
A new Reliable Numerical Algorithm Based on the First Kind of
Bessel Functions to Solve Prandtl–Blasius Laminar Viscous Flow
over a Semi-Infinite Flat Plate

Kourosh Parand, Mehran Nikarya, Jamal Amani Rad, and Fatemeh Baharifard

Department of Computer Sciences, Faculty of Mathematical Sciences, Shahid Beheshti

University, Evin,Tehran 19839, Iran

Reprint requests to K. P.; E-mail: k parand@sbu.ac.ir

Z. Naturforsch. 67a, 665 – 673 (2012) / DOI: 10.5560/ZNA.2012-0065

Received May 10, 2011 / revised June 11, 2011 / published online November 14, 2012

In this paper, a new numerical algorithm is introduced to solve the Blasius equation, which is
a third-order nonlinear ordinary differential equation arising in the problem of two-dimensional
steady state laminar viscous flow over a semi-infinite flat plate. The proposed approach is based on
the first kind of Bessel functions collocation method. The first kind of Bessel function is an infinite se-
ries, defined on R and is convergent for any x ∈R. In this work, we solve the problem on semi-infinite
domain without any domain truncation, variable transformation basis functions or transformation of
the domain of the problem to a finite domain. This method reduces the solution of a nonlinear prob-
lem to the solution of a system of nonlinear algebraic equations. To illustrate the reliability of this
method, we compare the numerical results of the present method with some well-known results in
order to show the applicability and efficiency of our method.
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1. Introduction

Many problems arising in science and engineering

are defined in unbounded domains. While the spec-

tral approximations for ordinary differential equations

(ODEs) in bounded domains have achieved great suc-

cess and popularity in recent years, spectral approx-

imations for ODEs in unbounded domains have only

received limited attention. Several spectral methods for

treating unbounded domains problems have been pro-

posed by different researchers: (i) Direct approaches,

using functions such as sinc, Hermite and Laguerre

polynomials that are orthogonal over the unbounded

domains, were investigated by Parand et al. [1], Maday

et al. [2], Funaro [3], Funaro and Kavian [4], and

Guo and Shen [5 – 7]. (ii) Indirect approaches, e.g.

Guo [8, 9], proposed a method that proceeds by map-

ping the original problem in an unbounded domain to

a problem in a bounded domain, and then using suit-

able Jacobi polynomials to approximate the resulting

problems. (iii) Another class of spectral methods is

based on rational approximations. For example, Chris-

tov [10] and Boyd [11] developed some spectral meth-

ods on unbounded intervals by using mutually orthog-

onal systems of rational functions. Boyd [12] defined

a new spectral basis, named rational Chebyshev func-

tions, on the semi-infinite interval by mapping the

Chebyshev polynomials. Recently, Gou et al. [13] pro-

posed and analyzed a set of Legendre rational func-

tions which are mutually orthogonal in Lχ
2(0,∞). (iv)

A further approach consists of replacing the infinite do-

main with [−L,L] and the semi-infinite interval with

[0,L] by choosing L sufficiently large. This method is

named domain truncation [14].

Boyd [15] applied pseudo-spectral methods on

a semi-infinite interval and compared rational Cheby-

shev, Laguerre, and mapped Fourier sine method.

Moreover, many researchers have investigated (scruti-

nized) on spectral methods, for example [16 – 19].

In this paper, we attempt to introduce a new method,

based on Bessel functions for solving unbounded prob-

lems. Previously, Sahin et al. [20, 21] have used the
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Bessel polynomials collocation for solving the general

linear Fredholm integro-differential-difference equa-

tion and systems of linear Voltera integro equations,

respectively. The Bessel polynomials are obtained from

truncated series of the first kind of Bessel functions,

J0(x), that will be described in Section 2. But in

this paper, we apply the Bessel functions collocation

method for solving the Blasius equation which is one

of the basic equations of fluid dynamics. This equation

describes the velocity profile of the fluid in the bound-

ary layer theory on a half-infinite interval [22, 23].

The remainder of this paper is organized as follows:

In Section 2, we describe the Blasius equation and

transform it to a nonlinear ordinary differential equa-

tion and then explain some methods previously used to

solve this equation. The basic information of the Bessel

function and its properties is presented in Section 3. In

Section 4, we describe how to approximate the func-

tions, as well as the collocation algorithm. In Section

5, we apply the proposed algorithm to solve the Blasius

equation and demonstrate the accuracy of our method.

Finally in the last Section, we give concluding remarks.

2. The Blasius Problem

Boundary layer flow over a flat plate is governed by

the continuity and the Navier–Stokes equations. The

steady, laminar, incompressible, and two-dimensional

boundary layer equations for continuity and momen-

tum can be expressed by the following boundary value

problem [24 – 26]:

∂u

∂x
+

∂v

∂y
= 0 (continuity) , (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂ 2u

∂y2
(momentum) . (2)

The boundary conditions for the problem of flat plate

are [26]:

u(x,0) = v(x,0) = 0 , u(0,y) = U∞ ,

u(x,∞) = U∞ .
(3)

Here, u and v are the velocity components in x and y di-

rections, ν is the kinematic viscosity, and U∞ is a con-

stant free stream velocity.

The goal in the problem of flat plate is the shear at

the plate, ∂u
∂y

(x,0). Subsequently, the viscous drag on

the plate can be calculated easily [26]. To deal with

(1) and (2), it is convenient to use the following equa-

tions to simplify them to an ordinary differential equa-

tion [25, 27]:

η = y

√
U∞

vx
, (4)

ϕ = y
√

U∞vx f (η) , (5)

where f is a stream function such that u = ∂ϕ
∂y

and v =
∂ϕ
∂x

and can be expressed as [28, 29]

u =
∂ϕ

∂y
= U∞ f ′ , (6)

v = −∂ϕ

∂x
=

1

2

√
U∞v

x

(
η f ′− f

)
. (7)

So, by using the above formulas, the equation of con-

tinuity is satisfied identically and the second boundary

layer flow equation reduces to [25, 30]

f ′′′ +
1

2
f f ′′ = 0 , (8)

which is Blasius’s differential equation.

The boundary conditions (3) collapse to the three

conditions

f (0) = f ′(0) = 0 , f ′(∞) = 1 , (9)

which are sufficient for the third-order equation (8).

The shear at the plate is given by [26]

∂u

∂y
(x,0) = x−

1
2 f ′′(0) . (10)

Therefore computation of f ′′(0) is important in this

problem.

In 1908, Blasius [31] solved the above equation us-

ing a series expansion method. He found the following

solution for the problem:

f (η) =
∞

∑
k=0

(
−1

2

)k
Akσ k+1

(3k +2)!
η3k+2 , (11)

where A0 = A1 = 1 and

Ak =
k−1

∑
r=0

(
3k−1

3r

)
ArAk−r−1 , k ≥ 2 .

In (11), σ denotes the unknown f ′′(0). Blasius eval-

uated σ by demonstrating another approximation of
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f (η) at large η . He then obtained the numerical result

σ = 0.332 by means of matching two different approx-

imations at a proper point [27]. Later, Howarth [32]

solved the Blasius problem numerically and found

f ′′(0) = 0.332057. Asaithambi [33] found this num-

ber correct to nine decimal positions as 0.332057336.

In 2008, Boyd [34] reported 0.33205733621519630 as

f ′′(0) in the Blasius equation.

2.1. Proposed Methods for Solving Blasius Equations

In recent years, different methods have been used to

solve the Blasius equation. Liao [35, 36] applied the

homotopy analysis method (HAM) to give a totally an-

alytical solution of the Blasius equation. He [37] ob-

tained an analytic solution which is valid in the whole

region by applying variational iteration method. Yu and

Chen [38] solved the equation using the differential

transformation method. Lin [39] proposed the param-

eter iteration method and obtained an approximate an-

alytical solution of the Blasius equation. Wang [40]

employed the Adomian decomposition method (ADM)

to solve the famous Blasius equation numerically.

Hashim [41] corrected the numerical solution of Wang

and presented an improved numerical solution using

the ADM Padé approach. Cortell [42] applied the

Runge-Kutta algorithm for the high-order initial value

problems; the classical Blasius flat-plate equation is

one of them. Wazwaz [43] applied the modified de-

composition method of Adomian for the analytical

treatment of the Blasius equation and combined its so-

lution with the diagonal Padé approximation to handle

the boundary condition at infinity. Later, Wazwaz [44]

combined the variational iteration method with the

diagonal Padé approximation and obtained the solu-

tion of Blasius equation. Abbasbandy [45] proposed

Adomian’s decomposition method to solve the Bla-

sius equation and compared his results with the homo-

topy perturbation method (HPM) and Howarth’s nu-

merical solution [24]. The authors of [46] proposed

a simple approach using the homotopy analysis method

(HAM) to obtain a totally analytical solution of the vis-

cous fluid flow over a flat plate. They showed that the

homotopy perturbation method is only a special case

of the homotopy analysis method. Tajvidi et al. [47]

used the modified rational Legendre tau method to

solve the Blasius equation. Authors of [48 – 50] solved

the Blasius equation using the collocation and tau

methods based on spectral methods. Recently, authors

of [51] solved this equation with the two-grid quasi-

linearization method.

3. Bessel Functions and their Properties

In this section, we describe the first kind of Bessel

functions and their properties which will be used

to construct the Bessel functions collocation (BFC)

method.

The Bessel equation of order n reads [52, 53]

x2y′′(x)+ xy′(x)+(x2 −n2)y(x) = 0

for x ∈ (−∞,∞) , n ∈ R .
(12)

A solution of this equation is [53]

∞

∑
r=0

a0
(−1)rΓ (n+1)

22rr!Γ (n+ r +1)

( x

2

)2r+n

for any value of a0. Γ (λ ) is the gamma function de-

fined as

Γ (λ ) =
∫ ∞

0
e−ttλ−1 dt .

Let us choose a0 = 1
2nΓ (n+1) . Accordingly, we obtain

the solution which we shall denote by Jn(x) and call it

the Bessel function of the first kind of order n:

Jn(x) =
∞

∑
r=0

(−1)r

r!Γ (n+ r +1)

( x

2

)2r+n

. (13)

Series (13) is convergent for all −∞ < x < ∞. Now,

we express some properties of the first kind of Bessel

functions. Some recursive relations of derivation are as

follows [53]:

d

dx
(xnJn(x)) = xnJn−1(x) ,

J′n(x) = Jn−1(x)−
n

x
Jn(x) ,

J′n(x) =
n

x
Jn(x)− Jn+1(x) .

The integration of the first kind of Bessel functions is

defined by the relation [53]

Jn(x) =
1

π

∫ π

0
cos(nφ − xsin(φ))dφ .

The generating function for Jn(x) is given by [53]

exp

(
x

2

(
t − 1

t

))
=

∞

∑
n=−∞

tnJn(x) .
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The behaviour of Bessel functions for small and large

arguments are [54]

Jn(x) ≈
1

Γ (n+1)

( x

2

)n

for 0 < x ≪
√

n−1 ,

Jn(x) ≈
√

2

πx
cos

(
x− nπ

2
− π

4

)
for x ≫

∣∣∣∣n
2 − 1

4

∣∣∣∣ .

4. Function Approximation

Suppose that H = L2(Γ ), where Γ = (−∞,+∞), let

{J0(x),J1(x), ...,Jn(x)} ⊂ H be the set of Bessel func-

tions and suppose that

J = span{J0(x),J1(x), . . . ,Jn(x)}. (14)

Since H is a Hilbert space and J is the finite-

dimensional subspace, dim J = n + 1, so J is a closed

subspace of H, and therefore J is a complete subspace

of H [55]. Let f be an arbitrary element in H, thus f

has a unique best approximation from J, say ĵ ∈ J, that

is [55]

∃ ĵ ∈ J; ∀ j ∈ J, ‖ f − ĵ‖ ≤ ‖ f − j‖ , (15)

where ‖ f‖ = 〈 f , f 〉1/2 and 〈 f ,g〉 =
∫ ∞
−∞ f (t)g(t)dt.

Definition 1. (Direct sum (⊕)): A vector space H is

said to be the direct sum of two subspaces Y and Z of

H, written as [55]

H = Y ⊕Z , (16)

if each h ∈H has a unique representation

h = y+ z . (17)

Then Z is called an algebraic complement of Y in H
and vice versa, and Y,Z is called a complementary pair

of subspaces in H [55].

Definition 2. Let H be an Hilbert space and Y be any

closed subspace of H. Y⊥ is defined the orthogonal

complement [55]:

Y⊥ = {z ∈H| z ⊥ Y} . (18)

Lemma 1. Let Y be any closed subspace of a Hilbert

space H. Then

H = Y ⊕Y⊥ . (19)

Proof. See [55].

Now, by using (14) and (15), we can say

H = J⊕Z , (20)

where Z = J⊥, so that for each x ∈H,

h = j + z , (21)

where z = h − j ⊥ j, hence 〈h − j, j〉 = 0. We have

j ∈ J, therefore [55]

j =
n

∑
k=0

ak Jk(x) , (22)

and h− j ⊥ j gives the n conditions

〈Jm(x),h− j〉 =
〈

Jm(x),h−
n

∑
k=0

ak Jk(x)

〉
= 0 ,

(23)

that is

〈Jm(x),h〉 =
n

∑
k=0

āk〈Jm(x),Jk(x)〉,

m = 0,1, . . . ,n .

(24)

This is a nonhomogeneous system of n+1 linear equa-

tions with n+1 unknown coefficients {āk}n
k=0. The de-

terminant of the coefficients is [55]

G(J0(x),J1(x), . . . ,Jn(x)) = (25)∣∣∣∣∣∣∣∣∣

〈J0(x),J0(x)〉 〈J0(x),J1(x)〉 . . . 〈J0(x),Jn(x)〉
〈J1(x),J0(x)〉 〈J1(x),J1(x)〉 . . . 〈J1(x),Jn(x)〉

...
...

. . .
...

〈Jn(x),J0(x)〉 〈Jn(x),J1(x)〉 . . . 〈Jn(x),Jn(x)〉

∣∣∣∣∣∣∣∣∣

.

Since J exists and is unique, that system has

a unique solution. Hence G(J0(x),J1(x), . . . ,Jn(x))
must be different from 0. The determinant

G(J0(x),J1(x), . . . ,Jn(x)) is called the Gram de-

terminant of J0(x),J1(x), . . . ,Jn(x).

Theorem 1. Suppose that H is a Hilbert space and

Y a closed subspace of H such that dimY < ∞, and

{y1,y2, . . . ,yn} is any basis for Y . Let h be an arbitrary

element in H and y0 be the unique best approximation

to h from Y . Then [55]

‖h− y0‖2 =
G(h,y1,y2, . . . ,yn)

G(y1,y2, . . . ,yn)
, (26)

Proof. See [55].
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4.1. Collocation Algorithm

To obtain the spectral coefficients {ai}n
i=0 in series

(22) and an approach of u(x) via (22), we employ the

collocation algorithm. In this algorithm, to solve equa-

tion Lu(x) = f (x), where L is the operator of the dif-

ferential or integral equation, we do:

BEGIN

1. Construct the following series from (22)

uN(x) =
N

∑
i=0

aiJi(x) .

2. Insert the constructed series of Step 1 into equation

Lu = f (x).
3. Construct the residual function as

Res(x;a0,a1, . . . ,an) = LuN(x)− f (x). (27)

Now we have N + 1 unknown {an}N
n=0. To obtain

this unknown coefficients, we need N +1 equations.

4. By choice of N +1 points xi, i = 0,1, . . . ,N, as N +1

in the domain of the problem as collocation points

and substituting them in Res(x; a0,a1, . . . ,an) =
LuN(x) − f (x), we construct a system containing

N +1 equations.

5. Solve this system of equations by Newton’s method

and gain the an, n = 0,1, . . . ,N.

END.

In Step 5, it is worth to note that solving a sys-

tem of nonlinear equations even by applying Newton’s

method is very common. The main difficulty with such

a system is to find out how we can choose an initial

guess to handle the method; in other words, how many

solutions the system of nonlinear equations admits. We

think the best way to discover the proper initial guess

(or initial guesses) is to solve the system analytically

for a very small N (by means of symbolic software

programs such as Mathematica or Maple) and, then,

we can find proper initial guesses and, particularly, the

multiplicity of solutions of such system. This action

has been done by starting from proper initial guesses

with the maximum number of ten iterations.

The collocation method has been used increasingly

for solving differential or integro equations [1, 48, 49].

Also it is very useful in providing highly accurate so-

lutions for differential equations. This method is easy

to implement and yields the desired accuracy. This

method reduces the solution of a nonlinear problem to

the solution of a system of nonlinear algebraic equa-

tions. The important concerns of the collocation ap-

proach are the selection of the basis functions and col-

location points. The basis functions have three differ-

ent properties: easy computation, rapid convergence,

and completeness, which means that any solution can

be represented to arbitrary high accuracy by taking

the truncation N to be sufficiently large. We used the

first kind of Bessel functions as the basis functions and

roots of shifted (rational) Chebyshev function into the

domain of u(x) as collocation points. For more expla-

nations about Chebyshev functions, see [14].

5. Solving the Blasius Equation

In this section, we apply the Bessel functions collo-

cation (BFC) algorithm described in Section 4 to solve

the Blasius equation (8), subject to the conditions (9).

Since for any n, Jn(η) are differentiable at the point

η = 0, we can simply satisfy the conditions of Blasius

equation (9). Now, since J0(0) = 1 and d
dη J1(0) = 1,

we discard both of them. Add
η2

η+ℓ to the series (22),

where ℓ is constant. Thus we approximate f (η) in (8)

with boundary conditions (9) via f̂N as follows:

f̂N(η) =
η2

η + ℓ
+

n+2

∑
k=2

ak Jk(η) , (28)

hence f̂N(0) = 0, d
dη f̂N(0) = 0, and d

dη f̂N(η) = 1

when η tends to infinity, therefore, the third boundary

condition (9) is satisfied. By constructing Res(η) via

(8) as

Res(η) =
d3

dη3
f̂N(η)+

1

2
f̂N(η)

d2

dη2
f̂N(η) , (29)

we can apply the BFC algorithm of Section 4 to obtain

the spectral coefficients as follows:

BEGIN

1. Constructing the series (28).

2. Inserting the constructed series of Step 1 into equa-

tion (8).

Table 1. Comparison of the convergence rate and value of
f ′′(0) between BFC method and results of Liao [36] and
Parand and Taghavi [48].

N ℓ Present method [36] [48]

10 4.2 0.33205788991564789 0.32992 0.33205823

15 4.1 0.33205733482212538 0.33164 0.33205724

20 4.2 0.33205733621516374 0.33204 0.33205732

25 3.87 0.33205733621519542 0.33206 0.33205733

Boyd [34] 0.33205733621519630
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Table 2. Comparison between values of the obtained f (η) by the present method with N =
25, ℓ = 3.87, and results of [32, 42, 48]; representation of the residual function.

η Present method [32] [42] [48] Residual

0.0 0.000000000000 0.00000 0.00000 0.0000000 0

1.0 0.165571725847 0.16557 0.16557 0.1655724 1.283465 ·10−10

2.0 0.650024370165 0.65003 0.65003 0.6500351 7.399958 ·10−10

3.0 1.396808231342 1.39682 1.39682 1.3968223 2.021690 ·10−11

4.0 2.305746419194 2.30576 2.30576 2.3057618 6.908179 ·10−10

5.0 3.283273666139 3.28329 3.28330 3.2832910 6.520093 ·10−10

6.0 4.279620923737 4.27964 4.27965 4.2796435 1.027459 ·10−10

7.0 5.279238812489 5.27926 5.27927 5.2792684 3.391439 ·10−10

8.0 6.279213433045 6.27923 6.27923 6.2792336 5.706506 ·10−09

3. Constructing the residual function (29):

Now we have N + 1 unknown {an}N
n=0. To obtain

these unknown coefficients, we need N + 1 equa-

tions.

4. Choosing roots of order N + 1 rational Chebyshev

functions as N +1 collocation points.

5. Substituting the collocation points in

Res(η ; a0,a1, . . . ,an) = 0, and constructing

a system containing N +1 equations.

6. Solving this system of equations by Newton’s

method and gaining the an, n = 0,1, . . . ,N.

END.

Now, we have an approximation function f̂N(η) for

f (η).

Fig. 1. Graph of the approximation function for f (η) of Bla-
sius equation solution for N = 25, ℓ = 3.87.

As mentioned before, in the Blasius equation, f ′′(0)
plays an important role, and Asaithambi [33] found

the value of this point to fourteen decimal positions as

0.33205733621519. In Table 1, we represent values of

f ′′(0) by different orders of approximation in the BFC

method and compare the convergency of them with the

results of Liao [36] and Parand and Taghavi [48]. Tak-

ing this table into account, the proposed method leads

to a more accurate solution with high convergence by

increasing N. The values of f , f ′, and f ′′ of the Blasius

equation obtained by the BFC method with N = 25 are

Table 3. Comparison between values of obtained f ′(η) by
the present method with N = 25, ℓ = 3.87, and results of [32,
42, 48].

η Present method [32] [42] [48]

0.0 0.000000000000 0.00000 0.00000 0.0000000

1.0 0.329780031374 0.32979 0.32978 0.3297963

2.0 0.629765736721 0.62977 0.62977 0.6297763

3.0 0.846044443911 0.84605 0.84605 0.8460595

4.0 0.955518230061 0.95552 0.95552 0.9555236

5.0 0.991541900402 0.99155 0.99155 0.9915546

6.0 0.998972872665 0.99898 0.99898 0.9989817

7.0 0.999921604384 0.99992 0.99993 0.9999236

8.0 0.999996274776 1.00000 1.00000 1.0000000

Table 4. Comparison between values of the obtained f ′′(η)
by the present method with N = 25, ℓ = 3.87, and results
of [32, 42, 48].

η Present method [32] [42] [48]

0.0 0.332057336215 0.33206 0.33206 0.3320571

1.0 0.323007116854 0.32301 0.32301 0.3230136

2.0 0.266751545647 0.26675 0.26675 0.2667557

3.0 0.161360319408 0.16136 0.16136 0.1613637

4.0 0.064234120940 0.06424 0.06423 0.0642411

5.0 0.015906798564 0.01591 0.01591 0.0159134

6.0 0.002402039794 0.00240 0.00240 0.0024016

7.0 0.000220169901 0.00022 0.00022 0.0002234

8.0 0.000012241135 0.00001 0.00001 0.0000100
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Fig. 2. Graph of the approximation of d
dη f of Blasius equa-

tion solution for N = 25, ℓ = 3.87.

Fig. 3. Graph of the approximation of d2

dη2 f of Blasius equa-

tion solution for N = 25, ℓ = 3.87.

shown in Tables 2 – 4, respectively, and are compared

with some established results [32, 42, 48]. The plots

of the Blasius functions f (η), f ′(η), and f ′′(η), are

shown in Figures 1 – 3. Furthermore, in order to assess

the rate of accuracy of our method, we plot the loga-

rithmic graph of the residual function for solving Bla-

sius equation by N = 25 in Figure 4. Also, to show the

Fig. 4. Logarithmic graph of the residual function of BFC
method to solve Blasius equation for N = 25, ℓ = 3.87.

Fig. 5. Logarithmic graph of ‖Res(η)‖2
2 of BFC method to

solve Blasius equation for ℓ = 3.87 and several N.

convergence of proposed method, we present the graph

of ‖Res‖2
2 for several N in Figure 5. This graph shows

that, by increasing N (number of collocation points)

the residual function tends to zero, and shows the con-

vergence rate of the proposed method.

6. Conclusions

In this paper, we have applied Bessel functions col-

location method for solving the Blasius equation which

occurs in the study of laminar boundary-layer prob-
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lem for Newtonian fluids. In the Blasius equation, the

second derivative at zero is an important point of the

function, so we have computed f ′′(0) and have com-

pared it with other methods. The results of the compar-

ison in Table 1 show that the convergence rate of our

method is better than of other methods. For N = 25, we

achieve fourteen decimal positions for f ′′(0), whereas

in other methods eight decimal positions are obtained

for N = 30. In Table 2-4, we present the values of

f (η), f ′(η), and f ′′(η) more accurate. Also, the ac-

curacy and convergence of this method is confirmed

by the figures of the residual function and ‖Res(η)‖2
2

of this method. Figure 5 shows that by increasing N the

error tends to zero. The given results suggest that us-

ing the present approach leads to acceptable results in

comparison with different approximation methods. Fi-

nally, we note that the proposed method can be applied

to a large class of nonlinear and linear partial differ-

ential equations [56 – 58], ordinary differential equa-

tions [59], and integral equations [60, 61] in finite or

infinite domain.
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