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A New Relaxation Framework for Quadratic

Assignment Problems based on Matrix Splitting
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January 13, 2010

Abstract

Quadratic assignment problems (QAPs) are known to be among the
hardest discrete optimization problems. Recent study shows that even
obtaining a strong lower bound for QAPs is a computational challenge.
In this paper, we first discuss how to construct new simple convex re-
laxations of QAPs based on various matrix splitting schemes. Then we
introduce the so-called symmetric mappings that can be used to derive
strong cuts for the proposed relaxation model. We show that the bounds
based on the new models are comparable to some strong bounds in the
literature. Promising experimental results based on the new relaxations
will be reported.
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1 Introduction

The standard quadratic assignment problem takes the following form

min
X∈Π

Tr
(

AXBXT
)

(1)

where A,B ∈ ℜn×n, and Π is the set of permutation matrices. This problem
was first introduced by Koopmans and Beckmann [19] for facility location. The
model covers many scenarios arising from various applications such as in chip
design [15], image processing [29], and communications [5, 26]. For more appli-
cations of QAPs, we refer to the survey papers [7, 21] where many interesting
QAPs from numerous fields are listed. Due to its broad range of applications,
the study on QAPs has caught a great amount of attention of many experts
from different fields [21]. It is known that QAPs are among the hardest discrete
optimization problems. For example, a QAP with n = 30 is typically recognized
as a great computational challenge [4].

A popular technique for finding the exact solution of the QAPs is branch and
bound (B&B) method. Crucial in a typical B&B approach is how a strong bound
can be computed at a relatively cheap cost. Various relaxations and bounds for
QAPs have been proposed in the literature. Roughly speaking, these bounds
can be categorized into two groups. The first group includes several bounds
that are not very strong but can be computed efficiently such as the well-known
Gilmore-Lawler bound (GLB)[11], the bound based on projection [13] (denoted
by PB) and the bound based on convex quadratic programming (denoted by
QPB) [3]. The second group contains strong bounds that require expensive
computation such as the bounds derived from lifted integer linear programming
[1, 14] and bounds based on SDP relaxation [31, 27].

In this paper, we are particularly interested in bounds based on SDP re-
laxations. Note that if both A and B are symmetric, by using the Kronecker-
product, we have

Tr
(

AXBXT
)

= xT(B⊗A)x = Tr
(

(B⊗A)xxT
)

, x = vec(X)

where vec(X) is obtained from X by stacking its columns into a vector of or-
der n2. Many existing SDP relaxations of QAPs are derived by relaxing the
rank-1 matrix xxT to be positive semidefinite with additional constraints on
the matrix elements. As pointed out in [21, 27], the SDP bounds are tighter
compared with bounds based on other relaxations, but usually much more ex-
pensive to compute due to the large number O(n4) of variables and constraints
in the standard SDP relaxation induced by the vectorization of the permutation
matrix X. To release such a computational challenge, Burer et al [6] adopted
an augmented Lagrangian method to solve the relaxed SDP. In [27], Rendl and
Sotirov applied the bundle method to solve the SDP relaxation of QAPs. In [18],
Klerk and Sotirov exploited the symmetry in the underlying problem to com-
pute the lower bound derived from the standard SDP relaxation. These works
improved the computational process of estimating the lower bound of QAPs
based on the underlying models, but they did not reduce the complexity of the
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relaxation model itself or had to refer to other expensive procedures to reduce
the complexity of the relaxation model. The huge number (n4) of variables
and constraints in these expensive relaxations makes it very hard to solve these
expensive relaxations for a medium size QAP with the current computational
facility.

Recently Ding and Wolkowicz [8] introduced a new SDP relaxation of QAP
based on matrix lifting, which is based on the following fact





I

X

XB



 (I XT BXT ) ≽ 0.

Since X is an assignment matrix, we can derive the following SDP relaxation

min Tr(AY) (2)




I XT ZT

X I Y

Z Y W



 ≽ 0, Z = XB;

diag (Y ) = Xdiag (B) Y e = XBe,

diag (W ) = Xdiag (B2), We = XB2e,

Xe = XT e = e, X ≥ 0.

In [8], additional cuts based on the singular value decomposition of the matrix A

are added to strengthen the relaxation. The model in [8] has only n2 constraints
and thus can be solved by using open source SDP solvers for QAPs of size
n ≤ 30, though it still remains a computational challenge for n ≥ 30. In our
recent work [24], we proposed a new SDP relaxation for special classes of QAPs
associated with the Hamming distance matrix of a hypercube or the Manhattan
distance matrix of rectangular grids. It has been observed that the lower bound
based on the new relaxation can be computed efficiently and is rather strong
compared with other existing bounds in the literature for the underlying QAPs.

The model in [24] is based on the following observation: the eigenvalues of
the matrix XBXT are independent of the permutation matrix X. Moreover,
based on the special structure of the matrices in the underlying QAPs, we can
decompose the matrix XBXT into two parts, i.e., XBXT = αE − Y where α

is a parameter defined by B, E = eeT where e ∈ ℜn is a vector whose elements
have value 1, and Y is a positive semidefinite matrix. By exploring the intrinsic
relations among Y,E and B, we have derived a simple and concise relaxation for
the underlying QAPs that can be solved efficiently by open-source SDP solvers
and the obtained lower bound has been observed to be very strong.

One limitation of the approach in [24] is that it depends heavily on the
structure of the data matrix B and thus can be applied only to special classes
of QAPs. The main purpose of the present paper is to introduce a new frame-
work of relaxing generic QAPs to convex optimization problems. The models
are based on matrix splitting, which can be viewed as a generalization of the
decomposition technique introduced in [24]. Secondly, we also introduce a new
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class of mappings, the so-called symmetric mappings, which can be used to
construct strong cuts for the relaxation models proposed in this paper.

The paper is organized as follows. In Section 2, we first introduce generic
SDP relaxation models of QAPs based on matrix splitting and then we present
several matrix splitting schemes resulting in numerous SDP relaxations of QAPs.
In Section 3, we discuss how to enhance the SDP relaxation by using strong
cuts derived by applying the so-called symmetric mapping to the underlying
QAP. A procedure to generate new convex relaxations of QAPs is introduced in
Section 4 and numerical experiments based on the new models will be reported
in Section 5. We conclude our paper with some remarks in Section 6.

A few sentences about the notation. Throughout this paper, we use upper
case letters to denote matrices and lower case letters for vectors. For a given
symmetric matrix B, diag (B) denotes the vector consisting of the diagonal
elements of B. For a vector d, diag (d) denotes the diagonal matrix whose (i, i)-
element is di. For a given matrix B, |B| denotes the matrix whose elements take
the absolute value of the corresponding element of the matrix B at the same
position, i.e.,

|B| = [|b|ij ], |b|ij = |bij | , i, j = 1, · · · , n. (3)

Boff denotes the matrix consisting of all the off-diagonal elements of B, i.e.,
Boff = B − diag (b11, b22, · · · , bnn). max(B) (or min(B)) denotes the vector
whose i-th component is the maximal element (or minimal element) in the i-th
row (denoted by Bi,:) of B. λmax(B) and λmin(B) denote the largest eigenvalue
and the smallest eigenvalue, respectively.

2 New SDP Relaxations for QAPs based on Ma-
trix Splitting

In this section, we first describe how to derive SDP relaxations of QAPs based on
various matrix splitting schemes. The section consists of three parts. In the first
subsection, we introduce two generic frameworks for deriving SDP relaxations of
QAPs based on various matrix splitting schemes. In the second part we present
two new positive semidefinite (PSD) splitting schemes. In the last subsection,
we introduce the so-called non-PSD splitting scheme, and discuss how to derive
SDP relaxations of QAPs based on non-PSD splitting scheme.

2.1 Two generic SDP relaxation models for QAPs based
on matrix splitting

As pointed out in the introduction, various matrix splitting techniques have been
widely used to solve linear systems of equations and other classes of problems.
Several splitting schemes such as Jacobi, Gauss-Seidel, and successive overre-
laxation (SOR) methods have been well studied [12]. However, these schemes
can not be directly used to derive SDP relaxations of QAPs.
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To construct new SDP relaxations of QAPs, let us recall the fact that for
any permutation matrix X and any matrix B, the matrix XBXT has the same
set of eigenvalues as that of B. Moreover, if B is positive semidefinite, so is
XBXT . Let us denote Y = XBXT . Then we can impose the constraint Y ≽ 0
if and only if B ≽ 0. This gives a straightforward way to relax the original
QAP as an SDP problem. To deal with the case when B might not be positive
semidefinite, we first introduce the following definition.

Definition 2.1. The matrix pair (B+, B−) is called a positive semidefinite
splitting of the matrix B if it satisfies the following relation

B = B+ −B−, B+, B− ≽ 0. (4)

The above definition indicates that there exist many PSD splitting schemes.
To see this, let us assume that (B+, B−) is a PSD splitting of B. Then for
any positive semidefinite matrix M , the matrix pair (B+ +M,B− +M) is also
a PSD splitting of B. From Definition 2.1 one can conclude that for a given
matrix B and a permutation matrix X, the matrix pair (B+, B−) is a PSD
splitting of B if and only if the matrix pair (Y + = XB+XT , Y − = XB−XT )
is a PSD splitting of the matrix XBXT .

If a PSD splitting of the matrix B is available, then we can derive the
following SDP relaxation

min Tr
(

A(Y+ −Y−)
)

(5)

s.t. constraints on Y +, Y − and X.

An alternative to the scheme (4) is to choose a splitting that satisfies the fol-
lowing conditions

B = B+ −B−, B− ≽ 0; XTB+X = B+, ∀X ∈ Π. (6)

Suppose that the matrix B can be split into a matrix pair (B+, B−) that satisfies
relation (6), then we obtain the following SDP relaxation

min Tr
(

A(B+ −Y−)
)

(7)

s.t. constraints on Y − and X.

In what follows we present several PSD matrix splitting schemes that can be
used in the above two models. We leave the discussion on how to specify the
constraints in the above models to later Sections.

2.2 Two new PSD matrix splitting schemes

In this subsection we introduce two new matrix splitting schemes that can help
us to construct SDP relaxations of QAPs. We start with a very specific splitting
scheme that has been used in our early work [24]. For a given matrix B, let us
consider the following splitting

B = αE −B−, B− ≽ 0, α ≥ 0. (8)

5



Such a splitting scheme is particularly attractive, because for any permutation
matrix X, we have

Tr
(

AXBXT
)

= Tr
(

AX(αE− B−)XT
)

= αTr
(

eTAe
)

− Tr
(

AXB−XT
)

.

In such a case, it suffices to focus only on the matrix B− to obtain some simple
yet strong relaxations of the underlying QAP. We also point out that in [24] we
proved that when the matrix B in the underlying QAPs is the Hamming distance
matrix of a hypercube or the Manhattan distance matrix of rectangular grids,
then it can be split in the way above with a carefully chosen parameter α defined
by the associated hypercube or the rectangular grids.

It will be interesting to investigate under what conditions, the matrix B can
be split as in (8). For this purpose, we propose to solve the following auxiliary
SDP

min t (9)

s.t. tE −B ≽ 0, t ≥ 0.

If the above SDP is feasible, then we can use α = t∗, the optimal value of the
above optimization problem, to split the matrix B into two parts. In the next
subsections we shall discuss how to cope with the scenario when the problem (9)
is infeasible.

2.2.1 Matrix splitting based on singular value decomposition

As mentioned earlier, if the problem (9) is infeasible, then we can not use the
splitting like B = αE − B− with α ≥ 0. In this subsection, we discuss another
special PSD splitting of B based on the singular value decomposition of B. Let
Q be an orthogonal matrix whose columns are the eigenvectors of the matrix B

associated with the eigenvalues {λ1, · · · , λn}, i.e., B =
∑n

i=1
λiqiq

T
i where qi is

the i-th column of Q. Let us denote

B+ =
∑

i:λi≥0

λiqiq
T
i , B− = −

∑

i:λi<0

λiqiq
T
i .

We then have

B = B+ −B−, Tr
(

B+B−
)

= 0, B+,B− ≽ 0. (10)

Similarly we call (B+, B−) the orthogonal PSD splitting ofB. From (10) one can
easily see that for any permutation matrixX, the matrix pair (XB+XT , XB−XT )
is an orthogonal PSD splitting of the matrix XBXT .

We remark that in general an orthogonal PSD splitting of form (8) may not
exist. However, as observed in [24], when B is the Hamming distance matrix of
a hypercube in a certain space, then these two splitting schemes are identical.

Let (B+, B−) be an orthogonal PSD splitting of B and let us define

Y + = XB+XT , Y − = XB−XT .
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It follows from relation (10) that

Tr
(

Y+Y−
)

= 0, Y+ ≽ 0,Y− ≽ 0.

From the above relation we obtain

∥Y +

i,: + Y −
i,: ∥ = ∥Yi,:∥, i = 1, · · · , n. (11)

where ∥·∥ is the 2-norm of a vector. The above relation can be used to construct
valid constraints that can strengthen the lower bound.

2.2.2 Matrix splitting based on Laplace operator

As pointed out earlier, there are various matrix splitting schemes to represent
a given matrix B as the difference of two positive semidefinite matrices, i.e.,
B = B+−B−. In this section we focus on a special case where B+ is a diagonal
matrix. For this, we need some basic concepts that are widely used in graph
modelling and theory. Suppose B is the adjacency matrix of some completely
connected graph (G). The so-called Laplace matrix of the graph G is defined
by

L(G) = D −B, D = diag(d1, · · · , dn), di =
n
∑

j=1

bij , i = 1, · · · , n. (12)

It is easy to see that L(G) is positive semidefinite, and e is an eigenvector
corresponding to its smallest eigenvalue 0. A well-known result in graph theory
by Fiedler [9, 10] states that the graph G is connected if and only if the second
smallest eigenvalue (denoted by α(G)) of L(G) is positive. Note that we still
have L(G) ≽ 0 and L(G)e = 0 when B is a distance matrix of some graph. In
particular, it is straightforward to prove the following result.

Theorem 2.2. Suppose that B is a distance matrix of a graph G and α(G) > 0
is the second smallest eigenvalue of the matrix L(G). For any X ∈ Π, we have
XL(G)XT − α(G)(I − 1

n
E) ≽ 0.

Note that the above theorem can be extended to the scenario that B is not
associated with a particular graph. To see this, recall that the matrix L(G) is
positive semidefinite whenever the matrix B has only nonnegative elements. We
next argue that without loss of generality, we can always assume that B does
not contain negative elements. In case B has negative elements, we can consider
a new data matrix B̄ = B+αE for sufficiently large constant α such that all the
elements of the new matrix B̄ are nonnegative. Due to the choice of B̄, it is easy
to verify that the solution sets of problem (1) with two matrices B and B̄ are
identical. Similar arguments can also be applied to matrix A. Therefore, in the
remaining part of this subsection, we assume that both matrices in problem (1)
have only nonnegative elements.

Now let us define

B+ = D,B− = L(G), Y + = XB+XT , Y − = XB−XT ,
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where D and L(G) are defined by (12). It follows from Theorem 2.2 that

Y − − α(G)(I −
1

n
E) ≽ 0. (13)

The above constraint can be added to model (5) to improve its bound.
We remark that the matrix splitting scheme based on the Laplace operator

can also be used to enhance some ILP reformulations of QAPs. For example,
when B is the adjacency matrix of a hypercube in a finite space, in [23] we had
derived a new ILP reformulation of the original QAP based on the graphical
features of the associated hypercube. Since the hypercube is completely con-
nected, we can add a simple SDP constraint to the existing ILP model. Similar
ideas can be applied to all QAPs where the matrix B is the adjacency matrix
of a connected graph.

2.3 Non-positive semi-definite (Non-PSD) matrix split-
ting

In the previous subsections, we have discussed how to represent a matrix B as
the difference of two positive semidefinite matrices. A particular case of interest
is the splitting B = αE−B− where α is a carefully chosen parameter depending
on B, and B− is positive semi-definite. Unfortunately, such a highly desirable
splitting is impossible for many QAPs unless the associate matrix B enjoys
certain properties such as the Hamming distance matrix or the Manhattan dis-
tance matrix [24]. In this subsection, we introduce a similar matrix splitting
scheme B = α(E − I)−B−, where α is a parameter to be determined and B−

is positive semidefinite. Note that such a desirable splitting scheme might not
exist for generic QAPs. In this subsection we concern mainly about QAPs that
satisfy the following condition

Assumption 2.3. At least one matrix (A or B) in the underlying QAP has
zeros on its diagonal.

It should be pointed out that the above assumption is quite reasonable and
most QAP instances from the QAP library indeed satisfy such a condition. For
convenience of discussion, in the remaining part of this section, we assume the
matrix A has zeros on its diagonal.

Under Assumption 2.3, we can easily show that for any diagonal matrix D,
one has

Tr
(

AXBXT
)

= Tr
(

AX(B−D)XT
)

, ∀X ∈ Π.

Based on the above relation, we propose to split the matrix B into the following
form

B −D = α(E − I)−B−, B− = D + α(E − I)−B ≽ 0, (14)

where D is a diagonal matrix to be found and α is a parameter. A critical
issue here is how to choose appropriate α and D so that the resulting relaxation
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can provide a strong bound. Note that there are two issues to be addressed
in such a splitting scheme. First, since the matrix E − I is invariant under
any permutation, a large value of the parameter α is desirable. On the other
hand, the diagonal matrix D should have elements as small as possible, since
otherwise, the relaxation might become too loose. Taking the above two issues
into consideration, we propose to solve the following optimization problem

min
d

−α+
n
∑

i=1

di (15)

s.t. D + α(E − I)−B ≽ 0, D = diag (d). (16)

It should be pointed out that for simplicity of the model, we can also impose
the constraint that D = βI for some parameter β > 0.

3 Symmetric Mapping and Valid Constraints of
QAPs

In this section we discuss how to find strong cuts that can strengthen the re-
laxation model (5), or in other words, to construct tighter valid constraints on
the elements of Y = XBXT . For this, we first recall the so-called symmetric
functions [22]:

Definition 3.1. A function f(v) : ℜn → ℜ is said to be symmetric if for any
permutation matrix X ∈ Π, the relation f(v) = f(Xv) holds.

There are many symmetric functions. Two simple symmetric functions are
the minimum and maximum function defined by

min(v) = min
i∈{1,··· ,n}

vi, max(v) = max
i∈{1,··· ,n}

vi.

Moreover, it is easy to see that for any univariate function h(·), the additive
function H(v) =

∑n

i=1
h(vi) is also symmetric. For example, for v ∈ ℜn, its Lp

norm

∥v∥p =

(

n
∑

i=1

|vi|
p

)
1

p

is also symmetric. For a given matrix M and a function f : ℜn → ℜ, we define
the following mapping

F(M) =











f(M1,:)
f(M2,:)

...
f(Mn,:)











(17)

where Mi,: denotes the i-th row of M . Similarly we call the mapping F(M)
symmetric if f(·) is symmetric. Now we are ready to state the first main result
in this section.
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Theorem 3.2. Suppose that the mapping F defined by (17) be symmetric. Then
for every X ∈ Π and M ∈ ℜn×n, we have

F(XMXT ) = XF(M). (18)

Proof. Since X ∈ Π, the i-th row Yi,: of the matrix Y = XMXT has the same
set of elements as the i-th row of the matrix XM . Due to the symmetry of f ,
we have

f(Yi,:) = f((XM)i,:),

which further yields the conclusion in the theorem.
Theorem 3.2 allows us to add tight constraints to the relaxation model (5).

To see this, recall the fact that Y = XBXT . Therefore, for any mapping F
defined by (17) with a symmetric function f , we have

F(Y ) = XF(B).

If we further choose f to be a convex function, e.g., f(v) = ∥v∥22, then the above
relation can be relaxed to

f(Yi,:) ≤ (XF(B))i, ∀i = 1, · · · , n.

For concave symmetric f , the relation (18) can be relaxed to

f(Yi,:) ≥ (XF(B))i, ∀i = 1, · · · , n.

It should be mentioned that in our early work [24], we have used three symmetric
functions min(v),max(v) and f(v) =

∑n

i=1
vi to construct valid constraints.

We next discuss how to add additional cuts based on the Lp norm for some
p > 1. For simplicity of discussion, let us assume that B is a matrix with some
negative elements. Let us recall the notation |B| and let Z = X |B|XT . We
then have

−zij ≤ yij ≤ zij , ∀i, j = 1, · · · , n; (19)

diag (Z) = Xdiag (|B|), Lp(Z) = XLp(|B|). (20)

On the other hand, one can easily verify the following relation:

(Xmin(|Boff |))i ≤ zij ≤ (Xmax(|B|))i, ∀i ̸= j = 1, · · · , n.

Moreover, the matrix Z−Y has the same spectrum as that of the matrix |B|−B.
Let λmax(|B| −B) and λmin(|B| −B) be the maximal and minimal eigenvalues
of |B|, respectively. Then we have

λmax(|B| −B)I − Z + Y ≽ 0, Z − Y − λmin(|B| −B)I ≽ 0. (21)

10



4 A Procedure for Constructing SDP Relaxations
of QAPs

In this section, we describe a procedure for constructing the convex relaxation
of QAPs, which combine all the ideas discussed in Sections 2 and 3 to derive the
SDP relaxation of QAPs. We remind the readers that Boff denotes the matrix
consisting of all the off-diagonal elements of B.

Constructing Convex Relaxations of QAP
S.1 Choose a splitting scheme to separate a selected matrix, i.e., B = B+ −

B− so that B− is positive semidefinite and B+ is either invariant under
permutation or positive semidefinite;

S.2 Set Y + = XB+XT , Z+ = X|B+

off |X
T , Y − = XTB−XT and Z− =

X|B−
off |X

T . Add the SDP constraints for matrices Y +, Y −, Z+ and Z−

as described in the previous sections;

S.3 Select the symmetric mappings F1,F2, · · · ,Fk;

S.4 Relax the constraints Fi(Y
+) = XFi(B

+),Fi(Z
+) = XFi(|B

+|) for all
the selected symmetric mappings, and relax similar constraints for Y −

and Z− too.

It should be pointed out that in the first step S.1 of the procedure, we might
need to solve different problems depending on the selected splitting schemes.
For example, if we choose the splitting scheme based on SVD, then we need to
perform the SVD for the selected matrix. If the PSD splitting based on Laplace
operator is chosen, then we need to find the second smallest eigenvalue of the
corresponding Laplace matrix. If we choose the non-PSD splitting described,
we then need to solve problem (15).

We next give two examples of the SDP relaxation model generated by the
above procedure. Let us choose the splitting scheme defined by (14), which
requires to solve problem (15) to find the parameter α and the diagonal matrix
D. In total four mappings based on symmetric functions including the minimum,
the maximum, the L1 norm and the square of the L2 norm are used to construct
the relaxation model. For notational convenience, we use L2 to denote the
mapping defined by (17) with the L2 norm. The resulting SDP relaxation of
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the original QAP can be written as the following:

min αeTAe− Tr
(

AY−
)

(22)

s.t. Y − −XB−XT ≽ 0; (23)

λmax(
∣

∣B−
∣

∣−B)I−Z−+Y −≽ 0, Z−−Y −−λmin(
∣

∣B−
∣

∣−B)I ≽ 0;(24)

diag (Y −) = Xdiag (B−), Y −e = XB−e; (25)

diag (Z−) = 0, Z−e = X|B−
off |e; (26)

(Xmin(B−
off ))i ≤ y−i,j ≤ (Xmax(B−

off ))i, ∀i ̸= j; (27)

−z−ij ≤ y−ij ≤ z−ij , ∀i ̸= j; (28)

(Xmin(|B−
off |))i ≤ z−ij ≤ (Xmax(|B−

off |))i, ∀i ̸= j; (29)

L2(Z
−) ≤ XL2(|B

−
off |); (30)

X ≥ 0, Xe = XT e = e. (31)

Note that the SDP constraint (23) in the above can also be simplified to

Y − ≽ 0. (32)

Correspondingly, we call the resulting SDP the simplified model in this work.
On the other hand, we can also apply some PSD splitting scheme to the matrix
Z− to get tighter SDP constraints on Z− than the relation (24). Adding these
extra SDP constraints can improve the bound to some extent. However, since
there are many different options here and it is hard to find the best choice among
all these options, we thus use only the above-described basic model.

We next present the SDP relaxation model derived from the so-called orthog-
onal PSD matrix splitting based on the SVD of the associated matrices. Let
(B+, B−) be an orthogonal PSD splitting of B and Y + = XB+XT , Y − =
XB−XT . For notational convenience, we also define B̃ = B+ + B− and
Ỹ = Y + + Y −. Again, we use the following symmetric mappings max,min,L1

and L2 defined by (17). The resulting SDP model can be described as follows:

min Tr
(

A(Y+ −Y−)
)

(33)

s.t. Y = Y + − Y −, Ỹ = Y + + Y −; (34)

Y + −XB+XT ≽ 0, Y − −XB−XT ≽ 0; (35)

diag (Y +) = Xdiag (B+), Y +e = XB+e; (36)

diag (Y −) = Xdiag (B−), Y −e = XB−e; (37)

(Xmin(B+))i ≤ y+i,j ≤ (Xmax(B+))i, ∀i ̸= j; (38)

(Xmin(B−))i ≤ y−i,j ≤ (Xmax(B−))i, ∀i ̸= j; (39)

(Xmin(B))i ≤ yij ≤ (Xmax(B))i, ∀i ̸= j; (40)

(Xmin(B̄))i ≤ ỹij ≤ (Xmax(B̄))i, ∀i ̸= j; (41)

L2(Y
+) ≤ XL2(B

+), L2(Y
−) ≤ XL2(B

−); (42)

L2(Y ) ≤ XL2(B), L2(Ỹ ) ≤ XL2(B̃); (43)

X ≥ 0, Xe = XT e = e. (44)
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It is possible to add more linear constraints similar to what we adopted in
model (22)-(31) based on non-PSD splitting. However, for simplicity of the
model, we only present the above sample model.

We note that problem (2) is precisely the so-called MSDR1 model in [8].
With a close look, one can easily verify that we have imposed tighter constraints
on the matrix argument Y than in the MSDR1 model. We therefore have the
following result.

Theorem 4.1. Let µ∗
SDP be the lower bound derived by solving the relaxation

model (22)-(31) or (33)-(44), and µ∗
MSDR1 the bound provided by solving prob-

lem (2) (the MSDR1 model in [8]). Then we have

µ∗
SDP ≥ µ∗

MSDR1.

It should be pointed out that in [8], the authors had compared the bounds
based on model (2) and its enhanced variants against some bounds constructed
from the eigenvalues of the associated matrices A and B [13, 28], and concluded
that the bounds based on (2) and its variants are stronger than the eigenvalue
based bounds in [28]. Consequently, the bound provided by either model (22)-
(31) or model (33)-(44) is also stronger than the bound in [28].

5 Numerical Experiments

In this section, we report some numerical results based on our new relaxation
models. We examine the performance of two models: the full model (35)-
(44) based on the orthogonal PSD splitting (or SVD of the associated matrix)
(denoted by F-SVD) and its simplified version (denoted by S-SVD) where we
simply require that Y +, Y − ≽ 0. In all cases, we swap the positions of A and
B in model (5) and both bounds from the corresponding two relaxations are
reported as well. Since in our early work [24] we had presented bounds for
all QAP problems from QAPLIB and other references that have a Hamming
distance matrix, in this section we will only report on results for other QAPLIB
problems. We compare our bounds with other three bounds: GLB, PB and
QPB, provided by the three cheap relaxation models respectively. We also
compare our bounds with three strong bounds in the literature including the
MSDR3 in [8], the LP and SDP relaxations (denoted by N,N+ respectively)
based on the lifting and projection technique [6]. In particular, we would like to
point out that the SDP bound N+ has been recognized as one of the strongest
bounds for QAPs in the literature [6]. We also mention that when applied to
QAPs associated with Manhattan and Hamming distance matrices, the resulting
SDP relaxations based on the orthogonal PSD splitting and non-PSD splitting
in this paper are stronger than the relaxation models introduced in [24] where
we have compared our relaxation models with other relaxation models in the
literature.

In our experiments, all the problems whose size are below 70 were solved
on a 2.67GHz Intel Core 2 Quad with 8 GB memory and the larger ones on a
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2.2GHz AMD Opteron dual Quad with 64 GB. We used Matlab R2009a, CVX
1.2 and the solver SDPT3 within CVX to solve all the problems.

In Table 1, we list the comparing results of the relaxation models introduced
in this paper with the other three strong bounds for some QAP instances whose
sizes are between 30 and 50. In all the tables in this section, we use the fat font
to highlight the strongest bound among all the bounds in comparison. In the
columns of F-SVD, we first list the relative gap computed as follows

Rgap = 1−
Bound

Optimal or best known feasible objective value
,

where the bound is provided by model (33)-(44) and the ordering of the matrices
A and B is the same as given in the QAPLIB file 1. The relative gap based on the
reversed ordering of the matrices A and B are listed in the following line. The
results for the columns of S-SVD and MSDR3 are listed in the same manner. In
the column N//N+, since the resulting bounds are independent of the ordering
of the two associated matrices, we first list the relative gap provided by model
N [6], followed by the results for model N+. The CPU time to compute these
bounds are also listed in seconds as well. It is worthwhile mentioning that among
all the tested problems, only the instances kra30a, kra30b,ste30a, ste36c, lipa80a
and lipa90b have been solved to optimality as reported in the QAP library [7].

As one can see from Table 1, in many cases, both bounds based on the F-
SVD and S-SVD models are stronger than the bounds provided by MSDR3,
while the CPU time to solve the F-SVD and S-SVD models are much less than
those for MSDR3. The bounds provided by model N+ is the strongest in many
cases. However, for some QAP instances such as Tai30b and Tai40b, if we select
the better bound based on the different ordering of the matrix pair (A,B), then
the selected bound based on the F-SVD model is better than the bound from
the N+ model. This observation further implies that it is difficult (or almost
impossible) to theoretically compare the bounds based on the relaxation models
presented in this work and other strong relaxation models in the literature. It
should be pointed out that when n = 50, it is extremely expensive to compute
the bounds based on the N and N+ models. Thus we did not report these two
bounds for Tai50b. We also mention that when we try to solve the MSDR3
model for instance tai30b, SeDuMi terminates with the message ”no sensible
solution/direction found”. Therefore, we mark it as a failed case in the table.
Finally, we point out that the CPU time used by the simplified model to obtain
a lower bound is less than half of the CPU time used by the full model, while
the gap between these two bounds is marginal. This suggests for large scale
QAP instances, we could use the simplified model to get a good bound.

In Table 2, we compare our bounds with three cheap bounds (GLB, PB and
QPB) for QAP instances whose size is above 70. Due to memory restriction, we
use only the simple model based on orthogonal PSD splitting. For sizes above

1We observed in our experiments that sometimes the SDP solver in CVX stops because of
slow progress or a large gap. In such a case, we use the procedure described in [17] (coded
by Kim-chuan Toh[30]) to find a rigorous lower bound for our relaxation model which further
yields a lower bound for the underlying QAP.
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F-SVD S-SVD MSDR3 N//N+

Prob. Rgap CPU Rgap CPU Rgap CPU Rgap CPU
kra30a 23.81% 121 23.97% 45 24.86% 1234 14.53% 10552

16.86% 141 17.07% 67 18.51% 1503 2.5% 29470
kra30b 25.43% 128 25.52% 53 26.4% 1201 16.12% 10396

17.8% 145 18.25% 66 20% 1504 4.07% 28593
ste36a 35.12% 261 35.41% 122 44.89% 2129 16.84% 32006

19.58% 256 19.96% 115 45.72% 5222 5.32% 164205
ste36c 29.31% 265 29.38% 126 36.93% 1994 14.75% 33790

18.24% 344 18.35% 193 64.72% 5393 3.92% 228351
tai30b 85.32% 220 86.06% 66 Fail Fail 77.9% 15022

14.75% 183 15.74% 67 86.69% 1223 18.05% 55151
tai35b 70.36% 348 71.75% 116 82.44% 4577 65.16% 33940

21.68% 326 22.95% 137 89.94% 3852 15% 208550
tai40b 69.25% 623 71.1% 239 75.14% 11141 74.05% 39356

14.57% 576 15.45% 193 67.75% 10631 15.18% 375776
tai50b 73.74% 1719 74.17% 643 64.31% 54838 too to

16.86% 1485 17.58% 787 61.78% 53753 expensive compute

Table 1: Selected Bounds for QAPs of size between 30 and 50.

150 we further remove the constraints on the matrix Ỹ = Y ++Y − in the model
to conserve memory. We also removed all the constraints derived from various
valid cuts except the simple constraints on the lower and upper bounds of the
elements of Y + and Y −. For problem Tai256c, we keep only the lower and
upper bound of the elements of Y . In Table 2, we use the asterisks to indicate
these instances for which the further simplified relaxation model has been used
to compute the lower bound. Since the CPU times for the GLB and PB bounds
are very small, and the QPB bounds were computed by N. Brixius on a different
platform, we do not list the CPU time in Table 2. However, we would like to
point out that in our experiments, all the bounds in the table were obtained
within twenty hours.

As one can see from Table 2 except for the two Lipa# instances where the
GLB bound is the strongest, the better bound based on S-SVD selected from
the two ordering of the associated matrices is the strongest. In particular, for
several large scale QAP instances (Tai#b), the bounds obtained in this paper
have been listed in the QAP library as the tightest lower bounds known so far.
For purpose of reference, we list all these bounds in Table 3 and compare them
with the best know feasible solutions for the corresponding QAP instances that
have not been confirmed to be solved to optimality in the literature.

We also note that there are a few failed cases in Table 2 such as the Tai#
instances. With a close look, we can find that for these instances, the two
matrices A and B have completely different structure. For example, for the
matrix B in the Tai# instances have many zero elements, and a few very large
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S-SVD Other Relaxations
Prob. Rgap GLB PB QPB

lipa80a
0.2%
2.48%

0.12% 2.44% 2.49%

lipa90b
0.3%
0.14%

0 0.34% 0.27%

sko81
18.8%
6.18%

33.75% 9.58% 8.45%

sko90
18.92%
5.87%

34.62% 8.27% 7.35%

sko100a
19.24%
5.57%

34.9% 8.31% 7.37%

sko100d
19.71%
5.85%

35.87% 8.42% 7.32%

tai80b
Fail

17.35%
89.1% 40.25% 25.02%

tai100b
Fail

20.36%
85.27% 44.05% 76.13%

tai150b*
89.83%
14.35%

87.37% 22.32% 43.73%

tai256c*
Fail

2.03%
73.22% 8.06% 8.06%

tho150*
53.51%
7.71%

49.3% 9.62% 8.28%

wil100
10.85%
3.29%

22.74% 4.47% 3.89%

Table 2: Selected bounds for QAPs of size above 70.

nonzero elements while all the off-diagonal elements of the matrix A are nonzero.
In such a case, it is reasonable to expect that the relaxation model based on
the splitting of the matrix A would give a better bound, as confirmed in our
experiments. On the other hand, since we use the standard Matlab routine
to perform the SVD and split the matrix, possibly the ill-conditioning in the
associated matrices caused some instability for the relaxation model.

On the other hand, we note that for a given relaxation model of QAPs, the
growing behavior of the lower bounds along the branching tree also plays an
important role in the B&B approach. In what follows, we examine the growing
behavior of the lower bounds based on the full non-PSD splitting model (22)
for the problem Nug12 as in [8]2. Table 4 shows in position (i, j) the bound
that results from setting Xi,j = 1 for the test problem NUG12 whose optimal

2It should be mentioned that the distance matrix B in Nug# instances have a nice sym-
metry that can be explored to help in the branching process. In [24] we have discussed how
to use such a symmetry to simplify the relaxation model and speed-up the solving process.
However, for simple illustration, we do not explore such a symmetry in this paper.
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Problem L-bound Best known Problem L-bound Best known
sko81 85371 90998 sko90 108752 115534
sko100a 143532 152002 sko100d 140821 149576
tai40b 544404660 637250948 tai50b 381474035 458821517
tai80b 676424154 818415043 tai100b 944476208 1185996137
tai150b 427329160 498896643 tai256c 43849646 44759294
tho150 7506110 8133398 wil100 264059 273038

Table 3: Selected lower bounds for unsolved QAPs.

526 525 525 526 529 538 538 529 526 525 525 526
527 533 533 527 537 547 547 537 527 533 533 527
524 527 527 524 528 538 538 528 524 527 527 524
533 523 523 533 527 535 535 527 533 523 523 533
524 537 537 524 534 555 555 534 524 537 537 524
531 528 528 531 529 543 543 529 531 528 528 531
537 524 524 537 529 525 525 529 537 524 524 537
540 525 525 540 532 527 527 532 540 525 525 540
537 525 525 537 528 533 533 528 537 525 525 537
532 534 534 532 532 547 547 532 532 534 534 532
548 529 529 548 537 522 522 537 548 529 529 548
523 526 526 523 528 536 536 528 523 526 526 523

Table 4: Bounds for Nug12 when xi,j = 1

solution has the value 578. It is worthwhile mentioning that the bound at the
root of the tree is 520.

Since the max bound is at position (5, 6). Following a similar idea as in [3],
we set X5,6 = 1 and all the other elements in the 5-th row and 6-th column are
zeros. Table 5 lists all the bounds resulting from such a setting. As one can see
from Table 5, the bounds grow very fast and many of the bounds are already
larger or close to the optimum and thus at the next level all these nodes might
be fathomed.

For example, based on Table 5, if one knows in advance that 578 is an
upper bound, then any node that already has value 578 or greater would be
fathomed. One can further branch on a node at position (2, 5) with an objective
value 577. In such a case, we have observed in our experiments that all the
resulting bounds are greater than or equal 578, which indicates all the nodes
can be fathomed. Last we point out that we also tested the growth behavior of
the simplified relaxation model and observed that the bounds of the simplified
relaxation model along the branching tree does not grow as fast as that of the
full relaxation model.
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564 569 573 566 577 0 592 578 564 569 573 566
563 574 578 573 577 0 597 584 563 574 578 573
570 571 570 562 582 0 586 573 570 571 570 562
576 564 569 572 576 0 574 570 576 564 569 572
0 0 0 0 0 0 0 0 0 0 0 0
572 564 583 597 566 0 581 588 572 564 583 597
572 569 562 570 581 0 569 574 572 569 562 570
578 574 565 572 588 0 579 577 578 574 565 572
584 576 564 568 588 0 581 569 584 576 564 568
563 571 573 583 569 0 588 582 563 571 573 583
584 567 564 581 582 0 562 575 584 567 564 581
572 568 565 557 583 0 573 565 572 568 565 557

Table 5: Bounds for Nug12 when X5,6 = 1, xi,j = 1, ∀i ̸= 5, j ̸= 6

6 Conclusions

In this paper, we have proposed a new mechanism to derive convex program-
ming relaxations for generic QAPs based on various matrix splitting schemes.
A new class of mappings, the so-called symmetric mappings, is introduced to
construct valid cuts for the resulting programming relaxation. The new con-
vex programming relaxation works in the space ℜn×n which is a substantial
improvement over the standard SDP relaxation of SDP that works in ℜn2×n2

.
Promising experiments illustrate that rather strong bounds for large scale QAPs
can be obtained. The test on Nug12 shows that the bounds of our relaxation
model grows very fast along the branching tree and thus it is very promising to
develop a B&B approach based on the new relaxation models.

There are several different ways to extend our results. First of all, there ex-
ist various matrix splitting schemes. In our experiments, we have observed that
various splitting schemes lead to different bounds. The choice of the splitting
scheme might also play an important role in the solving process of the relaxed
problem. For example, when applied to special class of QAPs associated with
certain graphs, model (22)-(31) (denoted by non-PSD) can provide stronger
bounds within less CPU time. It is of interest to investigate how to find a split-
ting scheme that can provide the strongest lower bound among all the possible
PSD splitting schemes. It is also interesting to see whether one can combine
various splitting schemes to improve the lower bound or speed up the solving
process. Secondly, given the efficiency of the model, it is possible to develop
an effective branch-bound type method for solving the underlying QAPs. More
study is needed to address these issues.

Acknowledgement: The authors would like to thank the anonymous refer-
ees and editors for their useful suggestions that lead to substantial improvements
in this revision. They are grateful to many colleagues who have generously sup-
ported this work. In particular, Nathan Brixius provided the QPB bounds of

18



some test problems in this paper, Samuel Burer allowed us to use his code to
compute the N and N+ models. Kim-chuan Toh shared his code to compute
a rigorous bound for SDP and Yichuan Ding and Henry Wolkowicz provided
the code for MSDR3. The research of this work is supported by AFOSR grant
FA9550-09-1-0098 and NSF grant DMS 09-15240 ARRA.

References

[1] W.P. Adams and T.A. Johnson. Improved Linear Programming-Based
Lower Bounds for the Quadratic Assignment Problem. In P.M. Pardalos
and H. Wolkowicz, editors, Quadratic Assignment and Related Problems,
DIMACS 25 Series in Discrete Mathematics and Theoretical Computer
Science, pages 43–75, 1994.

[2] W.P. Adams and H.D. Sherali. A tight linearization and an algorithm for
zero-one quadrtic programming problems. Management Science, 32, 1274–
1290, 1986.

[3] K.M. Anstreicher and N.W. Brixius, A new bound for the quadratic as-
signment problem based on convex quadratic programming. Mathematical
Programming, 80, 341–357, 2001.

[4] K.M. Anstreicher, N.W. Brixius, J.-P. Goux, and J.Linderoth. Solving large
quadratic assignment problems on computational grids. Mathematical Pro-
gramming, 91, 563–588, 2002.

[5] G. Ben-David and D. Malah. Bounds on the performance of vector-
quantizers under channel errors. IEEE Transactions on Information The-
ory, 51(6), 2227–2235, 2005.

[6] S. Burer and D. Vandenbussche. Solving lift-and-project relaxations of bi-
nary integer programs. SIAM Journal on Optimization, 16, 726–750, 2006.

[7] R.E. Burkard, E. ela, S.E. Karisch and F. Rendl. QAPLIB-A quadratic
assignment problem library. J. Global Optimization, 10, 391–403, 1997.

[8] Y. Ding and H. Wolkowicz. A matrix-lifting semidefinite relaxation for the
quadratic assignment problem. Technical report CORR 06-22, University
of Waterloo, Ontario, Canada, October, 2006.

[9] M. Fiedler. Algebraic connectivity of Graphs. Czechoslovak Mathematical
Journal, 23(98), 1973.

[10] M. Fiedler. Laplacian of graphs and algebraic connectivity. Combinatorics
and Graph Theory, 25, 57–70, 1989.

[11] P.C. Gilmore. Optimal and suboptimal algorithms for the quadratic as-
signment problem. SIAM Journal on Applied Mathematics, 10, 305–313,
1962.

19



[12] Golub, G. and Loan, C. V. (1996) Matix Computation. John Hopkins Uni-
versity Press.

[13] S.W. HADLEY, F. RENDL and H. WOLKOWICZ. A new lower bound
via projection for the quadratic assignment problem. Mathematics of Op-
erations Research, 17, 727–739, 1992.

[14] Hahn, P. and Grant, T. Lower bounds for the quadratic assignment problem
based upon a dual formulation. Operations Research, 46, 912–922, 1998.

[15] M. Hannan and J.M. Kurtzberg. Placement techniques. In Design Automa-
tion of Digital Systems: Theory and Techniques, M.A. Breuer Ed., vol(1),
Prentice-hall: Englewood Cliffs, 213–282, 1972.

[16] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge Uni-
versity Press,1991.

[17] C. Jansson and C. Keil, Rigorous error bounds for the optimal value in
semidefinite programming. SIAM J. Numerical Analysis, 46, 188–200, 2007.

[18] E. de Klerk and R. Sotirov. Exploring group summetry in semidefinite pro-
gramming relaxations of the quadratic assignment problem. Mathematical
Programming, 122(2), 225–246, 2010.

[19] T. Koopmans and M. Beckmann. Assignment problems and the location of
economic activities, Econometrica, 25, 53–76, 1957.

[20] E. Lawler. The quadratic assignment problem. Management Science, 9,
586–599, 1963.

[21] E.M. Loiola, N.M. Maia de Abreu, P.O. Boaventura-Netto, P. Hahn, and
T. Querido. A survey for the quadratic assignment problem. European J.
Oper. Res., 176(2), 657–690, 2007.

[22] I.G. Macdonald. Symmetric functions and Hall polynomials. The Clarendon
Press, Oxford University Press, New York, 1995.

[23] H. Mittelmann, J. Peng and X. Wu. Graph Modeling for Quadratic As-
signment Problem Associated with the Hypercube. Technical Report. Uni-
versity of Illinois at Urbana-Champaign, 2007. http://www.optimization-
online.org/DB HTML/2007/06/1674.html.

[24] H. Mittelmann and J. Peng. Estimating Bounds for Quadratic Assign-
ment Problems Associated with Hamming and Manhattan Distance Ma-
trices based on Semidefinite Programming. Technical Report. Univer-
sity of Illinois at Urbana-Champaign, 2008. http://www.optimization-
online.org/DB HTML/2008/05/1980.html.

[25] C.E. Nugent, T.E. Vollman, and J. Ruml. An experimental comparison of
techniques for the assignment of facilities to locations. Operations Research,
16, 150–173, 1968.

20



[26] L.C. Potter and D.M. Chiang, Minimax nonredundant channel coding.
IEEE Transactions on Communications, vol. 43, no. 2/3/4, 804–811, Febru-
ary/March/April 1995.

[27] F. Rendl and R. Sotirov. Bounds for the quadrtic assignment problem using
bundle method. Mathematical Programming, Series B, 109(2-3), 505–524,
2007.

[28] F. Rendl and H. Wolkowicz. Applications of pasrametric programming and
eigenvalue maximization to the quadratic assignment problem. Mathemat-
ical Programming, Series A, 53(1), 63–78,1992.

[29] E.D. Taillard. Comparison of iterative searches for the quadratic assingn-
ment problem. Location Science, 3, 87–105, 1995.

[30] K.C. Toh. Private communication. 2009.

[31] Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite program-
ming relaxations for the quadratic assignment problem. J. Combinatorial
Optimization, 2, 71–109, 1998.

21




