
learning, and retraining at the bedside. Their applicability in critical care units is challenging with delay and 
inaccuracy.  In this paper, we propose a real time clinical decision support system forecasting the MAP status 
at the bedside using a new machine learning structure. The proposed system works in real time at the bedside 
without requiring the offline phase for training using large datasets. It thereby enables timely interventions 
and improved healthcare services. The proposed machine learning structure includes two stages. Stage I 
applies online learning using hierarchical temporal memory (HTM) to enable real time stream processing and 
provides unsupervised predictions. To the best of our knowledge, this is the first time it is applied to medical 
signals. Stage II is a long short-term memory (LSTM) classifier that forecasts the status of the patient’s MAP 
ahead of time based on Stage I stream predictions. We perform a thorough performance evaluation of the 
proposed system and compare it with the state-of-the-art systems employing logistic regression (LR). The 
comparison shows the proposed system outperforms LR  in terms of the classification accuracy, recall, 
precision, and area under the receiver operation curve (AUROC). 

INDEX TERMS Clinical decision support, classification, hierarchical temporal memory (HTM), long short-
term memory (LSTM), machine learning, real time prediction. 

I. INTRODUCTION 
In critical care units, it is essential to predict adverse events 
as it allows for preventive interventions and reduces clinical 
complications. Episodes of anomalous mean arterial pressure 
(MAP) values are frequent at the bedside as they are often 
associated with anesthesia. These episodes are linked to 
cardiovascular risks, multiple organ failure, and life-
threatening complications, especially in critically ill patients 
[1-6]. As a result, evolving research activity has begun to 
develop real-time decision support tools to predict MAP to 
enable preventive preparations and reduce complications[1-
6]. The use of machine learning in clinical decision support 
systems has become a current research hotspot[2-11]. These 
systems are based on offline analysis to save the challenge 

of processing streams in real time [3-6, 9-11]. The latter 
requires machine learning algorithms that are capable of 
adapting to high-speed streams and their fast-changing 
characteristics [12]. Recently, few clinical decision support 
systems have been proposed, working in real time using 
machine learning, based on stream processing [2,7,8]. These 
systems are mostly three phase-based, consisting of offline 
training on a stored data set, transfer learning, followed by 
bedside retraining on the monitored patient's vital signs. The 
problem with these systems is the generality of data and 
models, as the dataset does not necessarily represent a large 
population. Modeling must also be repeated in different 
clinical cases. The practicality of such systems is also 
questionable due to over-training, which in some cases also 
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leads to delayed decisions. Also, these non-personalized 
models have led to uncertain results [2,7,8].    

This paper proposes a personalized real-time clinical 
decision support system that works beyond the three phase-
based frameworks guidelines principle. We suggest a new 
machine learning prediction-and-classification system that is 
applied directly to the bedside in real time. The suggested 
framework incorporates the use for prediction and 
classification of online machine learning, hierarchical 
temporal memory (HTM), and long-term memory (LSTM), 
respectively, over two stages. HTM has been commonly 
used in financial data in real time [13-18], but it is first 
implemented in medical signals in our proposed system. The 
proposed clinical decision support system is implemented to 
forecast the status of MAP based on an analysis of the vital 
signs of the patient in real time. In our system, the HTM 
properties play a key role as they enable the decision support 
system to operate directly at the bedside, avoid retraining 
time delays, and provide earlier decisions. HTM forecasts 
the stream one-step into the future, unsupervised, without 
pre-modeling. These streams are fed to an LSTM classifier 
to forecast the MAP value one step forward, after careful 
selection of features. As our system is personalized, the 
proposed structure is applied to each patient. LSTM, the 
most efficient recurrent neural network (RNN) algorithm, 
provides a classifier with the advantage of managing the set 
of features, and the observation window [14, 19- 21]. It 
distinguishes LSTM from other neural artificial networks 
(ANNs) and deep learning classifiers, which are sometimes 
defined as inexplicable[22]. The proposed decision support 
system is applied to the data set of the observational study 
collected at the University Hospital of Oslo[30].  

The proposed clinical decision support system is evaluated 
and compared to the state-of-the-art LR systems. Both the 
predictive and classification stages are carefully verified in 
terms of accuracy and efficiency. The proposed system 

outperforms LR in terms of accuracy, recall, precision, F1-
score, and area under the receiver operating characteristic 
(AUROC). The forecast time is also considered to be a 
comparison metric, where it indicates the number of time 
steps in advance, the system can predict the event before it 
happens. The proposed system shows the ability to provide 
faster and highly accurate forecasts compared to LR. The 
paper is structured as follows; Section II explains the clinical 
motivation, related work, and decision support systems 
challenges. Section III is on the processes and contributions. 
Section IV outlines the proposed decision support system. 
Section V provides the results and discussion, and Section 
VI concludes.   
 
II. CLINICAL MOTIVATIONS AND CHALLENGES                             

     MAP is a crucial clinical criterion for evaluation and 
examination as a predictor of adverse health conditions. A 
MAP anomaly can be either hypotensive or hypertensive and 
is defined as an interval where the values exceed thresholds 
specified for at least a minute [1-3]. Patients with anesthesia, 
surgery, and intensive care [1-6] are likely to experience 
anomalous levels of MAP. Clinically, it has been concluded 
that anomalous MAP is associated with various 
complications such as acute kidney injury, increased 
postoperative myocardial infarction levels, cardiovascular 
risks, as well as organ failure and death [1–6]. This explains 
the need for early detection of MAP in critical care units and 
operating rooms to allow timely intervention to reduce the 
potential for mortality and morbidity.  

A. RELATED WORK 

     Various analytical tools are currently used in clinical 
practice to support decision-making on various clinical 
parameters, including MAP[2-11]. These clinical decision-
making tools mostly employ machine learning techniques 
using algorithms such as LR, random forest ( RF), supported 
vector machine ( SVM), and deep learning. Several studies 

TABLE I 
OVERVIEW ON RELATED WORK ON CLINICAL DECISION SUPPORT SYSTEMS. 

Ref Parameter Real 
Time 

Three- Phase 
Based 

Feature Selection 
/number of features 

Data set 
size 

Machine Learning 
Algorithm 

Performance 

[2] Hypotension yes Yes Yes/ 3022 1334 LR AUC= 95% 
[3] Hypotension/ 

Kidney injury 
No offline 231 57317 LR - 

[4] Diastolic/ Systolic No offline Yes/18 285 RF Acc= 88% 
[5] Hyper-tension No offline  25 RF Acc= 60% 
[6] Hyper-tension No offline No/19 100 DT, SVM, LR Acc= 90, 86, 83 

% 
[7] Acute Kidney 

Injury 
Yes Yes Automatic 4490 RF AUC=80% 

[8] Cardiotocography Yes Yes No/21 2126 SVM, RF Acc= 96, 95% 
[9] Hypovolemic 

shock 
No Offline Yes/42 66 SVM Sensitivity= 

90% 
[10] Mortality No Offline Yes/16 341 ANN, SVM, RF, 

LR 
AUC= 0.84, 

0.84, 0.9, 0.85. 
[11] Ectopic 

Pregnancy 
No Offline Yes/33 406 MLP, DL. SVM, 

NB 
Acc= 87, 57, 89, 

68 % 
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have been performed on the early identification of events 
with blood pressure and supporting decisions. Edward Labs 
has developed an LR-based model of real-time hypotension 
prediction based on waveform analysis in [2]. LR was also 
used to calculate the dependency between hypotensive 
events and acute kidney injury in[3] and diastolic and 
systolic blood pressure in[4]. Forecasting of hypertension in 
pregnant women using RF has been studied in [5]. The same 
problem was studied and compared with classical machine 
learning algorithms in [6]. Acute kidney injury was predicted 
using RF in [7]. Cardiotocography data was analyzed using 
SVM and RF in [8]. SVM has been proposed to monitor 
cardio-cerebrovascular hemorrhage in[9]. SVM, RF, LR, 
and ANN have been employed and their efficacy in 
predicting mortality rates has been compared in[10]. While 
multilayer perception (MLP), SVM, deep learning, and 
Naives Bayes were compared to predict ectopic pregnancy 
in [11]. Table 1 lists the comparison between the different 
studies. Clinical decision support systems are mostly used 
offline on stored data sets [3-6, 9-11]. In 2017, Edward Labs 
developed a model capable of working in real time[2]. This 
work was considered to be a breakthrough compared to 
studies commonly conducted on offline analysis. This model 
was later developed into a commercial tool. Various 
frameworks followed and proposed real-time predictions, as 
in [7, 8]. 

B. CHALLENGES  

Real-time stream analysis at the bedside[13-14] is the main 
challenge for real-time clinical decision support frameworks. 
Streams are usually of high speed; the data rate and volume 
are high. The characteristics of the stream vary constantly, 
which is known as the concept drift problem[12].  Such 
problems place many restrictions on learning algorithms 
because they need to be fully unsupervised without labeling or 
annotation. Stream prediction has been conventionally 
performed using linear prediction methods that are successful 
when signals experience high sample correlation and 
periodicity [24, 25]. Machine learning, however, was seen as 
an alternative to stream learning and predictions using 
statistical models, models of neural networks, and cortical 
algorithms[15-18]. Only the later algorithms can process 
streams in real time [15-18].   On the other hand, the statistical 
and neural network models are mostly supervised algorithms, 
modified to adapt to the challenges of stream predictions and 
real-time learning. This is achieved with time delays, 
buffering, and storage [12- 14, 19- 21]. But these 
improvements are leading to delayed forecasts and reduced 
performance.  

Recent studies on real-time clinical decision support 
systems have suggested a transfer learning phase that 
complements the machine learning process. Applying transfer 
learning has become a turning point as it has strengthened the 
process of real time analysis of the systems and improved their 
performance[24]. The systems in this context avoid real-time 
stream processing and apply a three-phase-based framework 
consisting of offline training, transfer learning, and bedside 

retraining[2, 7, 8]. It begins with the offline training phase to 
train the classifier on a large stored data set. The offline 
procedure also includes training, testing, and validation. 
Transfer learning is then applied and plays a key role in these 
frameworks as it brings the learning achieved during the 
offline phase to the bedside[24]. It uses the pre-trained 
network offline as a basis and upgrades it by retraining the 
patient's data and the bedside streams in real time. After the 
three steps, the classifier is then able to provide decision 
support at the bedside. The three-phase systems are effective 
but lack generality and practicality [3-6, 9-11]. Deep learning 
models suffer from another problem; they are commonly 
described as "black boxes" and are not usually clinically 
supported. The learning and selection of features in these 
models are non-trackable, where the resulting alarms are 
considered unexplained. This problem has prompted the rise 
of explainable AI research to reveal more details on their 
automatic learning and selection of features[22].  

We may conclude that the development of decision support 
systems rests on operating directly on real-time stream 
analysis outside the three-phase frames. It is expected that the 
next generation of decision support systems will follow an 
operational framework able to address these processing 
challenges. In this paper, we propose a decision support 
system modeling and processing streams in real time based on 
the use of cortical algorithms [15-18]. Cortical learning 
algorithms are a category of artificial neural networks that 
mimic the brain, where data is processed in real time. That 
means they can learn in an unsupervised manner incrementally 
the temporal patterns in the data. The following section 
explains the cortical algorithms. 

III. CONTRIBUTIONS AND METHODS 

A. CONTRIBUTIONS 

The main contributions to this paper are as follows:  
i. We are proposing a new, personalized, real-time clinical 

decision-making support system working at the bedside. 
Compared to existing systems this can be viewed as a 
breakthrough. As  It operates beyond the three phase-based 
systems, eliminating both off-line training and transfer 
learning.  

 ii. The advantage of our system is based on the proposed 
prediction-and-classification machine learning structure 
using HTM-and-LSTM. HTM provides the system with the 
benefit of working in real time as it can model and predict 
streams in real time and unsupervised. For the first time, 
HTM has been investigated for the use of medical signals by 
us in[30].  

 iii. The proposed machine learning structure uses the 
LSTM classifier as a second stage to forecast a binary 
decision on each patient's MAP status. The system is 
personalized and we are developing a model for each patient. 
The classifier uses the vital signs of each patient as features, 
as we seek to investigate the inter- and intra-dependencies 
between the different vital signs to forecast the MAP status.  
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 iv. Performance evaluation is provided to demonstrate the 
effectiveness of the proposed decision support system 
compared to the state-of-the-art use of LR. We apply 
machine learning algorithms to a data set collected at the 
Oslo University Hospital (OUS)[23]. 

B. METHODS 
This subsection is dedicated to the description of HTM; it 

is a theoretical model that mimics different structural and 
algorithmic principles in the brain's neocortex [8-14]. The 
HTM network is trained using unsupervised Hebbian-style 
learning and consists of layers of cells arranged in a set of 
columns. The cell has three states; active, predictive / 
depolarized, and non-active. Each cell has two separate input 
regions, the proximal and the distal. The proximal region 
represents the feedforward input to HTM. At the same time, 
the distal region reflects the lateral connections within the 
layer that express the temporal pattern learned, and that lead 
to predictions. A cell is activated when it receives sufficient 
proximal and distal input.  

The HTM network at any time describes the input sequence 
in terms of two separate sparse representations, one at the 
level of the columns and one at the level of the single cells 
[15-17]. The sparse representation at the column level 
describes the current feed-forward input. The representation 
of the cell level denotes the learned temporal pattern from 
the current input and leads to predictions of the future time 
step. In the case of an HTM network with N columns and M 
cells per column, the learning rules are described using four 
matrices explaining both the activation rules and the network 
dependencies [15, 16]. The first matrix is the Activation 
matrix , where   is the activation state of the ith cell in 
the jth column at the time interval t  

                     (1) 

 
where  is the matrix representing the set of active 

columns, which illustrates the input at time t, and   
denotes the predictive state of each cell determined during 
the previous time interval t-1. The activation rules work as 
follows, a cell is activated if and only if its column receives 
sufficient feedforward input, regardless of its previous state 
(predictive, active, or non-active) as shown in (1). However, 
the cell in a predictive state is privileged, more specifically 
it will be activated faster if its column receives enough input 
and will prevent other cells in the same column from being 
activated unless they are also in the predictive state. That is 
known by the intra-column inhibition. If the column receives 
enough input and does not have a predictive cell, it will be 
completely activated. The second matrix is the predictive 
state input is , where each element  is the predictive 
state of the ith cell in the jth column for the following time 
interval,   

 

                          (2) 

 
where  is the segment activation threshold,  is element-
wise multiplication, and denotes the connected 
synapses/connection of segment d of the ith cell in the j h 
column. A cell is said to be in a predictive state if it receives 
enough distal input as shown in (2), which represents the 
temporal pattern learned by the HTM network.  Using 
Hebbian-style learning rules, the precision of the learning at 
time step t is checked at time step t+1. It evaluates the 
learning process at each time step in order to strengthen or 
decay the lateral connection leading to each prediction.  The 
active lateral connection leading to successful prediction is 
reinforced by increasing the permanence of by the amount of 
p+, and decreases the permanence of inactive connections by 
a small value of p-.   
 

,              (3) 
 

where  denotes the connected synapses and  is a binary 
matrix containing only the positive entries in . Next, a 
small decay is applied to the active segments of cells with 
wrong predictions; this is namely called the long-term 
depression rule. 

                           (4) 
 
where   and   ,  . The 
fourth matrix to control the learning rules is the matrix that 
describes the input activity. The matrix  denotes the set 
of active columns illustrating the feedforward input. Many 
columns receive synaptic inputs at every time step but not all 
of them are activated. the number of active proximal cells for 
each column is calculated by applying the intercolumnar 
inhibitory process. Only the higher 2% of columns are 
selected and activated.    

IV. THE PROPOSED DECISION SUPPORT SYSTEM  
We propose a personalized decision support system 

capable to operate in real time, the system is as shown in 
Fig.1. At the input stage, marked in orange, the vital signs 
data are collected as streams directly at the bedside from the 
patient's monitor. In our model, we consider vital signs that 
are mostly monitored in clinical practice. Fig.1-A shows the 
complete list of these vital signs.   The streams then pass to 
the Stage I machine learning, shown in blue, which uses 
HTM to provide unsupervised real-time prediction for each 
vital sign. The predicted streams listed in Fig.1-B are then 
passed to Stage II, in green. The streams undergo the feature 
extraction and selection then pass to the LSTM classifier. it 
uses the MAP ground truth and the selected features as input. 
At the final stage, marked in yellow, the classification 
decision is ready and a forecast decision on the future level 
of the MAP is provided. 
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SVV*SYS HRV*SYS DIA CO* DIA SVR* DIA

SPV* DIA2 SVV* DIA2 PPV* DIA2 HRV* DIA2 * SYS*HR

 

SVRI Y DIA

HRV

IGURE 1. The proposed personalized decision support system working on the bed side on real time. The input to the system is a number of monitored
signs streams in real time as marked in light orange. These vital sign streams are fed to the first proposed stage for prediction, the streams are listed in the 
orange table       . This stage is marked in blue and uses online machine learning to provide unsupervised predictions in real time. The resulting predicted 
streams are listed in table       . They then pass to the second proposed stage, in green, employs LSTM machine learning for classification. Feature extraction 
and selection are applied prior to the classification. The resulting feature space after extraction and selection steps are listed in table          and          respectively.  
The later table was color coded to illustrate the importance ranking of the features. Dark shaded cells signify high impact while light shades signify low impact. 
Features written in black font are the ones with the least impact and are discarded. The resulting forecast decision, in yellow, is binary stating either MAP in 
the coming time interval is normal or experiences abnormality. 
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FIGURE 2. A detailed visualization of the proposed system’s different st
terms of the stage input, output signal, and classifier’s features importance ranking.  
The input signals collected at the bedside as vital signs streams are shown in     . Stage 
one outputs are shown over 3 windows marked by     . These signals represent the 
predictions provided by the online machine learning stage using HTM. Over a 
window of 100 samples, we show stage one prediction efficiency is shown in     vs      by 
displaying the CO stream, prediction, and confidence interval. In       , the feature 
importance ranking are displayed. The first 30 features were selected and fed to the 
classifier to deliver its decision on the MAP level based on them. The results shown 
above belong to a randomly selected patient.  

B
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We setup LSTM as a semi-supervised classifier and it 
provides a binary decision. It needs a training period until the 
decision on the MAP level is foreseen. In our model, we use 
the data collected before the spinal anesthesia for training, 
and the classifier is configured to deliver the decision after 
the spinal anesthesia. The decision-support system is 
personalized. This means that for each patient a complete 
system is trained using only its data, features, and 
parameters. The proposed system was applied to the data set 
in[23]. A detailed description of the proposed decision 
support system stages is given in the following subsections; 
the data set is defined in subsection A, stage I is clarified in 
subsection B, feature extraction and selection is addressed in 
subsection C, and an explanation of the classification stage 
is shown in subsection D. 

A. DATA SET  
The data set was collected at Oslo University Hospital 

following an observational study on healthy pregnant women 
scheduled for cesarean delivery[23]. Helsinki Declaration of 
ethical standards and guidelines for the Institutional Review 
Board ( IRB) are respected. The dataset includes a continuous 
recording of different vital signs of 76 people, the recordings 
started almost 7 minutes before spinal anesthesia and until 
delivery. The continuously recorded vital signs are; diastolic 
arterial pressure (Dia), mean arterial pressure (MAP), systolic 
blood pressure (Sys), heart rate ( HR), estimated cardiac 
output (CO), heart rate index ( CI), stroke volume ( SV), 
systemic vascular resistance (SVR), systemic vascular 
resistance index (SVRI), heart rate variability ( HRV), stroke 
volume v. The data collected is stored in a time series, ranging 
from 3000 to 6000 samples per patient. -- sample reflects the 
median of the samples obtained over 10 seconds, with a 5-
second sliding window. Patients are monitored and a forecast 
decision on the level of MAP is required after spinal 
anesthesia. The data set includes various events, such as 
hypotensive and hypertensive, which provide valuable 
benchmark data for the assessment of the proposed decision 
support system. For clarification, we displayed these vital 
signs streams for a randomly selected patient in Fig.2-A. It 
should be noted that the size of the data set can not be 
comparable to that of the medical research databases. This 
could, therefore, be seen as a limitation. However, the dataset 
has a reasonable size w.r.t to datasets collected locally in 
hospitals. Table 1 lists a comparison among different decision 
support systems in the literature including the dataset size in 
each study. As can be seen, there is a noticeable diversity of 
dataset sizes between the different studies. 

B. STAGE ONE: ONLINE PREDICTION STAGE  
This stage provides unsupervised predictions of each vital sign 
using the HTM algorithm in real time. We have introduced 
HTM for the medical stream in [30]. Predictions are made in 
parallel for each vital sign, CO, CI, MAP, Dia, Sys, SV, SVI, 
SVR, SVRI, HR, SVV, PPV, SPV, and HRV. Each stream is 
processed separately, and each sample is fed one-by-one to an 

HTM algorithm that makes predictions one step into the 
future. Fig.1-B shows the list of the predicted vital signs 
streams; which are the input streams that HTM predicts one 
step into the future. These streams are inputs to Stage II. Fig.2-
B shows the predicted streams as well as the original streams 
of a randomly selected patient. The streams are shown over 
three windows. A thorough performance evaluation of the 
predictive efficiency of HTM compared to the predictor 
LSTM-Batch is provided in our early work[30]. HTM showed 
better performance and is completely unsupervised.  

C. STAGE TWO: FEATURE EXTRACTION AND 
SELECTION 

Stage II includes feature extraction, feature selection, and 
a classifier stage. The patient's vital signs are used as features 
of the MAP as we aim to investigate inter-and intra-
dependencies between different vital signs and MAPs for 
each patient. We exploit the dependencies as we examine the 
reflection of the MAP anomalies on the different vital signs 
and patterns associated with them. Classifier efficiency 
shows the ability to learn these dependencies and to detect 
early, diverse patterns of vital signs that predict MAP 
anomalies ahead of time before any extreme value is evident 
on the monitored signs.  

Vital signs are used as simple and combined features 
through multiplication, division, and squaring The features 
are used in a simple and combinational form. No statistical 
features have been used. Although millions of features may 
have been included, either statistical or combination features, 
we have decided to use vital signs to emphasize the 
dependencies between vital signs and MAP. We started with 
13 vital signs, which are commonly monitored parameters, 
CO, CI, Dia, Sys, SV, SVI, SVR, SVRI, HR, SVV, PPV, 
SPV, HRV. The 13 vital signs used in our system are listed 
in Fig.1-A. We made different combinations starting with the 
13 vital signs leading to 42 features, which represent the 
starting space feature shown in Fig. 1-C. The size of our 
feature space does not necessarily need the feature selection 
stage. Nevertheless, we understand that such a stage is 
essential in practice as the parameters monitored are 
expanded and consequently the feature space. , we include a 
feature selection stage in our simulations and explore 
different methods to achieve a complete model that is 
adequate for practical implementation.    

Three feature selection methods were evaluated and 
compared: Relieff algorithm [27], sequential forward 
selection (SFS)[28], and neighborhood component analysis 
(NCA)[29], respectively. The three methods were applied 
separately and their performance was evaluated in terms of 
accuracy and AUROC and compared to performance using 
the full feature space. Relieff algorithm showed the best 
performance and was adopted as the algorithm for selecting 
features in our model. This will be discussed in more detail 
in the following section. Relieff algorithm's selected features 
are listed in Fig.1-D with color code for the cell to represent 
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the importance of each feature. The darker the color of the 
cell, the more potent the feature is. The features importance 
ranking is provided in Fig.2-D. We can conclude that the 
MAP classification was highly dependent on Dia, Sys, SV, 
and SVI as well as on their combinations. These features are 
shown in the top two rows. On the other hand, as seen in 3rd 
to 5th rows, CI, CO, HR, and SPV along with their 
combinations were found to be less impactful. Whereas 
SVV, PPV, HRV, SVRI, SVR, and their combinations were 
found to have no significance in the classification process. 
These character names are written in black font in the bottom 
two rows of Fig. 1-D and Fig.2-D. These features have been 
discarded by the selection algorithm.  

D. STAGE TWO: LSTM CLASSIFIER 

 LSTM is the classifier proposed to operate in a semi-
supervised mood in our model. It is employed due to its 
efficient performance in the analysis of time series and the 
advantage it has of controlling the features and the 
observation period. As discussed in Section III, the Relieff 
algorithm is used in our system for the feature selection. The 
selected features, along with the ground truth MAP, are fed 
to the classifier. In the model configuration, we assign a one-
minute observation period to the LSTM. The classifier 
divides the input into one-minute windows and learns the 
pattern of the dependency over this time interval. After the 
training phase has been completed, the classifier can predict 
the future range of MAP after observing patterns over a one-
minute window. The classification is binary, where 0 
indicates that the estimated MAP level is within the normal 
range, and 1 indicates that the MAP level is either anomaly 
due to hypotension or hypertension. The hypotensive event 
is defined as the MAP value < 65 mm Hg for a one-minute 
time window, and the hypertensive event is defined as the 
MAP value  > 140 mm Hg for one minute [1, 2]. The 
classifier begins training to learn the MAP ground truth and 
its associated patterns on various vital signs. The training 
period uses data collected during patient observation time as 
discussed in Section IV-A, After spinal anesthesia, the 
classifier is assigned to provide a one-minute forecast 
decision on the MAP level. The performance of the proposed 
classifier will be evaluated and compared with the 
performance of the LR classifier in Section V[2, 6]. 

V. RESULTS AND DISCUSSION 
The efficiency of the predictive stage, shown in blue in 

Fig.1, was investigated in our previous publication on the use 
of HTM for predictive medical streams[30]. In which HTM 
as a predictive tool has been compared to the state-of-the-art 
LSTM-Batch with superior performance. The predicted 
stream error metrics in terms of the root mean square error 
(RMS) and mean absolute percentage error (MAPE)  
improved by 50% and 60%,   respectively compared to 
LSTM-Batch. We illustrate HTM prediction error over a 
window of 100 samples, the CO original signal, predicted 

signal, as well as the confidence interval are plot in Fig.2 A 
vs B.  These results belong to a randomly selected patient. 
The prediction is shown to be accurate with a small error and 
confidence interval.  Detailed results and discussions on the 
use of HTM as a predictive tool can be found in [30]. 

Stage II  starts with the feature extraction and selection 
steps; the late-stage has been explained in Section 1V-C. 
Explanation of the obtained feature space of size 42 based on 
13 vital signs can be seen in Fig.1 A-C. We investigate three 
feature selection methods such as Relieff importance ranking 
method,  sequential forward selection method (SFS), and 
neighborhood component analysis (NCA) [27-29]. Each 
feature selection method is applied separately, and the 
classifier performance metrics are computed in each case. 
Both the accuracy and the AUROC are used to compare the 
three methods with the performance metrics using the entire 
feature space. Table II lists the complete feature space,  
Relieff,  NCA,  and SFS.  Relieff shows a slight decrease in 
both accuracy, from 0.985 to 0.975, and AUROC, from 
0.978 to 0.957, compared all feature space. The use of both 
NCA and SFS results in significant performance degradation 
of the AUROC by  20%. We, therefore, choose to use the 
Relieff algorithm as the feature selection method in our 
simulations due to its enhanced performance. 

Next is the classification stage; we propose to use the 
LSTM classifier and compare it to the widely used and robust 
LR classifier. As mentioned earlier, the classifier is trained 
for approximately 7 minutes on the data obtained during the 
observation phase, then the classifier is assigned after the 
spinal anesthesia to provide a forecast decision on the MAP 
level one step into the future. Each classifier model was 
trained separately for each patient, as the objective of this 
research is to provide each patient with a personalized 
decision support system. The LSTM classifier is 

TABLE III 
THE EFFECT OF HTM PREDICTIVE ACCURACY ON THE CLASSIFIER PERFORMANCE 

IN TERMS OF THE ACCURACY AND THE AREA UNDER THE RECEIVER 
CHARACTERISTIC AUROC.  

 Stage 
Two 
(LSTM) 
 

Stage One+ 
Two 
(HTM+LSTM) 

Stage 
Two  
(LR)  

Stage One+ 
Two 
(HTM+LR) 

Accuracy 0.921 0.895 0.910 0.881 
AUROC 0.940 0.886 0.800 0.719 
t-test  p < 0.05 p < 0.05 

LSTM = long short-term memory, HTM = hierarchical temporal memory, LR = 
logistic regression. 

TABLE II 
THE PERFORMANCE USING ALL FEATURES AND USING DIFFERENT 

SELECTION CRITERIA  

 All 
Features 

Relieff 
Selection 

NCA 
Selection 

SFS 
Selection 

Accuracy 0.985 0.975 0.971 0.971 
AUROC 0.978 0.957 0.766 0.753 

NCA = Neighbor Component Analysis, SFS = Sequential Forward 
selection, AUROC = area under the receiver operating 
characteristic. 
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implemented using MATLAB and consists of an input layer, 
a bidirectional LSTM layer, a fully connected layer, a 
SoftMax layer, and finally a classification layer. The number 
of hidden units (300±5), number of epochs (400±10), and 
mini-batch size (30±5), which were found through an 
optimized search in which accuracy was observed and 
overfitting was prevented. The previous values refer to the 
mean ± percent 95 confidence interval (CI) for each 
parameter. The threshold was set to 1. The model was 
validated using nested k-fold cross-validation with an overall 
cross-validation value of k=10. In our simulations, the LR 
model is implemented using MATLAB. The sparse solver 
was used, where the model was validated using 10-fold 
cross-validation. 

In our model HTM and LSTM are complementary;  HTM 
provides unsupervised predictions in real time, and LSTM  
provides the classification.  HTM provides the proposed 
framework the privilege of working unsupervised in real 
time, which is one step towards practical clinical decision 
support without excessive modeling. HTM, therefore, gives 
the proposed structure the advantage of early forecasts, 
where the predicted streams are one-time step ahead of the 
original sequence, which is 10 seconds in our simulations. 
On the other hand, given the MAP ground truth, the LSTM 
classifier is essential to analyze and train on predicted 
streams. It studies mutual dependencies and provides early 
MAP level forecasts. This is a role that HTM cannot do.   

 The proposed machine learning presents an unsupervised 
prediction algorithm and a semi-supervised classification 
algorithm. Since unsupervised learning normally leads to 
performance degradation, we have decided to examine the 
performance of each stage individually in addition to the 
overall/accumulative performance of the proposed structure. 
Furthermore, we compare each classifier performance with  
and without HTM as a predictive stage as described in Table 
III. Column one refers to LSTM without prediction, column 
two points to results using HTM+LSTM, column three 
displays results using LR, and column four highlights the 
results HTM+LR. When using HTM, the LSTM 
classification accuracy decreases from 0.92 to 0.89and from 
0.94 to 0.886. Likewise, the precision of the LR 
classification decreases from 0.91 to 0.88 and AUROC from 
0.8 to 0.71. This means the performance has slightly 
decreased using unsupervised HTM as a first stage.  But, it 
is marginal compared to the advantage it offers by enabling 
early forecasts. This performance difference/drop was 
examined using a t-test to evaluate its significance, p 
value<0.05 was considered statistically significant. As pre-
mentioned, HTM brings the proposed system the advantage 
of working in real time at the bedside, saving the retraining 
phase, which is expected to lead to earlier decisions 
compared to the state-of-the-art systems. To emphasis this 
comparison aspect, different parameters defining the 
decision-to-event time and decision success rate are listed in 

TABLE IV 
THE COMPARATIVE PERFORMANCE ANALYSIS OF THE PROPOSED SYSTEM 

USING LSTM CLASSIFIER AND LR USING SEVERAL METRICS. 
 

 Proposed Decision 
Support 
(HTM+LSTM)  

State-of-the-art 
Decision Support 
(LR Classifier) 

Accuracy 0.895 0.881 
Precision 0.762 0.576 
Recall 0.912 0.506 
F1-score 0.733 0.880 
AUROC 0.886 0.719 
SD 0.094 0.227 
%95CI 0.768-1 0.437-1 
Val error 0.016 0.002 

 
LSTM = long short-term memory, HTM = hierarchical temporal 
memory, LR = logistic regression, AUROC= area under the receiver 
operating curve, SD= standard deviation, %95CI= 95% confidence 
interval, Val error= validation error. 

 

 
FIGURE 3.  Comparison between the original classification (in black), the 
resulting classification using the proposed system based on LSTM (in red) and 
using logistic regression (in blue). Zero denotes a normal MAP status and one 
represents MAP disorder. The decision plot belongs to a randomly chosen patient. 

TABLE V 
THE PERFORMANCE EVALUATION OF DIFFERENT MODELS IN TERMS OF THE DECISIONS PRECISION AND DECISION-TO-EVENT TIME 

 Precision Recall  Early decisions 
(sec) 

Late Decisions 
(sec) 

Missed 
Events  

State-of-the-art (LR) 0.576 0.506 - 200 50% 

Proposed System (LSTM) 0.69 0.88 90 100 20% 
Proposed System 
(HTM+LSTM) 

0.762 0.912 150 75 10% 

. 
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Table V. It compares the decision support systems using LR, 
LSTM, and HTM+LSTM based on the precision, recall, and 
decision-to-event time.  The later metrics are more reflective 
of the system success rate to predict different events, correct 
and missed events compared.  Using HTM+LSTM enhanced 
the system precision by 20% compared to LR and by 10% 
compared to the use of LSTM alone. While it enhanced the 
recall by 40% compared to LR and 10% compared to LSTM. 
Which means that the false positive and negatives have 
decreased. We considered another parameter which is the 
decision-to-event time. Using HTM was shown to lead to 
“earlier” decisions by 50% and decreased the decision 
latency by 25%. The number of missed events have also 
decreased from 50% using LR, to 20% using LSTM, and the 
best rate was achieved using HTM+LSTM by only 10%.   

The overall performance of the prediction-and-
classification system using HTM-LSTM is compared with the 
state-of-the-art LR in terms of precision, accuracy, recall, F1-
score, AUROC, SD, and 95 % CI. The validation error is also 
taken into account. Table IV lists all the results reflecting the 
average of each metric over the entire data set. The 
comparison shows that the proposed system outperforms LR 
in terms of the specified metrics. We have considered another 
comparative measure, which is the time margin between the 
forecast and actual event. As a sample, the resulting decision 
on the MAP level of a randomly selected patient is observed 
in Fig. 2. The original classification is shown in black, the 
decision using the proposed system is shown in red and the 
classification using the LR is shown in blue. The proposed 
system was able to predict both events correctly. The second 
"event" was predicted 4-time windows ahead of time, 
equivalent to 200 seconds. The average prediction time per 
patient was 150 seconds and the delayed predictions were 75 
seconds on average. The prediction of the "normal" MAP 
status is also shown to encounter a delay of 100 seconds. On 
the other hand, the LR classifier is unable to predict both 
events. This is also consistent with the performance evaluation 
listed in Table IV and Table V, which indicates a higher recall 
than the precision values. These results show the advantage of 
using HTM for earlier and successful decisions on the MAP 
level compared to the state-of-the-art systems.   

VI. CONCLUSION  
This paper proposes a new personalized real-time decision 

support system implementing a new hybrid prediction-and-
classification machine learning system. The proposed system 
is considered to be a breakthrough compared to state-of-the-
art real-time systems using three phase-based models as it 
operates directly at the bedside. It saves extensive offline 
modeling, uncertainty, and delays associated with 
conventional systems. The proposed new machine learning 
framework consists of two stages: hierarchical temporal 
memory (HTM) predictor stage, first applied to medical 
signals, and long short-term memory (LSTM) classifier.  

The proposed systems have the privilege of working at the 
bedside in real time, supported by the capabilities of HTM. 

The framework investigates and learns from the 
dependencies between the vital signs and the MAP, where 
the vital signs are used as features of the MAP. Careful 
selection and extraction of the features were performed using 
the Relieff algorithm. The LSTM classifier was then 
configured to predict the MAP level for each patient by 
detecting the associated pattern on the patient's vital signs.  

The proposed system performance is assessed against the 
state-of-the-art logistic regression (LR). Accuracy, the area 
under the receiver operating characteristics (AUROC), 
precision, recall, and F1-score are used as evaluation criteria. 
The proposed system has shown improved performance, a 
20% improvement in AUROC, a 20% improvement in 
precision, and a 35% increase in recall. The proposed system 
also lead to a 50% increase in early decisions, decreased 
latency by 25%, and decreased missed events by 50% 
resulting in an average decision-to-event time of 150 sec.  
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