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The subject of rearrangement inequalities is discussed by Hardy,
. ‘

P61ya and Littlewood. | Briefly, f and g are equimeasurable functions
from the interval. (-00 , 00 ) to the interval ['0,ee ) if the two sets
{x | f(x) 2 y} and {x | 9(x) 2 y_} are ;aqual in measure for each Y3
and the symmetric decreasing rearrangement of f is defined to be that
function f* ‘which is equimeasurable with f and satisfies f*(x) =
f*(-x) 2 f*(x') when | x}e|x'}| This definition leads to vaf—

jous integral inequalities, of which the simplest is
* :
SR R0 = [RG R dx - ()
(all integrals run from -=e to eo unless otherwise labeled). '
The proof of (1) is fairly trivial; see sec. 10.13 of

. [1]. One can easily generalize it to the product of n i
functions. Another generalization is

| |

|

f F ) H =) Fy () dx dwy = j F G Ho G-y F,f‘(,,) dx,dxy  (2)

where the same symmetric decreasing.ﬁuncfion H* appears on

both sides. The inequality (2) reduces to (1) if H* is taken

to be the Dirac §-function (i.e. in the limit as H* becomes

sharply peaked at the origin and vanishes elsewhere). J
| An easy proof of (2) follows the lines of sec. 10.8 of

[1]. This proof can be generalized to the inequality

JRG) HEGgmky) oL Pl W Gom ) diyoee dty i
< [R50 HGmxg) oo RO HR Gram ) oo duy (3) |

as we shall show in a subsequent paper, in which (3) will be

further generalized to functions on a circular domain._




Henceforth, we shall adopt the convention that

An 3 4% Hn , sote. (4)

"

net

so that the left side of (3), for example, can be written

more compactly either as 1T'[F'(x) H, (x Lvl)d“lj
or as fﬁ[H&_g(x”nx)FCx)dx] . |

. A much more difficult theorem than (2) is obtained by
-replacing H* on the left by an arbitrary function H of which

H* is the symmetric decreasing rearrangement:

fF.('x,\ Hix =xy) F (x)d dxy = [F’f(x,) H*(x‘-x?j Failx,) dx,dxy - (S)

This inequality is proved insec.10.14-5 of [l], in the

equivalent form

f”.‘vé Halys) Hy oy, -y) dy, dy, = fo(vJ Ha () HaGy,=%) dy, dy, - (€

As indicated in sec. 10.9 of [1]; the proof of (6) is

easily extended to the generalization

N

. nel  _w=l . A=l  n-i
an ('gv-)'ff [Hitdy] = ij:("ZfY;)TF[Hf(Va) dy.] . (0
Our purpose in this paper is to prove a mﬁch mor e

power ful and more difficult generalization of (5), namely

j'fr [F;(ui) H; G, = xh‘)dx-&] < fﬁ' [F:‘(x‘) Hf(x.mx.,,) dx. ] (é) |




which includes both (3) and‘(7)'as'5pecial éases. (To ob-
tain (7) from (8), replace F, , ... , F, by constants and

let y, 2 X =X for | ¢t €=n ) Both (3) and the more
genéral (8) have recently found application in physics, where,
they give rise to a class of Green's-function inequalities

[2] of which certain well-known isoperimétric inequalities are
special cases.

To prove (8), we first observe that it suffices to prove
it in the case that eaéh function F or H takes only the values
0 or 1; moreéver, we may assume that {x \f(x),= l} is
compact and‘piecéwise continuous (the union of a finite number
of closed intervals) where f is any F, or H; . (See the
discussion in sec. 10.14 of [1].) Therefore (8) is a coroﬂafy

of the following theorem.

Theorem I.
Let F. (= Lt € n) be the characteristic._anction of a
compact, .piecewise continuous set of measure m . on the real

line and let F;* be the characteristic function of S, vwhere,

.

for any m , we define

Sem = { x| 1zl s.m/a.}. . | (‘1)

Likewise let H, (1 € L€n) be the characteristic function of
a set of measure k, , and H;* that of Sy, -
. LY

Then

f.‘::“ CFL(XQ .H;,(X; -

X-L“)dx;] < j‘ﬁ' [F“*(x-&) Ht(xi—x;_,.l)dx;]



where X,4.| is to be read as &n alternate notation for x .

Proof:

We define an operation of truncation as follows:

if O = a. s My, we let

ey ‘ . . %0 :
Fool) = | if Filxg=1) ond f F.(x) dx z a; |
| = 0 "o‘fhegéme : “ )
~and if 0= Q; 0= Qs 'Q.L¢6.l;'$ kl , wWe let_.

H:; &h"(%;—xi_”> = ‘ l‘Y‘ ...H;.(KL—X;”) = '

mclf M dy 2 oy
O -

o K= Xl . (‘2)
and [ H 4y 2 g,

=2 0 otherwise .

The truncated function FL°'°~ is the characteristic
function of a set obtained from the set represented by F.

through the deletion of an upper portion of measure a;. Like-

wise H LQL Qiet represents a set obtained by deieting a

‘measure a; from the top and a,,, from the bottom of the set

corresponding to HL . (See Fig. l)

We may similarly define @  F*® H*% &4 by

‘truncating Fi *, HL*' ,Alternatively we may define F-f" *,



a; a
H. bol as characteristic functions of Som

5 5—.“:. H

. We note, however, that

“ (¢ o))

S |
| "‘t""’-;" eiel

F‘:ﬁ’ LY (3;')

i

(12)

LA Y]
H"_ (xi-xi_“

) = H:‘Q"' (x,eda;=%,, ~%a;,)
(See Fig. 2.)

The passage from F to F% is equivalent to tﬁe éassagé
from F to F, in sec. 10.15 of. [1], except that Hardy'?ggg_]_. "
arrange to let a have only integer values. The difference is
a matter of taste. By making a vary continuously, we approach
more closely the method of Rlesz(seqlo 16 of [1]) except that
”Mhe truncates symmetrically by deletlng a set of measure t
simultaneously from top and bottom. (See footnote, p. 286 of
[1]1.) In this matter we have no choice; it will be essential
that in forming the double truncation H“b we do not allow the
parametersva and b to interfere wich sne another, and this is
achieved by lettiﬁg them'act at opposite ends as specified by.
(12). |

To give the reader a clear idea of how our truncation
is related to that of Hardy et al., let us paraphrase their
proof (s€c10.15 of [1]) of Theorem I in the case n = 2. First
we drop the factorAHa from (10) because it is ineésential in
this case, having the same argument as H, . Then we point out

that (10) must hold if m,ZK ¥k, € m because the right side

! A K
then takes the value m'ka, and the left side cannot be more.




o Now suppose that m] + k] > m2 s and 1et

I(o.) fFa(x) H (x—x&) Fz(xa_)dx dx; )
' ) #I(ﬂ.) '—"f E#a(}\') Hfg (X.'x.zf Fz(ﬂz) dx. dxz }
A wﬁnm(m <,i<4“"/s(m‘+k,—m;)). |

We already know that I(A) mI(A) -note the use of (13)- and

: we must prove 1 (O) : *I (O) . -Thus it suffices to
_:""show that 'r- ﬂ L - d:I fdr 0= o= A . This is.done
T L T o : A ‘
) by showing on the‘ one hand that , ,
fF' (x,) H‘ (a,—xg)dx‘ < | for all x;
(compare Eq. (10.15.16) of [1]) so that -4 <, ;

do
and on the other hand that

fr**c )H*“(x -x, )dx 1 ke \ngcgm-e)c»x,m-a)

' so Atha't - T:E = '“a. exact]y (see Eq. (10.15.13) of [1]). The proof of
. o .

Riesz (sec 10-16 of [17) is essent1a11y the same

It lS pOSSlble to. extend this proof to n >2 3 see

,Appendlx I However the proof we shall presen. is based
‘ lnstead on the follow:mg varlatlon of the above argument for
n = _2.:. ‘

"Without loss of.geherality we may suppose that wm, zwm .

1 2

) If. ™, >, we deflne I(o) I (o-) _as above, but let

‘ %
= (k, ; m =m As above we can prove —g_ -d’I
A = vain (K 1 2

. , | 4 = de
for O = o= A , and so 1.t suffices to show that ‘

TA) = ”I (A) . This is trivial if A= k‘ , and if
A ‘.__,, ‘m‘_m,_ it reduces to the'original theorem with v

Y, B ™ -




We treat the-case’ my .= m, by defining

I(a b) =-/~F"(.u,) H°’b(x -%,) AJOR dx ,A.xa‘,-
*T (a,b) fF”'(a)H"h(x - %,) F:b(:ta_) dw ds, L,

B ’mm(ma /a.k ) .

Then I(B,B)=0=*I(B,B)  , =othat it

sutfices to prove - T(b,b) = - & *T(b,b) .  for
0w b = B o By a répetition of ear‘lier'. #gMGntSﬁe
. - -3 ; -

find that‘AA”"i-;I(o. b) = --—*I(ab) 1# a=b,
oand 3 I(Q b) &"'33\; ‘el if be=a .

Setting 'a=b and addmg, ‘we obtain the desired. mequahty

The advantage of th:.s longer argument 'i#s that it
av01ds reduction to the 1nequalLty I(a) = *T(AY for $
A a ‘k;(m‘ *- k, - V"‘z) ~ the case )Lgo in sec. 10. 15
pf. [1]. In Appéhdix-I we _’fﬁdlcate how this step can be
generalized to nw» , if one prefers the first argument.
| We Aow return to the proof of Theorem I for arbitrary

n. We begin,by defining
au'ﬁ | ’
I (a ...w - f'ﬂ"[ﬁ (;g H xL,g)dx.] )

I oo ag) = f'rr[r“ ) B, cradde]

®» QL & ‘ | ()S)
fTT [F#&“<X Hl -‘Axlaea)d%;)



the two lines of (15) being equivalent because of (13).
Let D= j=wn., We shall obtain (10) as a special case

(3 = 0) of the following theorem.

Theorem IA.

Suppose that
O, for t=l,onyj - G6)

and ’

Ky
™

>
. & " . ;ov" &,3 l’y ) “’l . (‘7)
Then s ' n ©? ?

'iir(""é%;') I(n‘...aﬂ)b = 'ﬁl’("f;’a- 'P]';(o.l...a“)o €18)
where the final subscript O means that all the a; are sgt
equal to 0 after ‘differentiation.

_The proof of Theorem IA will proceed by double induction.
Let n=L8+¢; . We'sﬁall prove, first, that Theorem IA holds
for L= and arﬁitrary j; and second, that if it holds for
Q-1 (and any j) then it holds for £ (and any j). In the
latter part, we shall use induction on j for fixed 2, start-
ing with j = O.

After proving'Theorem IA, we shall deriv> Theorem I from
it. So as to make the logical structure of'the proof readily
visible, we shall defer the demonstration of certain state;
ments to notes following the main argument.

The case fs| is treated by showing (the]) that the “

function

b = T (- ) { [ i e

I

wel

tr[rf‘cx._) HO T e e, g ]}0 )




takes on only O and 1 as values, whereas (Note 2) the

corresponding funcgion

. ‘aﬂ | |
M,‘“ ( 3a. {fﬂmwt( )‘ B .
| ‘ﬁ[F““‘(x)H““"“‘( ““’m)d"z]} (20)

>

(S PR
. Tae A

is the character:.stlc functlon of S-- where

A3

w o= %gw .{m“} ) - (21)
"Writin'g (18) ii’l ’the‘ form . B
fF“ (Nn) "\“ (Rn) d;x‘n ean (Kn) h“(*“) Js,‘ (22)

we see from Note 1 that the left s:.de cannot exceed .
fF“ (,“) dx., . = m“ . and from Note 2 that the rlght -
side is win (MQW“) which by (21) and (17) J.S m.,
Thls verlfles (22), and hence (18) when L=} .
Now suppose that 4= i and that Theorem IA holds when_

R is reduced by 1.

Deflne 4 _
S(o.) s 'E;T( ‘5“@) I.(aa... 0'“)0 o | (2.3)
3 (a) = T!r( ) E (o. an)c‘&. Cay)
where the final subscr;.pts mean that we set a 3;“ = 'a -‘and

all other a; = 0 after d1fferent1ation.~ Then (18) may be

written

S(O) 3(0) '} (as)




1.

Define

A= %I;F\ (k‘:\*'l‘kj)mj-ol_ m“) . (26)

(We read kg as k,

according to (4).) Then for any a satisfying
0= a< A , we see that (16) and (17) are still satisfied if m.,

1
k. , k

5 341 are all diminished by a .

It follows that

d o d . ey

de g(o_..)ﬁ . da 3(“‘) ' (27)
for all O= a <A , as an application of ‘Theorem .IA with
Q= Q2+ . Therefore, to prove (25) it suffices to
prove

CA) = *q (A . (28)

We distinguish three cases.
Casealz A= kj*" or j =0 and A é kb (¥k,, ). Here
(28) is obviously true since both sides vanish.

'Case 2: j> 0 and A = kéckj?\ . This is really the
most difficult case. Although the integrand in gA(a) contains
the factor.H;'JQ’ which vanishes for a.. ='0 and a = A, g(A)
itself does not vanish because the operator '- -3:. is to
be applied before letting o -» A~ . However, we ;how in
Note 3 that (28) may be transformed, in this case, into an

application of Theorem IA with .Q-iﬁi and_j -3 J""l , by

eliminating the variable xvi . Thus eventually we arrive at

j = 0, when Case 2 can no longer occur.
" Case 3: A = mjﬂ.- m,, (min(kj s kj.| ). Here (28) may
be regarded as an example of (25) with Myvp s kj s kj” i

all diminished by A. Conditions (16) and (17) remain



12.

satisfied, but there is now the additional equality

AR

LT L W , ( 29)
It“therefore. sﬁffices in order to complete the proef of
(25), to prove it in the presence of (29)

. We cannot proceed x)iow accord:.ng to’ (23) and . (24), because
if we truncate any further with respect to the va"-r‘i'a’ble-.vz‘.xji__]' |
(thus diminishing my,, ) we shall destroy the validity of

(17), wh:.ch is needed in- prov:.ng the case =1 on which'-eur .

~induction 1s'based.b Instead we - truncate s:.multaneously with

re5peet to xs “and X, , maintaining (29), and.'hence (17)‘,

o ‘
throughout. (Since f=1{, X,y and X, must be distinct.)

Thus we shall reduce (25) to a statement analogous to (28)

which will be proved true in every'case.

‘As’sumirig_ (29), we define -

s(n,b)'.f--"‘if( YLla, ..o an), . (30)

a“& %,e,b
. . . 3 “ . | . .
3(°’b)§ T;r(— aa& I(Q'ctv Q“>°;°' b- (3')
where we are to set 3jet = a, a, = b, all ether» a, =0 “

after d:.ff_erentlatlon. .Our real J.ntentz.on is to put a = b,

‘but wé’“keep ‘the: “Ewo parameters distmctv%" order" f:“g deﬁne
p,artlal»_delevei;ives. We Amay ‘replace (25), ‘then, by

s(oo) 3(09) C (a2)



13.

Let us assume for the moment that j > O and £>2. We

define

B = w«in(ksﬂ » Knet lej S kn), | (33)

and note that if 0Osezb<«B, conditions (16) and (17) will
still hold if ™ia k; » kj,g are 'aH diminished by a , and mn‘ ,
ky kﬁ_] are all diminished by b . Using the notation

9, = 33/30_ y 9, = a9/3], , and similarly for

*g, we obtain

- g.(q, b) = -fg'(a., b) (34)

for 02 a=<b<B by induction on £ in analogy with
(27) . By a renumbering (Note 4) of the indices 1...n, we

also obtain

-q,(a,b) = -"q,(a,b) (35)
for 0 bsa<B and the sum of (34) and (35) for a = b givees
- g, - e (b, b) (3¢)

for 0sb=<B. To prove (32), thereforé, it suffices to prove

g(8,B)=< *q(B,B) €37)

We distinguish three cases of (37), analogous to those
of (28).

Case 1: B = k.iﬂ or k"“,‘ . ';‘hen a(B‘B)= o] ='#-s (B{,‘B) .



Case 2a: B = kj £ wuw (k;ﬁ,; » kn_;) . This 1is

handled by induction on j according to Note 3.

Case 2b: B = ky & win (K41 s kny) . This is re-
duced to Case 2a by renumbering the indices according to
Note 4.

Case 3: B =m

n - Here %.(B)B)*—'O =%*q(B,B) as
in Case 1.

If Q82 or j = 0, the proof of (32 ) given above must be
modified slightly (Note 5). |

The proof of Theorem IA is now complete. To obtain
Theorem I, we cyclically permute the indices l...n so as
to satisfy (17). If (16) holds, we can apply Theorem IA to
obtain (18), which for j = O reduces to (10). If (16) fails,
(10) follows anyway since both sides vanish. But (10) is
invariant under the cyclic permutation of indices; therefore

it still holds under the original numbering. This proves

Theorem I.

Note 1. We study the right side of (19) by means of the following

lemma, which we state in two parts.

Lemma IA. Let {<w , and let gq{x;) be the
characteristic function of some compact, piecewise continuous
set of measure p . Let ¢ % (x,) be the truncation of g

according to (1l), for O=aq,<p . Define

Glu,) =32 [[g® <,>F“~cx>n°‘°<x adde ] (38)

da; °
where the final subscript means that we set e = 0 after

differentiation. Then G(x, ,) takes only the values 0 and 1 .



15.

a
Lemma IB. Moreover, let (& (x“\) be the truncation
of & according to (11), and let *G&(x,_,,) be defined

by

GG'(XL*l) s = 'i— {fgw'(x;) FEM(KL) Hq‘a‘“ﬂ(%z"*i*'>éﬂi]o

e ) caqg

’

£

where we séet a;50 , a;,;za - Then either (Case 1)

QG(,‘H') = G("in) for all Xiel and all a from 0 to k; ,

h) for all x '

or (Case 2) “G(x“‘) = G*(x. ol

Let

and all a from 0 to k:. .

To prove Lemma IA, let qQ, > 945

numbers satisfying g(ql ) = Fl(qa) =H, (qs) = 1. Let

o dg be the highest

= N = i X = i !

where g' = min(q. s qa_). Then for any particular x, , s

the set {r;l S(x;) Fl(x&) Hilx, =%, ) = | 3

has as highest member a number r < q. The effect on this set

of infinitesimal truncation performed simultaneously on

g, F. , H, is to lower g and thereby delete a single
infinitesimal portion of the set, if r = q; or to leave the

set unchanged, if r « gq. In the former event

chi+a) = l} in the latter event, G‘(x;‘”): 0.

To prove Lemma IB, we observe that

{"iu‘ Gle, =1} = {"Ln | 944 Folgd Hilgmxi) = | }
' =T, U Ta A CY-Y)




16.

where
T, = {"-”,‘ H';_(%'—-x;”) = | & 3(%') F-i. (%') = l} (41)

Tz""{*‘euhsﬂ,’&a‘%’ﬁ%“’} - 2

. ’

The sets T, and T, are restricted to Xl 29~ 92 and

x. < Q’— respectively, so that they intersect at
vl = % 1:3 '

most at one point. We note also that gq', and hence

q (%') F, (CL') is independent of X, . .

Now suppose (Case 1) that 3(%') F'L(%‘> = 0 . (see

Fig. 3.) Then Tl is empty and from (40) and (42) we find

G'(x.bﬂ)“;‘g‘./ 3(xl+l+2%31) F-‘(x.._ﬂir %3) (‘43)

for all L T . But if H1 had been truncated from below
.as in (39), the value of dg would not be altered; i.e., the
sets {7} H.‘oc'(y) = l} and {ylH;(Y) = l-k have the
same highest member. Therefore, in this casé, %G is the 4
same function as G , for 0 = a k., . |

| | Suppose instead (Case 2) that 3(1') F':‘_ (cL') = | -
(See Fig. 4.) Then the only way that ®& can differ from
G . is through the replacement of H. by Hf“ in (41). Since
X0 occgrs with a negative sign in the argument, .the
effect of this replacement is just to delete a set 6f measure
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a from the top of Tl . ButlT' lies "above" T, , so that
this is the same as truncating G from above. Thus *G and
G% are the same function for O = a=<k;. This completes the
proof. |

Lemma IA cbrresponds to the kernel of the Hardy=L1'tt1ewood—R1‘Aesz
probf (see footnotg c, p. 284 éf (1]). Lemma IB is required

for n» 2, as we shall see in the following argument.

For | Lt = n , let us define

)’\; ("; ' 3') = :!T" (__ g:s)‘{jﬂ:nm(}_n') ‘;I;'J{F;s(xs) H:;ﬂ..'(x,-x”‘)dxs)}o
with the conventions of (4) and (18). We note that \n(x“.x“) .(%%?
is identical to h(x,) as defined by (19). Our aim is to- :
prove that this function takeslonly fhe values 0 and 1. To
this end, we assert that for each i<wn , h;(x-‘_ N }) takes
only the values 0 and 1. Moreover, if h?a is the
truncation of h; according to (1l1), regarded as a function of
X, with fixed z, and th is the result of setting a, = a instead
of 0 in (44), then *h; is identical,for fixed z, either to
h, or to l;? ’, the choice depending on z but not on a.
We prove these statements by induction on i. Since
\\.(!.,3) = H“(awxn)) Qh‘(x"g)a-‘: Hg&(}—x‘) s the
proof is immediate for i = 1. Now suppose the assertions

° From

true of h, , t<e n-l;we must prove them for h
. -/ (S

(44) we obtain



18.

l"’_:.~x(*u-t»§) 2 —:::L [f“"h.‘(x; '3 FLQ'“(%.;) H:‘o(xt—xl“) dx;)o (u5)

and

o e e e e 8ial, | ‘
)

with the convention of (39). If z is such that a;h;’ ~and

het

N are identical, then these two equations are identical

to (38) and (39) -wheﬁ we set g=h; , G'z-.k."‘and suppress the

argument z. If z is such that‘“hiand h, are identical, we

can still recover (38) and (39) by setting G = h,  , and de-

fining gq(x,) = | if k;(n;,;\ﬂl or q.=m x, = q,+k; ,

where q, is the highest number such that Folg =1 .

For then we have 5&.‘ F:‘"‘ = sr;a"t hy FLM = Qiklﬂc‘ for O= a; =k -

In either case, the desired properties of h. follow

el
from Lemma I.

Now taking t = w-! , we apply only Lemma IA to
show from (45) that h;,i takes the values 0 and 1 alone.
This is the desired result needed to treat (19).

We may observe that the value of z affect.s the form
of the successive k-\(ui,;) in a complicated way through its
efféct on the choices between C.ase 1 and Case 2 in the
successive applications of Lemma IB. Therefore, it is very
difficult to say anything about the set {x“lh,\_(xmx“) = l} .
This point is what makes (85 so much harder to prove than

(7), and it is for this that the condition (17) is vital.



Note 2. We study the right side of (20) by means of the following 1emmé.

Lemma ITIA . Let g* , g be the characteristic functions of S_ , S
1 2 Py Py

3 be their truncations for 0 a

as defined by (9), and let g]* s 93
0< a <m1‘n(p] , p2), in analogy with (11). Then if 1< i< n , the
function |
A e W ey #e, b | A
G‘.(x;” , %) = de, [fai (x.-x) 9, (x,) H, (e, = ) dx'-_]o (47)

can be expressed in the form

+*
Glx. | ,x,) = ‘F 2 (%) fn(x - X0 an(x;”) (48)
* * cogs .
where f]2 R f]3 s f23 are the characteristic functions .of Sp]+ Py s
Sp]+ki R Sp2+ki respectively.

Lemma IIB. Moreover, if

4 oL (RadX
*Glx,, ) = - 3k, [/ g - g () seia(, .ﬂlpan.‘]qm (4a)

with the convention of (39), then

G x.,, , %) = = £7 () £y = nd $an Cng, )

el

where f*% , £*%* are the truncations of f* , f£*
13 +3 13 23

according to (1ll).

Proof of lemma. For fixed Xial and X, » we define

o _ £ _
%"“.-.- x“zltp' , ‘L;’*%Pz,) %a—xh,tx k;’ .

Then the integrand in (47) is the characteristic function

i

L + *
of the set {x.&({'s X, = ‘L*} . where Q“': min (11'%1’%;
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and %- = WAGX (1"‘ ) ‘l:l %:) . The effect of an in-
finitesimal truncation is to lower q 4 It follows that
’ ’ N ¥ . -
G(n“' s X ) takes the value 1 or 0 according as 1 2 %
or not.
Now, the condition %* > i— is equivalent to the
. N N - - ) " - * -
six conditions q¥ 2 + ot = +t> *s 2
%0 '%z / 112%. ) %a.’ %3’ %3'%&' 13"%,'1"%3

which are in turn equivalent to the three conditions

faa] = &0, +p), | %= x0]= % (p + k), lx;”‘g k(Pa*kL) .
(s0)

Equation (48) follows immediately. This proves Lemma IIA.
Lemma IIB can be reduced, by the substitdtion

X:a) -+ X - Y% a and the use of (13), “to an applic'ation

of Lemma IIA with k, = k -a |

To treat the right side of (20), let us represent its
integrand by a graph containing points P° , P, «., Pn Jjoined
by lines of fictitious "length" according to the following
rule, To each factor Fi’“i in (20) there corresponds a
line of "length" m, joining PO to P‘L ;' to each factor

H.% ®eel (%;= %341 there corresponds a line of "length"
[ 3

k; joining P, to P, . (seeFig.5.)
We now integrate over xl s appiy the operator = -9—;-‘,
and set a, = 0. Lemma II tells us that the result. corresponds
to a new graph obtained by deleting the point P' and its
associated lines, and connecting the pairs (P“ . P°)’ (p“'P’_)) (p° ‘P&)
by new lines of "length" kne-w\. , k“-r‘(‘ )AL+ k' . It is

easily seen that this operation does not change the "length”

of the shortest path between any pair of points other than

P, -
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The new graph has two lines connecting Po to’P . They
represent two factors '?:;"(nl) avm‘ F:G-a(xl) ) of which
the ohe corresponding to the "longer" line is superfluous.
Therefore, the "longer " line can be remove-d. This operation
also leaves unchanged the shortest path between any two points
in the graph. |

The above process can be repeated so as to eliminate
the. points P; FETEIN Pn_, . At the ith step we integrate over

X, , operate with = ’32:- and set a; = 0. By Lemma. II the

graphical result is to‘delete P‘ and replace the lines
joining P; to its neighbors by new lines joining. each pair
of such neighbors with "length" equal té that of the path
which formerly linked them indirectly through P . Super ~
fluous lines are then removed,

The end result of the algebraic operations is ""l\(;t,.\)
as given by (20); that of the Agraphical operations is a
graph consisting of P° and Pn joined by a line of some "length"
T™. Therefore *h(x, ) is the characteristic function of Sen -
This M is equal to the "length" of the shortest éath from
Po to P“ in the original graph, sinc;e this "length" was
not altered by any of the graphical changes. But any such
path included a step from Py to some P having
"length" m., . Consequently (21) holds. |
Note 3.

From the role played by (28) in the prdof of (25), it
is clear that g(a) and *g(A) must be understood as the limits,
of g(a) and *g(a) as a==p A from below. Letting 0= a = A ')

we can write g(a), since £> 1 and j » 0, in the form




qlad = [dx de, Qla, xjr, ) Ty, ey, x0) (8D

where
Q(n,x:“_l,xn) / J"' (XJ*‘) H.’*‘ xj‘. )oao F(X )JK ou¢d V\-‘
S Falra) wjg coomany | (52)
.and “h 3,.(1\;,. , X, ) is defined by (44) with a, ¥ a .

By referring to Note 1, we see that I\J”(x,,, ) ¥nd
takes on only the values 0 and 1, and that except at one
value of Xiel o it is the sum of two terms. The first term

(corresponding to T, in the proof of Lemma IB) is either

H?Q(%‘“n)‘ﬂu) or 0, depending on the value of x_ ; here

n >
q'txw 18 ¢  as defined in the proof of Lemma IA for i = j,
qlx;) = h; (,‘. , ,‘“) . The second term (corresponding to
Ty ) is h; (“J*‘ + S x“)F(gJH-g-S) where S is the
least upper bound of the set represented byiio“’(y)
Applyimg (52), we see that the contribution of the

first term to (51) cannot be greater than , |

[ dxj0 dey Falad NPT o (A CREPII LR OF o) Ty (53)
. je2

which approaches zero as a =» kj . Therefore, in the case
A = kj , we can ignore this term in computing g(A), and we

have
s(A) ® -an. fd)‘&*' dx, Qla, JWY ) t\‘-’(,‘s“*s,x“) F"(xj“fS)

("L)J(a gy | sy

n
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in the notation of (18), where

| | 2o oo eioiet ,
J(a, ... o) =[T‘T [F; ‘ (x.‘) H, (x;_-x,;”?dxij

a5 ;.0 A
‘Fs_‘ (,‘j_‘) H:‘n‘ CR:B_‘ - X:“,‘ -S) Fj("s,l*s> F:i.@l (x‘iq_.)
Ao
H:‘,l ("jﬂ - %hz) dx:&" d"&“

nel :
J?Tf; (£ Mk =x ) dx, ] Fu € Ho'(xm %) dayy  (55)
h 4 ' ’

if j>»1. For j = 1 we have the simpler formula

‘3(A) = fH_n(“n""z.' s) F—l("l*s) F:.A("z) H:_°<&3_-X37 dx,

w-l
° T3r {Fi(x‘.) HL(K&— X-L‘_‘) d%;} Fn(";\) dx“ (S‘)

. ‘ : A
e e " M € [ .
In either (55) or (56) therproduct F.b (xJN-&-S) FJ*I(".)*' ‘)
is the characteristic function of a set of measure

< YA = M) . . - . Let us replace this product b
€ W= minlm,,m -A) P p y
F (xs‘_') , the characteristic function of some set having
measure ® and including the original set. We may call the

result of this replacement g(A); then (using the fact that

"3"‘5*\*3; x“} = 0 ) we have

q(A) = 3 (A) s7)




and also, from (17) and (26),

. e (s8)
m“ = ™" .
We treat *3 (a) by applying Lemma II to eliminate the
variable x".l . In the graphical language of Note 2, this

\ leaves us (in the limit a<» A = k. ) with new lines

J3
P Pt , Bt o, Po Py having "lengths®™ ki y.wy, Kty
The third of these lines is made superfluous by the first
two, since the condition | & al=h (kj ALY ) is
implied by l"&-l - J”| o—‘ and "‘m\ MJ . Also
the "longer" of the two lines now joining Pj-«-l to Po may be
dropped, leaving one line of "length" W as defined above.
(See Fig. 6.) With a suitable use of (13) for the variable
XS*J , we now have
. J-‘ A
sqa> = T0 (- 55) *Ta, ooy (59)
§ : o] :
where
*1@a, . o >——/3ﬁf[r*""~( ) HIS S —x, ) dx, ]
1o %= L LT S UNLAN X" %! 9%
N4t N F |

T" {F (x) H (x 'ul)d"t] F:(x“) H:%’(n“- x‘) Jx“

32

(e0)

4

+)




m,j?t - WA ) k.l‘fl - k.

if j>»l ; and for j = 1 we have

*3.“) -.-afH:(xn-xz) E*(x,} Hicw(xz- 3) dxy

T ) R ) *(x) d (1)
3 [ LR TR Y d“;] Falxd dxn el
where F* is the characteristic function of Sg .

We may now apply Theorem IA with f-§ , jayi-\ ,

jet” k-J , obtaining

gA) = "'3(A) . | (.2)

Note that(16) is satisfied because by hypothesis k3~< kj+‘ »

~ and (17) is satisfied because of (58).

Combining (57) with (62), we have (28).
The proof of (37) when B = K}<*“"‘(kif"‘<“~‘) is
quite similar, although some of the formulas are different.
. . ) %
For example, in (55) the factors ¥4h_\(x"_\—-xh)Fn(x“1!4ng‘(xn-x‘

e " LY
are replaced by E%n_‘(x _§-x“)?*B(un§%4g(‘(xn-x‘) . Of

L 43 | o]

course, a-»b and A-> B throughout. The most important

change is that we no longer have (58) but only
v, - k. = @ (63)

This is sufficient to give (l17) in the final application

of Theorem IA with 3—+ S-—l , as this application now

b

£




involves the substitutions wm <% W\n'l‘i ’ \‘n"!‘j » Kok - kj
in addition to those previously listed.*

A snag arises if k, = ki since (16) is not satisfied.
This may be handled as follows. If j = 1, the left side of
(37) vanishes because both terms now have a form like (53).

If j>1, we may eliminate both x, and x; reducing (37) to

] J 2
an application of Theorem IA with j — j-2.

-
i

Note 4. , .
By renumbering the indices in the order 3,.n,|,n,.n'j+|’
we transform (35) into (34). The various k's and m's are
thereby altered, but (17) is unaffected because of (29).
By the same transformation, the task of proving (37)
when B = k, (Case'2b) is reduced to that of proving it when
B = k3 (Case 2a).
Note 5,
1f £ = 2, the indices j+l and n-1 are identical, and
therefore (30) involves a factor }4:5‘(xn,\° *“). Similarly

(31). Hence we must replace (33), still assuming that

j > 0, by

B = wmnlik kjakh"“n> (64)

net *

We observe that conditions (16) and (17) hold. if Ml Mo kj"*n

are diminished by b and k, _y is diminished by 2b, where

*Strictly we should also have substituted i-»i-1 for all

i»>j; for clarity's sake we omitted to do so.




0= b= B | The proof of (36) now proceeds as before.

In Case 1 of (37), we observe that both sides vanish if
B =2X% L, . The proof in the other cases is unaffected
except for inessential changes in the formulas of Note 3.

If § = 0, (30) involves a factor ¥4:a(xh-xb}.

Therefore we replace (33) by

B = minllc k| %%, ,w,) (e5)

if £>2, or by

B = vy ey (!f; L';.‘!,, gﬁ,kz ' ""zx (G \

if £=22(in this case n = 2). The proof of (36) is again
unaltered. Both sides of (37) now vahish in all cases, so

that Note 3 is not needed.

Appéndix I.
It is possible to modify this proof so as to follow
more closely the argument of [1] for n = 2. 1In Theorem IA,

one should replace (17) by

-\

3 n-!
e, = n\m{m5+§hi,w,‘i&§‘;h;)' 3:&'...’“_! (e7)

}
which is equivalent to the assertion that the shortest path
from Fz to FQ » in the graphs of Fig. 5, is of length not

less than m_ . Thus the conclusion of Note 2 - particularly

b




28.

Eq. (21) ~ still holds good.

We may now replace (26) by
| c D)kl e E 0] (9
A = n [kjﬁ‘ ‘kj“i Mi‘_\"mn*‘ zo-ki “’i(msv‘n"m“'@g\ki ] ‘Qe .

without disturbing the proof of (27). The proof of (28)

is thus made easier, in that Case 3 becomes

3 ” : ‘i
A :-5{mi"-—m“+ m.n(%ki f: k. )] (69)

and (29) is replaced by

)

G

", = my ‘~*vncv;( Z:k; 2: W ) 7

L2
;V‘
To prove (25) in the presence of (70), we first replace

. this cannot increase

F {x,) and F, *{x,} by 1 for all x ;

*g (@) because of (70). Then we renumber the indices as in
Note 4, and proceed as in the text following (25) except
that we now are entitled to put

k. ) (74}

A = muﬂ(k"" . %y

Since Case 3 is now ruled out,'the proof is complete, ex-
cept for de‘tails.the reader may supply.

The advantage of this version is that it bypasses the
ngimultaneous truncation" leading to Egs. (30)-(37). The
price paid is the more elabofate form of (67) as opposed to
(17) . However, the difficulties dealt with in Note 3 are

unchanged.




29.

Appendix II.

An analogue of Theorem I for discrete sets may be
stated as follows:

Theorem I1I

Let M‘ g Y » W‘\“ > k‘ p vV, kn be non_negative .
integers, satisfying
wmoerwm,. ek, T 0 (wmed 2) (12)
v el L .

for st =wn | (As before we understand vn“*lto mean
w,  etc.) For each i=),.i w let ¢. be a set of ™

odd (even) integers, m ‘being even (odd), and let %ﬁ

be a set of k. odd (even) integers, k; being even (odd).

*
Let ¢ be the set {m -1, m -3, ...,-m.‘*.g} , and let.
L} . ) - .
y* be the set {1, k=3 . -k ! . Let I be
b, | :
the number of n-tuplets {;x‘, e, xr,}‘ satisfying
| . - (?’%\}
L TR £

for each i; and let*l be the number of n-tuplets satisfying

» P
- e Y }
xi € ¢" > x(.. xi.a»i £ ¢ (774

for each i, Then

I ="1 (7s)
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(The restriction to odd or even integers is a device
to allow symmetrization of both even and odd sets. Condition
(72) is needed to make the sets match. Doing without this
condition would entail complications we prefer not to discuss.)
We sketch a proof of this theorem, parallel to the
one given in the text for  Theorem I. First, aﬁ operation
of truncation must be defined, by which, for any non-negative
integer a and any set ¢ of at least a integers, thé set
g# « is obtained by deleting the top a members of ¢; and

for non-negative a, b and set ¥ of at least a+b integers,
ab |

»

W is obtained by deleting the top a and bottom b
members of ¥ . This leads to definitions of I(a,, ..., &,
and *I(a‘..\. ayw )} like (14) and (15). Then we define

the operator f . such -that for any function f(a) we have

Aq_%ﬂﬂ v F{al - ¢ {ast). . i)

We can now state the analogue to Egs. (16)-(18):

Theorem IIA

Suppose’ that
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(Note thai: (77) and (78) are required to ensure that the
operations in (80) are defined.)

We shall merely indicate how the proof of this theorem
differs from that of Theorem IA.

The reasoniﬂg of Note 1 is unimpaired. The sets T‘
and T, do not overlap at all. .

The reasoning of Note 2 is unchanged except that in
Lemma IIA we 'obj:ain Pt PL‘_! y Bt k;"@, P)f k& -}
instead of p +¢,, F.Q‘QL . Féf"*‘ . Therefore,
to maintain the invariance of "shortest path length" under
the graphical operations, we must take the "length" of a
line to be 1 less than the number of elements in the

corresponding set. Conditions (77)-(79) prevent the occurrence of

negative “lengths", since j=n -8 =n-1 in thiﬁ part of the proof.

Equation (27) is replaced by

) e * 5 )
AQ gea} = ﬁ\m 3(@) (atl)
which follows by induction on f provided that a is small
enough to satisfy

k.

: - o
3“":1 > 0, kj-—o\>§,m. ~a‘;‘;m“‘(82.—;

3!
But we need only prove (8l1) for a == Aj therefore, instead
of (26), we have

A = wn (kj*' ’ k")"v“"f,u




This leads, as before, to three cases in the proof of (28).

In Case 1 (A = k§§t ) both sides of (28) wvanish.

In Case 2 (A = ki -l) the operator &°§ can be dropped
from both sides of (28), since the set qga is empty. Then,
since WﬁQA has oniy one member, the variable Xj can be
eliminated and we arrive at formulas like (55) and (59) of
Note 3. The arguments of Note 3 are otherwise unchanged.

In Case 3 (A = "W'\;'“n’! ) we are faced with

the problem of proving (25) with the condition
Wy - l ' ¢ &Y )

which violates (79). Actually, this condition makes the
proof easier. . We introduce an additional induction on m, .
If m, =1, the proof is completed for Case 3 by noting that
(84) makes both sides of (25) vanish. ‘If~n§‘> | , we treat
Case 3 by renumbering the indices according to Note 4;
condition (79) is thus restored and (25) becomes an instance
of the theorem with w, -» wm - { . Note that m, remains
fixed throughout the double induction on £ and j elsewhere
in the proof.

The simultaneous truncation described in Egs. (30)-
(37) is thus bypassed in the discrete version of the theorem
without the need to introduce the more complicated condition

(67).



By setting j =0 in Theorem IIA, we obtain Theorem II

except for the case where some m, or ki vanishes; but

in this case'we have E :&1 =0 .

Appendix III.

We conjecture the following generalization of (8).

Let { uib'} be an array of real numbers, where
i=1 ., n (85)
X:. '!'{"; r (86')

Let H', ceey H!" be functions from the interval (-—e 6 oo )
* ¢ '
to the interval {O' oo ). Let H, , ... , Hr be their

symmetric decreasihg rearrangements. Then
. e 4
m, ) e 7
ST H(Z Léxi)&f'{f(dxa)ﬁrﬂvf%.uwx;) (87)

To obtain Theorem I, set £ =2n, BT &-‘gy 8 Yem™ 8.1, y-m" §u'~8”. ,
We have been unable to prove even the following two

special cases of (87):



The difficulty arises in Lemma IB, which breaks

down when the same function is truncated twice from the

same end,.



. Figure 1.

Figure 2.

Figure 3.

Figure 4.

>
G

F IGURE CAPTIONS

Examples of truncafion.-

, Each excmple depvcfs a subset of the real line. If F is the characteristic

" function of the set [], rj Es,r] E‘S, F] depicted by (a), then

F9 s the characteristic function of the set depicted by (b),"if a < rg "5

or by {(c), lf r <a<r -r,. Likewise, if H corresponds to

65 65 473

(d), then Hc‘b corresponds to (e) if b > r2'-r] and a+b < r4--r3

r,-r,. Note that a affects only the "top" of example (e) and (b) only

21
the "bottom",

* Teuncation and rearrangemenf,

Examples (a), (b), (c), (d), (e) depict the functions F, Fa, F*, F*9,
*

and F° respectively. Note that (d) and (e) are related by Eq. (13).

Case 1 of Lemms 1B,

Examples (a) - (¢) depict g(xi), Fi(xi)’ g(xi)Fi‘(Xi), Hi()’) and G(Xi +i)"

‘Here q, > 9, and hence q' = qy- Since g(q') = 0, a simultaneous

infinitesimal truncation of (@) and (b) from above will have no effect on

(c). Therefore G vanishes unless the point x, . + lies in (c). Thus

i+i 93
(e) is the same as (c), displaced by d3- Clearly (e) is unaffected by a

truncation of (d) from below, since A5 is unchanged.

Casa .2 of Lemma 1B,
Same five examples as in Figure 3. Here g(q') = 1, so that a truncation of

(a) and (b) also truncates (c). Therefore (e) consists of T], for which



Figure 5.

Figure 6.

36.

!

q' - X liesin (d), as well os T2, for which X 4o + lies in (c).

+ i q3

Truncation of (d) at y = t results in truncation of (e) at. x, + 1 =

.q' -t

The firstfive graphs described in Note 2.

Example (a) ‘shows the original graph (points P4 to Pn-] “not shown).

In (b), the variable x, has been eliminated by the use of Lemma Ii. In
(c), the superfluous line P°P2 has been dropped. (We write 52 for min

', and in (e) we have

(m m, + k]).) In (d) we have eliminateé X,

y

.again dropped superfluous lines, putting -r_ns = min (m3, r'r_l2 + kz),

;,6-_- min (kn + m, > kn + k] + ;2), Note that if any graph con ~

tains a path from Po to Pn with total length L, then all the other graphs

contain some such path with length L < L.

Graphical treatment of the right side of (28) according to Note 3.
The original graph for *gla): is shown in (a). In (b) we have used Lemma i

to eliminate the variable X in {c) we have replaced ‘@ by A = ki.. in

(d) we have dropped superfluous lines; m = min (mi, ,mi 41 A).

7
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