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In this paper we state and prove an inequality (see Eq. (8) below) 

for integrals on n variables, of which the case n = 2 is due to Hardy and 
. . 

Littlewood. In appendices we sketch an alternate proof, as well as a proof 

of an analogous inequality on discrete sums, and conjecture a further gener• 

alization. -~ 
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The subject of rearrangement inequalities is discussed by Hardy, 

~&lya and Littlewood.
1

. Briefly, f and g are equimeasurable functions 

from the i nterva 1 . (- oo , oo ) to the i nterva 1 [·, 0, oo ) if the two sets 

{ ~ I . f(x) ~ Y} and { x I g(x) ;!:. y} are equal in measure for each y 

and the symmetric decreasing rearrangement of f is defined to be that 

function f·* ·which is equimeasurable with f and satisfies f * (x) = 

f*(-x} ~ f*(x•) when f xls\x'\ ·.· lhis definition leads to var

ious integral inequalities, of which the simplest is 

(I) 

(all integrals run from -oo to oo unless otherwise labeled). 

The proof of ( 1) is fairly trivial; see sec. 10.13 of 

[1]. One can easily generalize it to the product of n 

functions~ Another generalization is 

where the same symmetric decreasing_ ,function H* appears on 

both sides. The inequality (2) reduces to (1) if H* is taken 

to be the Dirac &-function (i.e. in the limit as H* becomes 

sharply peaked at the origin and vanishes elsewhere). 

An easy proof of (2) follows the lines of sec. 10.8 of 

[1]. This proof can be generalized to the inequality 

as we shall show in a subsequent paper, in which (3) will be 

further generalized to functions on a circular domain. 

(3) 



Henceforth, we shall adopt the convention that 

so that the left side of (3), for example, can be written 

more compactly either as jTr [F. (x.) H ~(x· - )(· 1) d)(· ] 
. . I ~ ~ " lr &.+ t. 

or as Jfr [ \4~ a()(. t -lf~) f". ()f.) d11t·· J • · · 
t ... -· .. ~ .. .. .. " . 

3. 

( 't) 

· A much more difficult theorem than (2) is obtained by 

·replacing H* on the left by an arbitrary function H of which 

H* is the symmetric decreasing rearrangement: 

This inequality is proved insec. 10.14-5 of [1], in the 

equivalent form 

As indicated in sec. 10.9 of [1]; the proof of (6) is 

easily extended to the generalization 

Our purpose in this paper is to prove a much more 

powerful and more difficult generalization of (5), namely 

j f [ F, ( ~,) H1 ( ~~- K 1.,1) ciJC;.] :e J t [r;'<x) ~o~t< ,., -x l.•l) cllf..] (1!1) 
I . 
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which includes both (3) and (7) as special caseso (To ob-

tain (7) from (8), replace F~, . . . , F~ by constants and 

let )\ a xt- Jrl. .. t for I ~ t E. n. • ) Both (3} and the more 

general (8) have recently found application in physics,· where. 

they give rise to a class of Green•s-function inequalities 

[2] of which certain well-known .isoperimetric inequalities are 

special cases. 

To prove (8), we first observe that it suffices to prove 

it in the case that each function F or H takes only the values 

0 or 1; moreover, we may assume that ( x \ f (x) ::: l} is 

compact and' p.i·ecewise continuous (the union of a finite number 

of closed intervals) where f is any F. or H t • (See the 
~ . 

discussion. in sec. 10.14 of [1].) Therefore (8.) is a corollary 

of the following theorem. 

Theorem I. 

Let F: ( 1 ~ L !!£ n } be the ~har acter is tic . .'..unction of a 

compact, .. piecewise. continuous set of measure m on the real 

line and let F.*· be the characteristic function of sm.wher~, 
L . ~ 

for any m , we define 

Sm : { ;c \ \x\ ~ 'Mj-:L} • 

Likewise let H. ( 1 ~ i. ~ n } be the character is tic function of .. 
a set of measure k. , and H··* that of Sk • .. . " ~ 

Then 



... . 5 . 

where x 't\..,. l is to be read as .:u. alternnte notation for x \ • 

Proof:· 

we define an operation of truncation as follows: 

· if· 0 :=: o.i. s.; m._, we let 

00 

F' \. (X L :t l ) o.nd J FJ x) dx --
::. 0 · 1 ot he~~ 's e ; ·~ 

and if O=s o.~, 0 ~ o.i.+\, _0.~+~, .. 1:: k~, we let 

a.ncl .Joo · l-1;. (y) dy 

·~ -x&.+-l 

~ 0.· 
'" 

x.-x· 1 · 

""d 1 • •• 1-l~, (y) ely ill'· "i.+l 

-oo 

The truncated function F.~• is the characteristic 
L 

function of a set obtained from the set represented by F. 
lo 

( tl) 

('a) 

through the deletion of an upper portion of measure ~~- Like-

. wise H. o..\. Q.l+l 
. ' &. 

represents a set obtained by deleting a 

·measure o., from the top and a.~+ 
1 

from the· bottom of the set 

corresponding to H •• (See Fig. 1.) · 

" 
We may similarly define 

truncating F.*, H.*. Alternatively we may define F.,.~• *, 
.. " 
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~· CIL• I 
H. " ~,"' * as ·characteristic functions of s..._. _ "-· , 

"' .. .. 
s . 

k.l- O.t- 6 i..-t 
0 we note, however, that 

. H • a.~. o.'-•' ( ) -
• It•- olt• I -
" L &.+ 

( See Fig • 2 . ) 

The passage from F to F~ is equivalent to the passage 

from F to F
1 

in sec. '10.-15 of-[1], ex·cept that·Hardy-et .!]_. 

arrange to let a have only integer values. The difference is 

a matter of taste. By making a vary continuously,. we approach 
' .. . . 

more closely the method of t<:ie.sz(sec.l0~16 of [1]) except that 

he truncates symmetrically by deleting a set of measure t 

simultaneously from top and bottom. (See footnote, p. 286 of 

[1] .) In this matter we have no choice; it will be essential 

that in forming the double truncation H~ we do not allow the 

parameters a and b to interfere wi~h one another, and this is 

achieved by letting them act at opposite ends as specified by. 

( 12) • 

To give the reader a clear idea of how our truncation 

is related to that of Hardy et aL., let us paraphrase their 

proof (se~l0.15 of [1]) of Theorem I in the case n = 2. First 

we drop the factor H~ from (10) because it is inessential in 

this case, having the same argument as H, • Then we point out 

that (10) must hold if m
1 

.f k
1 

E' ml., because the right side 

then takes the_value m,k,, and the left side cannot be more. 

·--: .. 
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.. ·'"'··--------~-<'---·--··- .. ; < ••••••• ._.._~--

Now. suppose that m1 + k1 > m2 , and let 

.t.Co..)-= Jr,a.Cx,) H~~(Ji 1 -;e 2 _) F 1 Cx.,)d~, clx 1 -' 

.. ft!<a.) ~; F,#Q.(x,) H70.°Cx,-x.al r:(x,) dxl a)(l ) 

. . A . = 'W'n \1\ ( 'M I J I<' I . ~ ( M' + k. I - .,.. ,.,) ) • 

7. 

. ,·. we already know that · I (A) s. ~~tl (A) -note the use of < 13 >- and 

~e must prove I Co) ~ •1 tO) · . ·Thus it suffices to 

,·spow .that ~C. I.·~ -.!.:l·: for · 0 ~ o. ~ A·. .This .l.s ·done 
. . . -~ . : d~ 

. by showing on. the. one hand that 

(- fa. J F I 0. ( Jt I) . H t 0 ( ~ I - . X .'a) ~ )( l ~ .I . 

l.(compare.Eq.; (10.15.16} of [ll) ~6 ·that 

;;. and on the other hand that 

... 

for all ,c 2. 

- di -- - Y'l\ft • 
clo. - Go t 

~ .A....J IVo.( ) H""-.0(. ) . l ~ \ ' I c ) v c ) · .. ·do,. .r.: .Xi 1. ·lt,-)(Ol. cl)(t::. .. TOr )(2. .~{ m 1-G .... ,,_ k 1•0..) 

cf*:t so that --;;;: = M2. exactly {see Eq. (10.15.13) of [1]). 1he proof of 

Rie~z (sec. 10-16 of [1]) is ~ssentially the same. 

It is possible to extend this proof to \'\. ':1" 2 ; see 

Appendix I. However, the proof we shali presen ... is based 

instead· on the fol.lowing variation of the above argument for 

n = 2 .• 

·.Without loss of generality we may suppose that W\ 1 ~ W\2-. 

If . ""'• > ~' w~ define I (o.); • ~ (c.) . as above, but let 

A =. "f'W\~~ ( k, ; ·W\o,- W\
2
) ~ As above, we can prove - cl.I · < - c4 ~I 

clo. - -x;-
for· 0 :! 0... <. A . , and so it suffices to show that 

. I CA) E *I C.A) 

A ~ W\'- 'n'\'2.. 

~ • ·o 'W'f\ 2. • 

This is trivial if A c: k , and if 

' it reduces to the original theorem with ,. 



We treat t'he··case· m
1 

= m
2 

by defining 

t c~,b) =/f.o.(.,.,) H~b(M,- w2.) r:;('IA,J cl.c,d.x,_ . 

• I. (a.,.~) s,f F; 11 0..~ -;.) H!mb (X.""! Jt2.) r::"c rc,_) d ~' chc'J;·· I 

. B = "M •""' ( W. a ' St:~. k a ) . 

,. 

Then I <e, 8) = 0 = *Ice, e) , so that it 

suffices t(;) pr.6ve --.-t 1 (b, tt) E - .-Jt, •t (b. b) for 

0 e b -~ .8 By a rep!!.tition of earlier arg~ents we 

find that ,.;· ..!... t (eo lit Y. c - ~ •r (0o ") ~~ · - '-
. . ~ G._ , - C.. ·' ' . . T . ~- -. p t 

O.f\cl. - ·* 1 (CL, b) E ~- ~ ltr.l (Of;·b'J . if . ,b i!a Q. • 

Setting a= b and adding, we obtain the desired. inequality . 

.. 
The advan~age of this longer. argument is that it 

avoids reduction to the inequal-l.b:ty · I (A) .:= • I ( ~) for 

8. 

... the case )4 = 0 in sec. -10~ T5 · 
.. 

!'f. [ ll • · In Appendix· I we _':i:l'iidicate how this step can be 

general,.ized to -n>2., if one prefers the· first argument ... 

we now return to the proof of Theorem I for arbitrary 

n. We begin,
1
by defining 

. ·:··· . •, 

(as) 



' 9. 

the two lines of (15) being equivalent because of {13). 

· Let 0 ~ j c 'f\ G we shall obtain ( 10) as a special case 

(j = O} of the following theorem. 

Theorem IA. 

Suppose that 

and 
\s< i. > 0 ) fo.,. ~ = I 1 ••• , l 

~=l, ..• ,ft.-l. 
Then j ..J_ 

"Tf (-a...) I( a., ......... >. e t (- f;d .;I ( .. , ... a.,.)• (It) 

where the final subscript 0 means that all the a. are set .. 
equal to 0 after·differentiationa 

.The proof of Theorem IA will proceed by double induction. 

Let n =- .Q. + j . we shall prove, first, that Theorem IA holds 

for !:: I and arbitrary j; and second, that if it holds for 

.R- I {and any j} then it holds for l (and any j). In the 

latter part, we shall use induction on j for fixed ~' start-

ing with j = 0. 

After proving Theorem IA, we shall der iv,·~ Theorem I from 

it. So as to make the logical structure of the proof readily 

visible, we shall defer the demonstration of certain state-

ments to notes following the main argument. 

The case Q.( is treated by showing (Notel) that the 

function 

( ltt) 



. lO.' ·· 

takes on only 0 and 1 as values, whereas (Note 2) the 
. , .. 

corresponding· f·unc~;±on· 

•ldx,.l = V (- /;L) [J H~""" 1 
(I<"- ;. 1) . . . · . 

. :--~-. . . ... ;:r [F.* C.L ( )(•) H.* e.;. Q.l,•l l tc. - ·;q ) d~ J} . 
.., -:. .·; .. ... . . . · I •.• · "",.. ~> t. ~ L + t \. 

-~, . -- _,... .. 0 

(lo) · 

is the characteristic. function of S;A where 

(2.1) . 

' writing (18) in . the form 

w~ see from Note 1 that the left-side_cannot exceed 

JF'f\ (:,."") ciJC"'. =· 'W\"'· t and from Note· 2 that the right 

side is YftL)\. (M 9 ""'"') which by (21) a.nd ta1) is m"'. 

_This verifies {22.), and hence (18\ when luI .;, 

Now suppose that J , I and that Theorem IA holds when . 

. J.: . is reduced by .1. 

Define 

'-s (o.) 
··J{: a ) . :; ·rr ... t. 1 <a., o ~ c.\'\) 
. •. ~~, . o,~ 

(2.3) 

• 
J ( a ) '~~I ( . . . :. Tf' ~a;... Q., ... ~"')o,o. . ('1-..) 

where the final subscripts ;mean that we set a 1.,
1
. = a ·and 

all other at = o after·. d:i.fferenti·ation •. Then · ( 18) may be . 
J 

written 

(as) 

·I 
I 
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Define 

1\ • V'll\ •"" ( k1 +a .I k j , VY\ j + 1 - W\ n ) · ( 'l c,) 

(We read k
0 

as kn according to (4).) Then for any a satisfying 

0 E a< A , we see that/(16) and (17) are still satisfied if mj+l , 

kj , kj+l are all diminished by a . 

It follows that 

cl . 
- - .CJ (c.) 
. cl~ 

(2?) 

for all 0 ~ ~ ~ A , as an _application of -Theorem IA with 

Therefore, to prove (25) it suffices to 

prove 

( 2. &) 

we distinguish three cases. 

Case 1: A = kj+l , or j = 0 and A = k0 (~k~ ) . Here 

(28) is obviously true since both sides vanish. 

Case 2 : j > 0 and A = k. < k . \ 
J J" 

This is really the 

most difficult case. Although the integrand in g(a) contains 

O.J Q, { ) the factor H J which vanishes for a j = 0 and a = A, g A 

itself does not vanish because the operator - JL is to 
ao.J 

be applied before letting o. ~ A- • However, we show in 

Note 3 that (28) may be transformed, in this case, ihto an 

application of Theorem IA with .R-+ .2 and j ~ l -I , by 

eliminating the variable x. • Thus eventually we arrive at 
J 

j = o, when Case 2 can no longer occur. 

· Case 3: A = mj .. t.- m"' ( •iV\(kj , kj+l ) • Here (28) may 

be regarded as an example of (25) with rnj•l , k j , k j ttl 

all diminished by A. Conditions {16.) and (17) remain 
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satisfied, but there is now the additional equality 

• 

It· therefore. suffices, in order to complete the prop£ of· 

(25), to prove it in the presence of (29). 

we cannot proceed ~ow according to {23) and. (24), because 

if we truncate any further with respect to the va'ri'able:,,.x.j+l 

(thus diminishing mjtl ) we shall destroy the validity o£ 

(:17), which is needed in proving the case R = 1 on which our 

.induction. is based. Instead, we truncate simultaneously with 

respect to xl•• · and x" , .maintaining (29), and hence' (17), 

thr ougnout. (Since R > I , x, ... 1 and x must be distinct.) · 
' . Jy ft. 

Thus we shall reduce (25) to a statement analogeus to (28) 

which will b.e proved true in every case. 

Assuming (29), we define 

(30) 

(31) 

where we are to set a l.,l =.a, a'f\ = b,. al_l other a;. = 0 

after diff.erentiation~ . Our real intention is to put a = b, 

.:but. w~~te~p .: the·.}two pa'rarne~&ts 7 dts't.tn~'t:::!ii~~ e:nder'~:~l\;("d~fi~n~· .. 

partial derivati~es. we may ·replace (25), then, by 

(3:i) 

... : 
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Let us assume for the moment that j > 0 and D>2.. we 

define 

and note that if 0 Eo.~ b c B, conditions ( 16) and ( 17) will 

still hold if -. • t. l 
···~ .. , '· ~j , "J• 

kn , kn-l are a·l r diminished by b • 

Sa =- 'sfao. , Sa 1: 71s/ab 
*g, we obtain 

are all diminished by a , and mn , 

Using the notation 

, and similarly for 

- c (a., b):!. -*a (a,~ b) 
~ I . ~ l c 3't) 

for 0 ~ Q. 'l!t b < a by induction on 1 in analogy with 

(27). By a renumber~ng (Note 4) of the indices l ••• n, we 

also obt~in 

( 3S') 

for OlE btS o.<8 and the sum ·of (34) and {35) for a = b givees 

for· 0 E b c B. To prove (32), therefore, it suffices to prove 

(3'7) 

we distinguish three cases of (37), analogous to those 

of {28) • 

Case 1: 

) 

B = k, or k"'•l 
J+l 

Then ca (B ... B)=() c: *'s Cs, .. e) . 



Case 2a: B = k j ~ 't'I'I.IN ( kj+-l • kn .. ,) 

handled by induction on j according to Note 3. 

This is 

14. 

Case 2b: B = k" (W\,~ (kj•l, ~n-1) This is re-

duced to Case 2a by renumbering the indices according to 

Note 4. 

Case 3: B = m~ 

in Case 1. 

If ~-2. or j = o, the proof of (32 ) given above must be 

modified slightly (Note 5). 

The proof of Theorem IA is now complete. To obtain 

Theorem I, we cyclically permute the indices l ••• n so as 

to satisfy (17). If (16) holds, we can apply Theorem IA to 

obtain (18), which for j = 0 reduces to (10). If (16) fails, 

(10) follows anyway since both sides vanish. But (10) is 

invariant under the cyclic permutation of indices; therefore 

it still holds under the original numbering. This proves 

Theorem I. 

Note 1. We study the right side of (19) by means of the following 

lemma, which we state in two parts. 

Lemma IA. Let ~ <V\. , and let 'l (.,.~) be the 

characteristic function of some compact, piecewise continuous 

set of measure p • Let Sf4t ( ~L) be the truncation of g 

according to (11), for 0 E a.i. c: p • Define 

where the final subscript means that we set o.;,: 0 after 

differentiation. Then G ( "t+ ,) takes only the values 0 and 1 . 
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Lemma IB. Moreover, let Gct()C, ,) be the truncation ..... 
of G according to (11), and let o.c;.(_ .. ,> be defined 

~ ... 

by 

a.c;.cx, • ..> "- t~ [fca .. •c,.,l r,"tt.) 1-l .. t .. ••'< .. ,-~ •• ,>•h••l, ... (3'? 
where we set ~'-: 0 , a.t ... l = a.. • Then .either (Case 1) 

for all x~~~ and all a from 0 to k~ , 

or (Case 2) = G ca. ( JC i.. + l) for all xi.+ 1 

and all a from 0 to k • ... 

To prove Lemma IA, 1 et q 
1 

, q 
1 

, q 
3 

be the hi,ghes t 

numbers satisfying g(q
1

) = F~(q 4 ) = Ht (q 3 ) = 1. Let 

q = q ( x ~ + 1 ) = min ( q l , q a. , x ~ + t + q 3 ) = min ( q • , x \. ... l + q, ' ) 

where q • = min ( q 
1 

, q :a..) • Then for any particular x l.,.. 1 , 

the set [!If· J ~ ( x .) F'· ( >'.) u. ( )(. - ,c. ' ) = I 'l. 
" ~ I. &. ~ r-... ... .. ... J 

has as highest member a number r ~ q. The effect on this set 

of infinitesimal truncation performed simultaneously on 

is to lower q and thereby delete a single 

infinitesimal portion of the set, if r = q; or to leave the 

set unchanged, if r ~ q. In the former event 

in the latter event, c;. (,.. ,) = 0 . ....... 

To prove Lemma IB, we observe that 

(x~., \ G(x,,. 1> c J} = t)('-+' \ S(\) F~(\) \4'-(\-x\.+l) = J} 
c: T, U T 2.. <.~c) 

'• 
'· 
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where 

The sets T 
1 

and T a. are restricted to and 

, ' respectively, so that they intersect at 
-'ti.+-t ~ - \3 
most at one point. We note also that q', and hence 

is independent of >e ~ ,.. 1 

Now suppose (Case 1) that S (cr,') F~ ( \') = 0 . (See 

Fig. 3.) Then T
1 

is empty and from (40) and (42) we find 

( 'f 1) 

for all " 
f" ...... 

But if H. had been truncated from below 

' 
as in (39), the value of q

3 
would not be altered; i.e., the 

sets { y ) H i.Oo. ( y) = l} o.n 4 { y I ~ ~ ( y) = I J. have the 

same highest member. Therefore, in this case, ~ is the 

same function as G for 0 :!!: o. ·.,e. k • ' ~ 

Suppose instead (Case 2) that ~ (,) Fi. <rt') = r 

{See Fig. 4.) Then the only way that ct..&- can differ from 

04. 
G. is through the replacement of Ht by Ht in (41). Since 

occurs with a negative sign in the argument, .the 

effect of this replacement is just to delete a set of measure 
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a from the top of T l . But T 
1 

lies 11 above 11 T 2. , so that 

this ·is the same as truncating G from above. Thus G.G and 

Go.. are the same function for 0 OIC Q. < k• - ~· 
This completes the 

proof. 

Lemma IA corresponds to the kernel of the Hardy=Littlewood-Riesz 

proof (see footnote c, p. 284 of [l]). Lemma IBis required 

for n > 2, as we shall see in the following argument. 

For I I!: C.. E 'n. , let us define 

with the conventions of (4) and (18). we note tl!at ~'f\ ( x" aM") 

is identical to hC-~) as defined by (19). Our aim is to 

prove that this.function takes only the values 0 and l. To 

this end, we assert that for each t < ~ , ~ .. (»&i.) } ) takes 

h. ~i. only the values 0 and 1. Moreover, if ~ is the 

truncation of hi. according to ( 11}, reg~rded as a func'tion of 

x&. with fixed z, and -h~ is the result of setting a. = a instead 
L 

of 0 in (44), then 
4
ht is identical,~or fixed z, either to 

h, or to ~~ r, the choice depending on z but not on a. 

we prove these statements by induction on i. Since 

"• ( 'l& ' , ) ) = H ¥\. ( .) ... K • ) J 4 h I ( X I . • J ) = t--1 ~o.. ( ) - )( a ) ' the 

proof is immediate for i = 1. Now suppose·the assertions 

true of hi.. J \. c Y\. .. 1 j we must prove them for 

(44) we obtain 

h 
\...,. I 

From 
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18. 

.. 8 [f Q.. Q,• ( .) ca.· 0( J ' ) 
~~.,(liCl.+-l')) = -i':~ "h.~(x, .)) ft ' ~ .. H._" )C~-K;_.,,) elK~ 0 "'~S 

and 

with the convention of (39). 
Q,~ h. If z is such that .. and 

•. a.· .. ~ are identical, then these two equations are identical .. 
to ( 38) and ( 39) when we set g = ~. , G = k. \and suppress the .. ,. .. 

argument z. If z is such that ca.·~h. and "· are identical, we .. ... 

can still recover 

fining ca C)t ,) = I 
where q 1. is the 

For then we have 

(38) and (39) by setting G c h. 1 and de-..... 

if h' ( ~;. . ) ) c I or 9, 2. ~ )C i. ~ \ ,., + k ~ 1 

highest number such that ·F~ (~ 1 ) = l 
Clo.~ F/~·i. = Q f",Ai. : "-· F· ~~ = Q.~ ~ ~"~ fo ... o~ ~·c. k· . 
.... .J" .. .. .... &. " 

In either case, the desired properties of follow 

from Lemma I • 

Now taking i... ::. Y'\.- I , we apply only Lemma IA to 

show from (45) that ~~.t takes the values 0 and 1 alone. 

This is the desired result needed to tr~at (19). 

we may observe that the value of z affects the form 

of the successive h,(._t,J) in a complicated way t}frough its 

effect on the choices between Case 1· and Case 2 in the 

successive applications of Lemma IB. Therefore, it is very 

difficult to say anything about the set { ""' \ "'"' ()t," )C.,..)= l} . 
This point is what makes (8) so much harder to prove than 

(7), and it is for this that the condition (17) is vital. 
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Note 2. We study the right side of (20) by means of the following lemma. 

Lemma IIA . Let g,* , gt be the characteristic functions of Spl , sp
2 

as defined by (9), and let 9{a , gl a be their trunc~i:ions for 0 a 

0~ a <min(p1 , p2), in analogy with (11). Then if 1~ i < n, the 

function 

can be expressed in the form 

Cet e) 

* * * where f 1 ~ , f 13 , f 23 are the characteristic functions .of sp
1
+ P

2 
, 

' sp2+k; respectively. 

Lemma IIB. Moreover, if 

with the convention of (39), then· 

where f*G. 
13 

f *o.. 
' L! 

are the truncations of f* , f* 
I!> 2-3 

according to (11). 

Proof of lemma. For fixed x. l and x , we define 
&.+ \'\. 

·= 
\: = ,_.'W\.:t. A P, \-a.:::. ~ ~ Pa. J '\~ :::. )<'-+I~ h. ki. • 
Then the integrand in (47) is the characteristic function 

of the set (x~ ( ,- E Xt, E ,.+} .· where 
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The effect of an in-

finitesimal truncation is to lower q+. It follows that 

takes the value 1 or 0 according as 1 + ~· ~-

or not. 

Now, the condition \• ~ l- is equivalent to the 

six conditions o+ >- o- ._+- >. Q .. 
bf ""' Da I ... ,... it I 

which are in turn equivalent to the three conditions 

I x .• J :S ~ ( r 1 +- P2..> 1 I JC '- -t 1 - M"' I E. "'- ( P • + k ~) , I )( ~ .- a l ~ Ji ( Pa +- k t.) • 

Equation (48} follows immediately. This proves Lemma IIA. 

Lemma IIB can be reduced, by the substitution 

K e.+, -+ ~ &..+- t - Y. ~ and the use of ( 13}, to an application 

of Lemma IIA with k· -+- k. -a.. 
~ &. 

To treat the right side of (20), let us represent its 

integrand by a graph containing points P
0

, P1 1 • ·., P'r\o Joined 

by lines of fictitious 11 length" according to the following 

rule. To each factor F.'*o.;. 

" 
in (20) there corresponds a 

line of "length" m~ joining P
0 

to Pi. ; to each factor 

o..· a, I ) f-1 ..... ~ c-,- -.;. ... , there corresponds a line of "length" 

" 
k &. joining Pt to P&. + 1 (See Fig. 5 .} 

we now integrate over x , apply the operator 
l 

a -~o,' 

<so) 

and set a, = 0. Lemma II tells us that the result corresponds 

to a new graph obtained by deleting the point P1 and its 

associated lines, and connecting the pairs ( P ... , P.) (P. . P.) ( P.0 P. ) . .. 0 I 'n• -. J I I. 

by new lines of "length" 

easily seen that this operation does not change the "length" 

of the shortest path between any pair of points other than 
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The new graph has two lines connecting P0 to P~. They 

represent two factors f:;:a.(-"
4

) 6\.~ F:o., ()Ca.) J of which 

the one corresponding to the 11 longer" line is snperfluous. 

Therefore, the 11 longer" line can be removed. This operation 

also leaves unchanged the shortest path between any two points 

in the graph. 

The above process can be repeated so as to eliminate 

the. points P1 , •• • , P". 1 ' At the i th step we integrate over 

X·, operate with .. .1-
8 

andset at= 0. By Lernma.II the 
~ ~t 

graphical result is to delete P,: and replace the lines 

joining P.: to its neighbors by new lines joining. each pair 

of such neighbors with 11 length" equal to .that of the path 

which formerly linked them indirectly through P~ . Super

fluous lines are then removed. 

The end result of the algebraic operations is 4-r h ( )&\'\) 

as given by (20); that of the graphical operations is a 

graph consisting of P
0 

and ~ joined by a line of some "1 ength 11 

m. Therefore *h(x~) is the characteristic funL;tion of S~. 

This rn is equal to the 11 length" of the shortest path from 

Po to P"' in the original graph, since this "length" was 

not altered by any of the graphical changes. But any such 

pat.h included a step from P0 to some p. 
&. 

11 length 11 

Note 3. 

m. • ... Consequently (21) holds. 

having 

From the role played by (28) in the proof of (25), it 

is clear that g(a) and *g(A) must be understood as the limits, 

of g(a) and *g(a) as a-+ A from below. Letting 0.!!: G.~ A·~ 

we can write g(a), since .t> 1 and j ,.. 0, in the form 
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where 

(~2.) 

and a.h.j+l (~~'j•l .J x"") is defined by (44) with a.'-~ a. . 

By referring to Note 1, we see that a.hj+l ()tj+l J "K"') 

takes on only the values 0 and 1, and that, except at one 

value of X j+l' it is the sum of two terms. The first term 

(corresponding to Tl in: the proof of Lemma IB) is either 

H fo.(\ (If I\) •It j+l) or o, depending on the value of xn ; here 

<t'lK~ ,. \' as defined in the proof of Lemma IA for i = j, 

g (xj) c bj l)Cj , K y\) . The second term (corresponding to 

T::a, ) is h.,jCJCj+-l + sl K't\) F"j '"j·tl + s) J where sis the 

least upper bound of the set represented by H jOe.. (y). 

Applying (52), we see that the contribution of the 

first term to (51) cannot be greater than 

which approaches zero as a_. kj . Therefore, in the case 

A~ k•, we can ignore this term in computing g(A), and we 
J 

have 



23. 

in the notation of (18), where 

(55) 

if j > 1. For j = 1 we have the simpler formula 

~-· · "J ( F", ( ~t;,) H·, (,. ,~ x ., .. 1) •h"o.) r.,., C ,.,,) cl11., 

In either (55) or· (56) the product Fj (~j.., 1 -e-S) Fj~l (".i,.. ,) 

is the characteristic function of a set of measure 

:E ~ : W\tY\. ('M.i, w\t+l -A) . Let us replace this product by 

.F(K~~ 1 ) ~the characteristic function of some set having 

measure m an~ including the original set. we may call the 

result of this replacement g(A); then (using the fact that 

we have 

(57) 
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and also, from (17) and (26), 

we treat ,..~ (a) by applying Lemma II to eliminate the 

variable x .• 
J 

In the graphical language of Note 2, this 

leaves us (in the limit a-+ A = k j ) with new lines 

0 P· 00• P. 0 P· 1 havJ.· ng 11 lengths.. k · 'W'- \. + '--
r.l-l J+l J r..i+l 0 , ro J- ~·l' j' Kj-l ""j · 

The third of these li~es is made superfluous by the first 

two~ since the condition I .-,j-l l ~ Ya. (kj-l + W\. i) is 

implied by I K j-l - K j+ .I~ \ k~- \ and I ~"j+l \ ~ J,:. W\.j Also 

the 11 longer" of the two lines now joining ~+-I to P0 may be 

dropped, leaving one line of "length" rn as defined above. 

(See Fig. 6.) With a suitable use of (13) for the variable 

x j +- 1 , we now have 

*"9 (A) 
j-. _L) ,. 

= 1' (- 3<>, reo., ... 

where 

0... ,) 
J- 0 



if j >I ; and for j = 1 we have 

... I * -...,( A.O~( ""~(A) = H'ft C2tY\- x:~,) F .. '~-a> H2. ~ 1 .. x3) d)( 2. 

"ft•' it. "' 1/-

~1f (F. (,c.} H. (x.· v. ,)<t)f.J F .... (x") cl~,.. 
3 l " 0. " 1.1' " .. 

where F* is the characteristic function of S~ . 

we may now apply Theorem IA with i-+ fl , j _., ~-\ , 

"Mj.-t -+W..., kj+l.,..kj+l .. &cj, obtaining 

25. 

((.. 2.) 

Note that(l6) is satisfied because by hypothesis kj <- kj+l, 

and (17) is satisfied because of (58). 

Combining (57) with (62), we have (28). 

The proof of (37) when B = kj c:::......_ .. , (k;~• .. \~"'_ 1 ) is 

quite similar, although some of the formulas are different .. 

For example, in (55) the ·factors Hn-\('IC"~\ -)f..n) Fn.(':ot,..) H~a.,()Cn-.1( 1 ) 
" t e 1 ) ,.. ... e( ) , , e (., t ( ) . Of 

are replaced by n.,.._ 1 ,l',,_,- l(), ~:·n 1(n.. n 0 )("~)I. t· 

course, a--+ b and A-+ B throughout. The most important 

change is that we no longer have (58) but only 

-· k. c 
j 

This is sufficient to give (17) in the final application 

of Theorem IA with ) ~ ) - l , as this application now 
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involves the substitutions m'V\-+mn-l(..\ # kn -kj ~ kn-l_. kn-l- \c.j 

in addition to those previously listed.* 

A snag arises if kn = k j since (16) is not satisfied. 

This may be handled as follows. If j = 1, the left side of 

(37) vanishes because both terms now have a form like (53)~ 

If j > 1, we may eliminate both x, and xj , reducing (37) to 

an application of Theorem IA with j ~ j-2. 

Note 4. 
r 

By renumbering the indices in the order ),•·•, l,n,•••,j ... l,, 

we transform (35) into {34). The various k's and.m's are 

thereby altered, but (17) is unaffected because of (29). 

By the same transformation, the task of proving (37) 

when B = kn (Case 2b) is reduced to that of proving it when 

B = k· (Case 2a). 
J 

Note 5. 

If i = 2, the indices j+l and n-1 are identical, and 

. ~b 

therefore (30) involves .a factor \41'\_,(1("'_'- )("). Similarly 

(31). Hence we must replace (33), still assuming that 

j > o, by 

( ~ t.f· ) 

we observe that conditions {16) and {17) hold. if n"\_).-\; 'M"'\) kj• k"' 

are diminished by b and k n-\ is diminished by 2b, where 

*Strictly we should also have substituted i-+ i-1 for all 

i>j; for clarity's sake we omitted to do so. 
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The proof of (36) now proceeds as before. 

In Case 1 of (37}, we observe that both sides vanish if 

B = \ kn.-l The_ proof in the other cases is unaffected 

except for inessential changes in the formulas of Note 3. 

If j = 0, (30) involves a factor H:(l.(x"-KD) . 

Therefore we replace (33} by 

B = m ' n ( \c. , , \.( n ... 1 .. ,..:a t~"' ~ yy<, ~) ( ~l c ··'·, 

if .R > 2, or by 

B = '('(\ ' ,.'~ (CC) 

if .£: 2. (in this case n = 2) • The proof of ( 36) is again 

unaltered. Both sides of (37) now vanish in all cases, so 

that Note 3 is not needed. 

Appendix I. 

It is possible to modify this proof so as to follow 

more closely the argument of [1] for n = 2. In Theorem IA, 

one should replace (17) by 

j-' 
~- YYH 'f"' ( "rt\ , + r: k . 

\ J 0 \. 

.,._, 
w• ... or ~.) 

J ~ t" I 

} 

(~7) 

which is equivalent to the assertion that the shortest path 

from P0 to Pn , in the graphs of Fig. 5, is of length not 

less than m~ • Thus the conclusion of Note 2 - particularly 



28. 

Eq. (21) - still holds good. 

we may now replace (26) by 

without disturbing the proof of (27). The proof of (28) 

is thus made easier, in that Case 3 becomes 

. 
[ 

j ~-· ] A: i 'M .. -Yn +men (I: k. • L. k.) 
l•' 'f\ () " 1•' '-

and (29) is replaced by 

. 
j ~-\ 

v-n .. \ + ~.'t\ (I: k. I> r: k~) 
l... 0 lo )"'' 

l7o) 

To prove (25) in the presence of (70), we first replace 

F~()('t\) and F"*(~) by l for .all x"; this cannot increase 

*g (0} because of ( 70) • Then we renumber the indices as in 

Note 4, and proceed as in the text following (25) except 

that we now are entitled. to put 

A: vr.,...,.(k·, k,) 
j... ' ~ 

V1 l) 

Since Case 3 is now ruled out, the proof is complete, ex-

cept for details. the reader may supply. 

The advantage of this version is that it bypasses the 

"simultaneous truncation" leading to Eqs. (30)-(37). The 

price paid is the more elaborate form of (67) as opposed to 

(17). However, the difficulties dealt with in Note 3 are 

unchanged. 
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Appendix II. 

An analogue of Theorem I for discrete sets may be 

stated as follows: 

Theorem II 

Let ~ , • ' · • • VY'\ " • k , ~ • , . , k"' be non-negative 

integers, satisfying 

- ......_......... .... k \ ('IV\(';. J 'l) 
WY ~ ' ,- 11 w .. • ~ T ; -

\ '-..,.a ... 

for (As before we understand Tn • to mean 
'1'\ .. ~ 

, etc.) For each ~-:::l, .. :.\0\ let ~· be a set of W\. 

'· "' 
odd (even} integers, m being even (odd), and let ~i 

be a set of k\ odd (even) integers,k~ being even (odd). 

"'.* be the set { V"n.-t, T't'\.- 3 .. . -""".+·It ..,l . \.. \ ! " ' _J 
, and let . 

be the set { l~ · - l k.- 3 , . . - k + t ~ 
~ I ~ -' l ) 

Let I be 

the number of n-tuplets { x, • , , .• x n )· satisfying 

)(, 
l 

for each i; and let..._ I. be the number of n-tuplets satisfying 

x. 
' 

for each i. Then 

( '14} 
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(The restriction to odd or even integers is a device 

to allow symmetrization of both even and odd sets. Condition 

(72) is needed to make the sets match. Doing without this 

condition would entail complications we prefer ~ot to discuss.) 

we sketch a proof of this theorem, parallel to the 

one given in the text for-Theorem I. First, an operation 

of truncation must be defined, by which, for any non-negative 

integer a and any set + of at least a integers, the set 

A.~ ~ ~ is obtained by deleting the top a members of T ; and 

for non-negative a, b and set ~ of at least a+b integers, 

\.jJ c..b is obtained by deleting the top a and bottom b 

members of ~. This leads to· definitions of I (a., ..... ~?'\) 

and *I(o.,, ..... c..""') like (14) and (15). Then we define 

the operator A"such that for any function f(a) we have 

('H.) 

we can_now state the analogue to Eqs. (16)-(18): 

Theorem IIA 

Suppose' that 

l< "> c .I 
l 

~- ;;; "" 
. 
\. 

\4. > 
i. 

f C'l'" 

"' 

Then 

I 
J 

, .... , ) 
0 

. 
-.:;. l 

~,.. 

::. I '' 
. 

Y\ 

l -· 1 

(I''!) 

s PI -~ .. , ) 
\ '·' ·. 

' ' ' Y\ .... 

J ' ' . ,. '! <t' .\ 
-1... r 

J * rr " 1 Ca. ~a.. . ', 
l ~ 

\ 
• • • I O..Y\ .! 

0 

i 

( £;_' 
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(Note that (77) and (78) are required to ensure that the 

operations in (80) are defined.) 

we shall merely indicate how the proof of this theorem 

differs from that of Theorem IA. 

The reasoning of Note 1 is unimpairedo The sets T' 

and T 
1 

do not over lap at all. 

The reasoning of Note 2 is unchanged except that in 

Lemma IIA we obtain P , • r a. - • • r , T t<. "- t A r l. + " • - 1 

instead of 
Therefore, 

to maintain the invariance of "shortest path length" under 

the graphical operations, we must take the "length" of· a 

line to be 1 ~ than the number of elements in the 

corresponding set. Conditions (77) -(79) prevent the occu-rrence of 

negati.ve "lengths"·' since j = n - g = n - 1 in this part of the proof. 

Equation (27) is replaced by 

( 81) 

which follows by induction on £ provided that a is small 

enough to satisfy 

.k )+I - 0. > 0 I k i- (). > 
• {P,2_) 

But we need only prove (81) for a c: A; therefore, instead 

of (26), we have 

A = ~,.,.., ( k. ' \c .. - \ ....... - h• + ' ) • ,) .. ' J r ... )+l ·n 
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This leads, as before, to three cases in the proof of (28). 

In Case l (A = 
k. ' 

both sides of (28) vanish. 
)+ 

In Case 2 (A = k. -1) the operator 6o.. can be dropped 
~ l 

from both sides of (28), since the set 
"f-l.,,. 

is empty. Then, 
A 

since "tl\ OA has only one member, the variable xj can be 

eliminated and we arrive at formulas like (55) and (59) of 

Note 3. The arguments of Note 3 are otherwise unchanged. 

In Case 3 (A = rn i~'- '"""" + t ) we are faced with 

the problem of proving (25} with the condition 

vn j+ I \~\ - I .. \ 

which violates (79}. Actually, this condition makes the 

proof easier •. we introduce an additional induction on m"" • 

_If mn = 1, the proof is completed for Case 3 by noting that 

(8 4} makes both sides of (25} vanish. If m"' > \ , we treat 

Case 3 by renumbering the indices according to Note 4; · 

condition (79) is thus restored and (25) becomes an instance 

of the theorem with ""'n-\> ~ n- l Note that m~ remains 

fixed throughout the double induction on l and j elsewhere 

in the proof. 

The simultaneous truncation described in Eqs. (30)-

(37) is thus bypassed in the discrete version of the theorem 

without the need to introduce the more complicated condition 

( 67) • 

- ----- -------
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By setting j =·o in Theorem IIA, we obtain Theorem·II 

except for the case where some m. or k-
'" L 

vanishes; but 

in this case we have I : .,. I : 0 . 

Appendix III. 

we conjecture the following generalization of (8). 

Let H , ... , Hr 
I . 

be an arr~y of real numbers, where 

(~5) 

• • • J 
r 

be functions from the interval (-GO 
1 

oo ) 

,. H" 
to the interval ( 0 

1 
oo ) . . Let H, 1 •• • 

1 
t' be their 

symmetric decreasing rearrangements. Then 

To obtain lheorem I , set r * .,._ . . . - ". ..... c . .., - s. D - L.' ' 
&. .. n I -" ~ - ~ ¥ .T 0 I. I II "'" .. - I y" V\ .. . rr ' 

we have been unable to prove even the following two 

special cases of (87): 

(88) 
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and 

f'\- i 

I n· [ d.x'-
. \:. I 

.1'\ 

Tf 4 { . ~ I··· . · '-
H " . - x . ) r • ' ::' ·t ,.. 

• • I. J ' to.\ •' 

The difficulty arises in Lemma IB, which breaks 

down when the same function is truncated twice from the 

same end. 



Figure 1. 

3 5. 

FIGURE CAPTIONS 

Examples.of truncation.·. 

Each example depicts a subset of the real line. If F is the characteristic 

· function of the set ~ 
1
, '3] U E

3
,g U 5' g· depicted by (a), then 

Fa is the characteristic function of the set depicted by (b), if a < r
6

-r
5
, 

or by (c), if r
6

-r
5 

<a < r
6

-r
5 

+ r
4

-r
3

• Likewise, if H corresponds to 

ab · 
{d), then H corresponds to (e) if b > r 

2 
-r 

1 
and a+ b < r 

4
-r 

3 
+ 

r 
2 

-r 
1
• Note that a affects only the "top" of example (e) and (b) only' 

the "bottom". 

Figure 2. Ttuncatiori and rearrangement. 

Examples (a), (b), {c), {d), (e) depict the functions F, Fa, F*, F*a, 

a* 
and F .respectively. Note that {d) and (e) are related by Eq •. (13). 

Figure 3. Case l ·of Lemma I B. 

Figure 4. 

Examples {a) - (e) depict g(x.), F. (x.), g(x.)F .(x.), H. (y) and G(x. .) • 
I I I I I I I I+ I 

Here q
1 

> q
2 

and hence. q" = q
2

• Since g(q') = 0, a simultaneous 

infinitesimal truncation of (a) and (b) from above wi II have no effect on 

(c). Therefore G vanishes unless the point xi + i + q
3 

lies in (c). Thus 

(e) is the same as (c), displaced by q:r Clearly (e) is unaffected by a · 

truncation of (d) frc:>m below, since q
3 

is· unch~.mged. 

Cas«t . :t of Lemma ·lB. 

Same five examples as in Figure 3. Here g(q') = 1, so that a tnmcation of 

(a) and (b) . also trun~ates (c). Therefore (e) consists of T 
1
, for which 
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q' ~ x. . lies in (d), as well as T
2
, for which x. . + q

3 
lies in (c). 

I+ I I+ I 

Truncation of (d) at y = t results in truncation of (e) at. x. + 1 = 
I 

Figure 5. The first; five· graphs described in Note 2. 

Example (a) shows the original graph (points P 
4 

to P n-
1 

not shown). 

In (b), the variable x, has been eliminated by the use of Lemma II. In 

(c), the superfluous line P 
0

P 
2 

has been dropped. (We write m
2 

for min 

(m
2

, m
1 

+ k
1
).) In (d) we have eliminated x

2
, and in (e) we have 

.again dropped superfluous lines, putting ;3 = min (m3' m2 + k2), 

;;;n = min (kn + m
1 

> kn + k
1 

+ ;
2

). Note that if any graph con

tains a p<:~th from P to P with total length L, then all the other graphs 
o n 

contain some such path with length l <;;.. L.. 

Figure 6. Graphical treatment of the right side of (28) according to Note 3. 

The original graph for *g(a) is shown in (a). In (b) we have used Lemma II 

to eliminate the variable x.. In (c) we have replaced a by A = k.. In 
. I . I 

(d) we have dropped superfluous lines; m = min (m., .m. + -
1 

A). 
I I 
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