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Existing theory for multivariate extreme values focuses upon characterizations of the distributional tails
when all components of a random vector, standardized to identical margins, grow at the same rate. In this
paper, we consider the effect of allowing the components to grow at different rates, and characterize the link
between these marginal growth rates and the multivariate tail probability decay rate. Our approach leads to a
whole class of univariate regular variation conditions, in place of the single but multivariate regular variation
conditions that underpin the current theories. These conditions are indexed by a homogeneous function and
an angular dependence function, which, for asymptotically independent random vectors, mirror the role
played by the exponent measure and Pickands’ dependence function in classical multivariate extremes. We
additionally offer an inferential approach to joint survivor probability estimation. The key feature of our
methodology is that extreme set probabilities can be estimated by extrapolating upon rays emanating from
the origin when the margins of the variables are exponential. This offers an appreciable improvement over
existing techniques where extrapolation in exponential margins is upon lines parallel to the diagonal.

Keywords: asymptotic independence; coefficient of tail dependence; multivariate extreme value theory;
Pickands’ dependence function; regular variation

1. Introduction

The concept of regular variation underpins multivariate extreme value theory. However, in recent
years the understanding of multivariate extremes has broadened and a number of different regular
variation conditions have emerged as useful tools for analyzing extremal dependence. Classical
multivariate extreme value theory (e.g., de Haan and de Ronde [3]) provides a helpful character-
ization of the limit distribution of suitably normalized random vectors when all components of
the vector are asymptotically dependent. We focus initially on the bivariate case. For any bivari-
ate random vector (X,Y ) with marginal distribution functions FX,FY , the notion of asymptotic
dependence is defined through the limit

χ := lim
u→1

P
{
FX(X) > u|FY (Y ) > u

}
. (1.1)

The cases χ > 0 and χ = 0 define, respectively, asymptotic dependence and asymptotic in-
dependence of the vector. It is convenient to standardize the margins, which is theoretically
achieved by the probability integral transform; we assume continuous marginal distribution func-
tions. Let (XP ,YP ) be a random vector with standard Pareto marginal distributions, that is,
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P(XP > x) = P(YP > x) = 1/x, x ≥ 1. The classical bivariate extreme value paradigm is char-
acterized by the following convergence of measures. We say that (XP ,YP ) is in the domain of
attraction of a bivariate extreme value distribution if there exists a measure μ such that for every
relatively compact Borel set B ⊂ [0,∞]2 \ {0},

lim
n→∞nP

{
(XP /n,YP /n) ∈ B

} = μ(B), (1.2)

where μ is non-degenerate, and μ(∂B) = 0. Equivalently one can write nP{(XP /n,YP /n) ∈
·} v→ μ(·), the symbol

v→ denoting vague convergence of measures (see, e.g., Resnick [22]). The
limit measure μ is homogeneous of order −1 and has mass on the subcone (0,∞]2 ⊂ [0,∞]2 \
{0} only if the vector exhibits asymptotic dependence. Under asymptotic independence, the mass
of μ concentrates upon the axes of [0,∞]2 \ {0}; equivalently the limiting joint distribution of
normalized componentwise maxima of (XP ,YP ) corresponds to independence.

From a practical perspective, the major shortcoming of representation (1.2) is that variables can
exhibit marked dependence at all observable levels, yet be asymptotically independent. Conse-
quently, in this case, the use of limit models of the form (1.2) for the dependence is inappropriate
for extrapolation from the observed data to more extreme levels.

Ledford and Tawn [13,14] addressed this problem by constructing a theory for the rate of decay
of the dependence under asymptotic independence. They introduced the concept of the coefficient
of tail dependence, η ∈ (0,1], which characterizes the order of decay of P{(XP /n,YP /n) ∈
B} for any Borel set B ⊂ (0,∞]2. The theory has since been elaborated on in the works of
Resnick and co-authors (Resnick [20], Maulik and Resnick [15], Heffernan and Resnick [8]),
under the label hidden regular variation. Under asymptotic independence, P{(XP /n,YP /n) ∈
B} = o(n−1) for B ⊂ (0,∞]2. This rate can be adjusted to O(n−1) by altering the normalizations.
The random vector (XP ,YP ) possesses hidden regular variation if both limit (1.2) holds, and in
addition on (0,∞]2,

nP
{(

XP /c(n),YP /c(n)
) ∈ ·} v→ ν(·) (1.3)

with ν non-degenerate, and c(n) = o(n), n → ∞. In representation (1.3), the sequence c(n), is a
regularly varying function of n with index η, whilst the limit measure ν is homogeneous of order
−1/η (Resnick [20,22]).

Ledford and Tawn [14] phrased their original condition in terms of the particular set B =
(x,∞] × (y,∞]. Their assumption, in Pareto margins, was that as n → ∞,

P(XP > nx,YP > ny) ∼ n−1/ηx−c1y−c2 L(nx,ny), (1.4)

where, c1, c2 ≥ 0, c1 + c2 = 1/η and L is a bivariate slowly varying function. That is, L satisfies
limn→∞ L(nx,ny)/L(n,n) = g(x, y), x, y > 0, with g homogeneous of order 0. Consequently,
the value of g depends only upon the ray w := x/(x +y) and so g∗(w) := g(w,1−w) is defined
as the ray dependence function. For identifiability of all components in representation (1.4),
g∗ also satisfies a quasi-symmetry condition; see Ledford and Tawn [14]. The formulation is
discussed in greater detail in Section 4.

In both representations (1.2) and (1.3), the key idea behind the limit theory is that the rate
of tail decay of the bivariate distribution of (XP /n,YP /n) is uniform across all rays emanating
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from the origin. The rates are O(n−1) under asymptotic dependence and O{n−1/η L(n,n)} under
asymptotic independence. Let (XE,YE) = (logXP , logYP ) be a random vector with standard
exponential margins. Statistical methodology for inference upon sets which are extreme in all
variables is based on the equivalent representations

P
{
(XP ,YP ) ∈ tnB

} ∼ t−1/ηP
{
(XP ,YP ) ∈ nB

}
,

(1.5)
P
{
(XE,YE) ∈ v + logn + A

} ∼ exp(−v/η)P
{
(XE,YE) ∈ logn + A

}

as n → ∞, for Borel sets B ⊂ (0,∞]2, A ⊂ (−∞,∞]2, t ≥ 1, v ≥ 0, with addition applied
componentwise. Practically, η is estimated using one of several methods (see, e.g., Beirlant et
al. [1], Chapter 9, for a review of available methodology), whilst the sets nB , logn + A be-
come some extreme sets B ′ ⊆ [1,∞]2 and A′ ⊆ [0,∞]2. The probabilities P{(XP ,YP ) ∈ B ′},
P{(XE,YE) ∈ A′} are then estimated empirically. There is a trade-off between the sets B ′,A′
being sufficiently extreme for the asymptotic representation (1.5) to be reliable, and containing
sufficiently many points for the empirical probability estimate to be reliable. Under this theory,
one can extrapolate upon rays y = {(1 − w)/w}x, w ∈ (0,1), when the margins are Pareto, or
lines of the form y = x + d, d = log{(1 − w)/w}, when the margins are exponential.

When asymptotic independence is present, we may not be interested in events where all vari-
ables are simultaneously extreme. Heffernan and Tawn [10] presented a new limit theory to ad-
dress this problem. For a random vector (XG,YG) with standard Gumbel marginal distributions,
they considered the limiting distribution of the variable XG, appropriately affinely normalized,
conditional upon the concomitant variable YG being extreme. This again can be phrased as an-
other regular variation condition upon the cone [0,∞] × (0,∞]; see Heffernan and Resnick [9].
Specifically, the assumption in Heffernan and Resnick [9] can be expressed in exponential mar-
gins as there exist functions s(n) > 0, r(n) such that

P
({

XE − r(n)
}
/s(n) ≤ x|YE > logn

) → H(x)

as n → ∞ for some non-degenerate distribution function H . Under the methodology of Hef-
fernan and Tawn [10], the normalization functions r, s are estimated parametrically, whilst the
distribution function H is estimated empirically.

In the theory of hidden regular variation, the normalization function c(n), defined by
limit (1.3), is determined by the extremal dependence structure of (XP ,YP ) upon fixing
P{(XP /c(n),YP /c(n)) ∈ B} � n−1. In this paper, we explore the effects of applying different
normalizations to the components and characterizing the decay rates of the associated multivari-
ate distribution. In particular, we explore the behaviour of

P
(
XP > nβ,YP > nγ

) ≡ P(XE > β logn,YE > γ logn) (1.6)

for (β, γ ) ∈ R
2+ \ {0} as n → ∞. This permits a generalization of the theory of Ledford and

Tawn [14], which is a special case with the restriction β = γ . This generalization is desirable as
it promotes methodology which overcomes some of the shortcomings of Ledford and Tawn [14],
of which the principal drawback is the limited trajectories in which one can extrapolate. To high-
light this, consider Figure 1, which shows realizations from a standard bivariate normal with
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Figure 1. Bivariate normal data with dependence parameter ρ = 0.8 on exponential margins. The line
parallel to the diagonal represents a trajectory for extrapolation under the existing Ledford and Tawn [14]
methodology; the dashed line represents a trajectory for extrapolation based upon the methodology we
outline in Section 5.

dependence parameter ρ = 0.8 on exponential margins. The solid line in the picture indicates a
trajectory in which, for certain sets such as the one indicated, one would not be able to use the
methodology of Ledford and Tawn [14], with empirical estimation of P{(XP ,YP ) ∈ A′}, to yield
any non-zero estimation of a probability. A similar problem can be incurred in the methodol-
ogy of Heffernan and Tawn [10], as identified by Peng and Qi [17], see Section 5. Ramos and
Ledford [19] offer a parametric approach following on from Ledford and Tawn [14] which can
avoid this issue. However, the use of parametric models brings concerns of mis-specification,
and furthermore is only valid as an approximation on a sub-region (u,∞)2 for large u. The the-
ory and subsequent methodology that we develop permits extrapolation upon rays in exponential
margins, illustrated by the dashed line in Figure 1. As such, this substantially broadens the range
of sets for which non-zero estimation is possible, whilst avoiding parametric assumptions. Our
new representation, although more closely tied with the Ledford and Tawn [14] paradigm, also
provides some modest links to the alternative limit theory of Heffernan and Tawn [10] and Hef-
fernan and Resnick [9], and permits extrapolation into regions where not all components are
simultaneously extreme.

The motivating philosophy behind our approach is a little different to the standard form. The
usual limit theory for multivariate extremes takes a single normalization, and characterizes the
‘interesting’ (i.e., non-degenerate) limits that arise. By contrast here, we examine a whole class of
different normalizations, but initially place our focus upon the asymptotic decay rate associated
with each normalization. This characterization of the links between normalizations and decay
rates enriches the mathematical structure behind multivariate extreme value theory and promotes
novel statistical methodologies.

In Section 2, we develop the new representation and its justification. We focus here upon the
link between the normalizing functions and the tail probability decay rates of the distributions.
We also consider extensions to higher dimensions and associated issues. Section 3 explores ex-
tensions to bivariate limits. In Section 4, we detail more fully the links to the existing theories for



Multivariate tail probabilities 2693

asymptotically independent bivariate extremes. We provide some specific examples covering a
variety of dependence structures, detailing their characterizations in each of the different extreme
value models. Some possible statistical methodology is suggested and illustrated in Section 5;
a concluding discussion is provided in Section 6.

2. Characterization of decay rates

2.1. Regular variation assumption

We focus on the characterization of the leading order power behaviour of expression (1.6) as
n → ∞. Following similar assumptions to Ledford and Tawn [14], we suppose that for all
(β, γ ) ∈ R

2+ \ {0},
P
(
XP > nβ,YP > nγ

) = P(XE > β logn,YE > γ logn) = L(n;β,γ )n−κ(β,γ ), (2.1)

where L is a univariate slowly varying function in n, n → ∞, for all (β, γ ) ∈ R
2+ \ {0}, and

the function κ(β, γ ) > 0 maps the different marginal growth rates to the joint tail decay rate.
Equation (2.1) implies that P(XP > nβ,YP > nγ ) is a regularly varying function at infinity of
index −κ(β, γ ).

2.2. Consequences of the assumption

The index of regular variation

The function κ is the key quantity in determining the behaviour of expression (2.1) as n → ∞.
We now explore some of its properties. By the regular variation assumption (2.1), it follows (e.g.,
Resnick [22], Proposition 2.6(i)) that

κ(β, γ ) = − lim
n→∞ log P

(
XP > nβ,YP > nγ

)
/ logn. (2.2)

Property 1. κ is homogeneous of order 1.

Proof. Take h > 0. Then

κ(hβ,hγ ) = − lim
n→∞ log P

(
XP > nhβ,YP > nhγ

)
/ logn

= −h lim
n→∞ log P

(
XP > nhβ,YP > nhγ

)
/(h logn)

= hκ(β, γ ). �

Property 2. κ is a non-decreasing function of each argument.

Proof. Let t > 1, thus P(XP > ntβ,YP > nγ ) ≤ P(XP > nβ,YP > nγ ). Following this inequal-
ity through limit (2.2) yields κ(tβ, γ ) ≥ κ(β, γ ). �



2694 J.L. Wadsworth and J.A. Tawn

Property 3. κ(β,0) = β;κ(0, γ ) = γ .

This holds by the assumptions on the margins, that is, P(XP > nβ,YP > 1) = P(XP > nβ) =
n−β .

Property 4. For any dependence structure, max{β,γ } ≤ κ(β, γ ). Under positive quadrant de-
pendence of (XP ,YP ), κ(β, γ ) ≤ β + γ .

Proof. Complete dependence provides the bound P(XP > nβ,YP > nγ ) ≤ P(XP > max{nβ,

nγ }), whilst positive quadrant dependence implies P(XP > nβ)P(YP > nγ ) ≤ P(XP > nβ,YP >

nγ ). Following these inequalities through limit (2.2) yields the result. �

Note that without positive quadrant dependence, κ(β, γ ) can become arbitrarily large; the
bivariate normal distribution with negative dependence (Example 1 of Section 4.3) provides an
example of this.

The function κ provides information about the level of dependence between variables at
sub-asymptotic levels. The homogeneity property of κ suggests it is instructive to consider a
decomposition into a radial and angular component. Define pseudo-angles ω := β/(β + γ ).
Then κ(β, γ ) = (β + γ )κ(ω,1 − ω), which motivates defining an angular dependence func-
tion λ(ω) := κ(ω,1 − ω),ω ∈ [0,1]. Setting ω = 1/2 returns the coefficient of tail dependence
η as defined in Ledford and Tawn [13], that is, κ(1,1) = 2λ(1/2) = 1/η. Interestingly, the link
between 1/η and the newly-defined function λ is analogous to the link between the extremal
coefficient θ and Pickands’ dependence function A (Pickands [18]) of classical multivariate ex-
tremes: θ = 2A(1/2), see, for example, Beirlant et al. [1].

In terms of λ, the inequalities of Property 4 read: max{ω,1 − ω} ≤ λ(ω) ≤ 1. This further
highlights the parallels between λ and Pickands’ dependence function A, since this is one of the
two characterizing features of A. The other feature of A is convexity; convexity of κ and λ entails
an additional dependence condition.

Proposition 1. For a random vector satisfying assumption (2.1), the homogeneous function κ

and angular dependence function λ are convex if there exists N ∈ N such that for all n > N , and
any δ1, δ2, ε1, ε2 ≥ 0, δ1 + ε1 > 0 and δ2 + ε2 > 0,

P
{
XE > (δ1 + δ2) logn,YE > (ε1 + ε2) logn

}
(2.3)

≥ P(XE > δ1 logn,YE > ε1 logn)P(XE > δ2 logn,YE > ε2 logn).

Conversely if κ,λ are strictly convex, then for each such δ1, δ2, ε1, ε2, there exists N(δ1, δ2,

ε1, ε2) ∈ N such that for all n > N(δ1, δ2, ε1, ε2), inequality (2.3) holds.

Proof. Suppose inequality (2.3) holds. By taking log of each side of (2.3), and applying (2.2),
we deduce κ(δ1 + δ2, ε1 + ε2) ≤ κ(δ1, ε1) + κ(δ2, ε2), that is, κ is subadditive. Homogeneous
order 1 functions defined on convex cones are convex if and only if they are subadditive (e.g.,
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Niculescu and Persson [16], Lemma 3.6.1). In terms of λ, we have

(δ1 + δ2 + ε1 + ε2)λ

(
δ1 + δ2

δ1 + δ2 + ε1 + ε2

)
≤ (δ1 + ε1)λ

(
δ1

δ1 + ε1

)
+ (δ2 + ε2)λ

(
δ2

δ2 + ε2

)
.

Dividing through by δ1 + δ2 + ε1 + ε2 and noting the relation between the arguments of λ yields
convexity. Conversely, if λ is strictly convex then κ is strictly subadditive. Showing that (2.3)
holds for all n > N(δ1, δ2, ε1, ε2), is equivalent to showing

nκ(δ1,ε1)+κ(δ2,ε2)−κ(δ1+δ2,ε1+ε2) ≥ L(n; δ1, ε1)L(n; δ2, ε2)/L(n; δ1 + δ2, ε1 + ε2). (2.4)

Taking log of each side of (2.4) and dividing by logn gives κ(δ1, ε1)+κ(δ2, ε2)−κ(δ1 +δ2, ε1 +
ε2) > 0 on the LHS and log{L(n; δ1, ε1)L(n; δ2, ε2)/L(n; δ1 + δ2, ε1 + ε2)}/ logn → 0 as n →
∞ on the RHS. Therefore, there exists N(δ1, δ2, ε1, ε2) ∈ N such that for all n > N(δ1, δ2, ε1, ε2)

(2.3) holds. �

The inequality (2.3) has an interpretation in terms of an existing dependence condition given in
Joe [12]: the random vector (XE,YE) gives rise to a convex κ if asymptotically, the conditional
vector (XE,YE)|(XE > δ1 logn,YE > ε1 logn) is more concordant or more positively quadrant
dependent, as n → ∞, than the unconditional vector (XE,YE). The majority of the examples
in Section 4.3 have a convex λ; the bivariate normal distribution with negative dependence pro-
vides an example of a concave λ. However, convexity is different in general to positive quadrant
dependence of (XE,YE), which only provides the upper bound λ(ω) ≤ 1. In a similar manner to
Proposition 1, we have a partial converse: λ(ω) < 1, ω ∈ (0,1), implies that for each ω ∈ (0,1),
there exists some N(ω) ∈ N such that for all n > N(ω),

L(n;ω,1 − ω)n−λ(ω) ≥ n−ω+(1−ω) = n−1,

that is, positive quadrant dependence for some sufficiently large n > N(ω).

The slowly varying function

For estimation of extreme probabilities, it is the index λ(ω) which principally controls the joint
tail probability decay rate. However, the behaviour of the slowly varying function L does affect
the estimation of λ (see Section 5). Owing to the assumptions of our representation, L must sat-
isfy certain properties. One is a marginal property: L(n;0, γ ) = L(n;β,0) = 1, by the assump-
tion of Pareto margins. This tells us that L is identically constant iff L ≡ 1. A further homogene-
ity property arises from the assumption that representation (2.1) holds for any (β, γ ) ∈ R

2+ \ {0}.
For h > 0, L(nh;β,γ ) = L(n;hβ,hγ ), showing we can also specify to the case β + γ = 1,
defining L∗(n;ω) := L(n;ω,1 − ω).

2.3. Generalization of scaling functions

For any ω ∈ [0,1], define the transformation Tω : [1,∞) �→ [1,∞)2 by Tω(x) = (xω, x1−ω), and
denote the joint survivor function of (XP ,YP ) by F̄ : [1,∞)2 �→ (0,1]. Assumption (2.1) can be
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written

F̄ ◦ Tω ∈ RV−λ(ω) ∀ω ∈ [0,1],
where RVρ stands for the class of univariate regularly varying functions at infinity with index ρ

(see, e.g., Resnick [21,22]).
We can generalize the scaling functions from exact power law scaling to regularly vary-

ing functions. Define H̄ω(n) := F̄ ◦ Tω(n), which is the survivor function of the random vari-
able min{X1/ω

P ,Y
1/(1−ω)
P }, and hence monotonic. For ω = 0, we define min{X1/0

P ,Y
1/1
P } =: YP ,

and similarly for ω = 1. Then we may define a non-decreasing function b(n) → ∞ such that
H̄ω(b(n)) ∼ n−λ(ω), n → ∞, by taking b(n) = (1/H̄ω)←(nλ(ω)), with (1/H̄ω)← the inverse of
1/H̄ω. By Proposition 2.6(iv) and (v) of Resnick [22], we can deduce b(n) ∈ RV1, and thus as
n → ∞,

F̄ ◦ Tω ◦ b(n) = P
(
XP > b(n)ω,YP > b(n)1−ω

) ∼ n−λ(ω).

2.4. Higher dimensions, strong and weak joint tail dependence

The extension to higher dimensions involves a generalized notion of asymptotic dependence
and asymptotic independence. Let X be a random d-vector with marginal distribution functions
FX1, . . . ,FXd

. We define the notion of d-dimensional joint tail dependence through the limit

χ(D) = lim
u→1

P
{
FXj

(Xj ) > u,∀j ∈ D|FX1(X1) > u
}

(2.5)

for D = {1, . . . , d}. The cases χ(D) > 0 and χ(D) = 0 define, respectively, strong joint tail
dependence and weak joint tail dependence of the vector. Convergence (1.2) extends to d-
dimensions. For XP a random d-vector with Pareto margins, we have nP(XP /n ∈ ·) v→ μ(·)
on [0,∞]d \ {0}. The homogeneous order −1 measure μ has mass on the particular subcone
(0,∞]d ⊂ [0,∞]d \ {0} only if the vector exhibits d-dimensional strong joint tail dependence.
For d > 2, weak joint tail dependence does not imply that the limiting normalized component-
wise maxima would be mutually independent, though the converse is true. For d = 2, weak joint
tail dependence is equivalent to asymptotic independence. In addition, if χ({i, j}) = 0 for all
pairs i, j ∈ D the limiting normalized componentwise maxima would be mutually independent.

With a slight change of notation, let XE = log XP be d-vectors and β = (β1, . . . , βd) be the
vector replacing (β, γ ) in two dimensions. The function κ is understood to have as many argu-
ments as the context dictates. Applying all vector operations componentwise assume

P(XE > β logn) = L(n;β)n−κ(β) (2.6)

with all quantities being defined analogously to the bivariate case.
Once more, we can define ωi = βi/

∑
j βj so that ω = (ω1, . . . ,ωd) ∈ Sd := {v ∈ [0,1]d :∑d

i=1 vi = 1} and the function λ(ω1, . . . ,ωd−1) := κ(ω). The previously outlined properties of
κ and λ hold just as in the bivariate case; for Property 4 the upper bound follows from extending
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the assumption to positive upper orthant dependence (Joe [12]), other extensions are clear. In
addition, we have a consistency condition as we move across dimensions:

κ(β1, . . . , βd) ≥ κ(β1, . . . , βd−1,0) = κ(β1, . . . , βd−1).

For a d-dimensional random vector, a summary of the limiting dependence structure of the full
vector is given by the values of χ(C), for all possible C ⊆ D. If χ(C) > 0 then μ(B) > 0 for B

some Borel subset of×d

i=1(0,∞]I (i∈C)[0,∞]I (i /∈C), with I the indicator function and×d

i=1
representing Cartesian product of sets (e.g., if D = {1,2,3}, C = {1,3}, the notation should be
interpreted to mean (0,∞] × [0,∞] × (0,∞]). Otherwise, χ(C) = 0 implies μ(B) = 0 for all
Borel B on the same space, and hence the vague convergence in (1.2) provides no interesting the-
oretical discrimination for the dependence structure of the subset indexed by C. In this sense, we
have a boundary case of the limit measure μ. By contrast, κ can still provide some discrimination
between different levels of sub-asymptotic dependence amongst the variables indexed by C.

Conversely, when χ(C) > 0, this strong joint tail dependence forms a boundary case in
the asymptotic theory suitable for analyzing weak joint tail dependence. We cannot avoid this
easily since we have the dichotomy that the joint survivor function F̄ of XP either decays
at the same rate as the marginal survivor functions (strong joint tail dependence) or faster
than the marginal rate (weak joint tail dependence). As a consequence here, we find that for
any distribution satisfying (2.6) and exhibiting d-dimensional strong joint tail dependence,
λ(ω1, . . . ,ωd−1) = max1≤i≤d{ωi} (see Proposition 2) and we only have different forms of λ

describing different forms of weak joint tail dependence.

Proposition 2. Let XP satisfy (2.6). If XP exhibits d-dimensional strong joint tail dependence,
that is, χ(D) > 0, then κ(β1, . . . , βd) = max1≤i≤d{βi}.

Proof. Because χ(D) > 0, by definition (2.5), we have for β1 > 0

lim
n→∞ P(XP,2 > n, . . . ,XP,d > n|XP,1 > n)

= lim
n→∞ P

(
XP,2 > nβ1, . . . ,XP,d > nβ1 |XP,1 > nβ1

) = χ(D) > 0.

Without loss of generality, assume β1 = max1≤i≤d{βi}. Then we also have

1 ≥ P
(
XP,2 > nβ2, . . . ,XP,d > nβd |XP,1 > nβ1

)
≥ P

(
XP,2 > nβ1, . . . ,XP,d > nβ1 |XP,1 > nβ1

) → χ(D)

as n → ∞. Hence, P(XP,1 > nβ1 ,XP,2 > nβ2, . . . ,XP,d > nβd ) � n−β1 , as n → ∞, that is,
κ(β1, . . . , βd) = max1≤i≤d{βi}. �

In practice as d grows it becomes more likely that a scenario will arise for which some sets
C ⊆ D yield χ(C) = 0 and some yield χ(C) > 0, and as such, tools from both dependence
paradigms will be useful. For relative simplicity of exposition, we return the focus to the bivariate
case for the rest of the paper.
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3. Bivariate limits

In this section, we detail some results concerning bivariate limits, initially by conditioning upon
the event that (XP ,YP ) ∈ (nω,∞) × (n1−ω,∞).

3.1. Assumption

Consider, for x, y ≥ 1, P(XP > nωx,YP > n1−ωy|XP > nω,YP > n1−ω); under assumption
(2.1) this is given by

L(n;ω + logx/logn,1 − ω + logy/logn)

L(n;ω,1 − ω)
(3.1)

× exp

[
logn

{
κ(ω,1 − ω) − κ

(
ω + logx

logn
,1 − ω + logy

logn

)}]
.

We shall initially explore the limiting behaviour of this expression under the assumption that κ

is differentiable and that

lim
n→∞

L(n;ω + logx/logn,1 − ω + logy/logn)

L(n;ω,1 − ω)
= 1. (3.2)

Such assumptions are smoothness conditions on the behaviour of the joint distributional tail over
different ω. They are analogous to supposing ray independence of the Ledford and Tawn [14]
paradigm; a condition which actually holds very widely including for all of the asymptotically
independent examples of the Ledford and Tawn [14] paper. The development under these as-
sumptions will permit us to observe how a generalized notion of multivariate regular variation is
possible at the end of the section.

3.2. Conditional limits under the assumption

Since we assume that κ is differentiable at the point ω := (ω,1 − ω), then

lim
n→∞ logn

[
κ(ω,1 − ω) − κ

(
ω + logx

logn
,1 − ω + logy

logn

)]
= −∇κ(ω,1 − ω) · (logx, logy)T

with ∇κ the gradient vector of κ . Therefore, the conditional probability limit from equation (3.1)
is

exp
{−∇κ(ω,1 − ω) · (logx, logy)T

} = x−κ1(ω)y−κ2(ω), (3.3)

that is, independent Pareto variables with shape parameters

{
κ1(ω), κ2(ω)

} :=
(

∂κ

∂β
,
∂κ

∂γ

)∣∣∣∣
(ω,1−ω)

= {
λ(ω) + (1 − ω)λ′(ω),λ(ω) − ωλ′(ω)

}
.
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By Property 2, it is clear that κ1(ω), κ2(ω) ≥ 0. In exponential margins, for x, y ≥ 0, this reads

lim
n→∞

P{XE − ω logn > x,YE − (1 − ω) logn > y}
P{XE > ω logn,YE > (1 − ω) logn} = exp

{−∇κ(ω,1 − ω) · (x, y)
}

(3.4)
= exp

{−κ1(ω)x − κ2(ω)y
}
.

Although stochastic independence of the conditioned normalized variables arises in the limit,
limits (3.3) and (3.4) are interpretable in terms of the original degree of dependence at the finite
level. This can be observed by the relation κ1(ω) = κ2(ω) + λ′(ω). As the variables become
independent, λ(ω) and λ′(ω) approach 1 and 0, respectively, thus κ1(ω) and κ2(ω) approach
equality. As dependence increases, then κ1(ω) decreases relative to κ2(ω) for ω < 1/2, and vice
versa.

The boundary case of asymptotic dependence has κ1(ω) = 0 and λ′(ω) = −1 for ω < 1/2
and κ2(ω) = 0 and λ′(ω) = 1 for ω > 1/2. Under asymptotic dependence, the function λ(ω) =
max{ω,1 − ω} is not differentiable at ω = 1/2, and the above limits (3.3) and (3.4) do not
hold on this line. However, when ω �= 1/2, we can still get the conditional limit from (3.3)
to be x−1I (ω > 1/2) + y−1I (ω < 1/2). When ω = 1/2, standard theory for asymptotically
dependent distributions provides that the limit is {x−1 + y−1 − V (x, y)}/{2 − V (1,1)}, where
V (x, y) := μ({[0, x] × [0, y]}c) for the appropriate limiting measure μ in convergence (1.2).

The asymptotic dependence case highlights some subtleties that occur when the assumptions
of differentiable κ and assumption (3.2) break down. In this case, the function L inherits ad-
ditional structure at the point where κ is not differentiable, and classical multivariate regular
variation conditions become the appropriate tools for analysis.

3.3. Multivariate regular variation

The weak convergence of probability measures given by limit (3.3) can be expressed more gen-
erally as

P

{(
XP

nω
,

YP

n1−ω

)
∈ ·

∣∣∣∣
(

XP

nω
,

YP

n1−ω

)
∈ [1,∞)2

}
w→ π(·;ω) (3.5)

on (1,∞)2 as n → ∞, with the limit measure π(·;ω) homogeneous of order −{κ1(ω) +
κ2(ω)}. This reveals an alternative non-standard type of regular variation condition. A func-
tion q is (standard) multivariate regularly varying with index ρ ∈ R and limit function � if
limt→∞ q(tx)/q(t1) = �(x), x ∈ R

d+, the function q(t1) =: Q(t) ∈ RVρ , is univariate regularly
varying, and �(cx) = cρ�(x), c > 0. The common scaling t ∈ RV1 can be replaced by any com-
mon scaling b(t) ∈ RVα , α > 0, yielding an unchanged limit function and Q ◦ b(t) ∈ RVρα .
In limit (3.5) however, different scalings are applied to each component, in the classes RVω

and RV1−ω , Q ◦ Tω(t) ∈ RV−λ(ω), and the order of homogeneity of the limit measure is
−{κ1(ω) + κ2(ω)}. When ω = 1/2, the common scaling returns standard multivariate regular
variation since the limit measure is homogeneous of order −{κ1(1/2) + κ2(1/2)} = −κ(1,1) =
−2λ(1/2) = −1/η. Note this is a different form of non-standard regular variation to that given
in Resnick [22], as there the non-equal scalings are due to non-equal margins.
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Limit (3.5) provides an asymptotic link between the probabilities of lying in Borel sets B ⊂
[1,∞)2 where each component is scaled by (nω,n1−ω) as

P

{(
XP

nω
,

YP

n1−ω

)
∈ (

tω, t1−ω
)
B

}
∼ t−λ(ω)P

{(
XP

nω
,

YP

n1−ω

)
∈ B

}

as n → ∞, t > 1, with vector arithmetic applied componentwise. This follows since ωκ1(ω) +
(1 − ω)κ2(ω) = κ(ω,1 − ω) = λ(ω) by homogeneity. Together with the corresponding relation
in exponential margins, this provides the analogous equations to (1.5).

By the form of limit (3.5), we observe that this can be modified to standard multivariate reg-
ular variation. Define the bijective map Uω : (1,∞)2 �→ (1,∞)2 by Uω(x, y) = (xω, y1−ω), for
any fixed ω ∈ (0,1). Then F̄ ◦ Uω is multivariate regularly varying of index −λ(ω). Equiva-
lently we can think of this as standard multivariate regular variation of the law of the random
vector U←

ω (XP ,YP ) = (X
1/ω
P ,Y

1/(1−ω)
P ), ω ∈ (0,1). In place of convergence (3.5), we can thus

consider,

P
{
U←

ω (XP ,YP )/n ∈ ·|U←
ω (XP ,YP )/n ∈ [1,∞)2} w→ π∗(·;ω) (3.6)

on (1,∞)2, where for Borel B ⊂ (1,∞)2, c > 0, π∗(cB;ω) = c−λ(ω)π∗(B;ω). When ω = 1/2,
this is standard multivariate regular variation, and does not therefore require the assumptions of
differentiable κ and (3.2). Consequently, (3.6) provides a general multivariate asymptotic char-
acterization for both asymptotically dependent and asymptotically independent random vectors,
where the structure rests in π∗(·;1/2) under asymptotic dependence, and the combination of
λ(ω) and π∗(·;ω) under asymptotic independence.

As in the univariate case, the scaling functions can be generalized from exact powers of n to
regularly varying functions. Under our current assumptions, we can find a(n) ∈ RV1/λ(ω) such
that for Borel B ⊂ (1,∞)2,

lim
n→∞nP

{
U←

ω (XP ,YP )/a(n) ∈ B
} = π∗(B;ω)

with π∗(∂B) = 0 and π∗ as given in convergence (3.6). This follows by defining a(n) =
(1/H̄ω)←(n), as in Section 2.3, and using the assumptions of Section 3.1 on L and κ , or standard
multivariate regular variation assumptions.

4. Connections to existing theory for asymptotic independence

In this section, we detail more carefully the connections between our representation (2.1) and the
existing theories which permit non-trivial treatment of asymptotic independence. Specifically,
these are the theories introduced by Ledford and Tawn [14] and Heffernan and Tawn [10]. These
representations were originally phrased in terms of standard Fréchet and standard Gumbel mar-
gins, respectively. Here, we continue to use the asymptotically equivalent standard Pareto and
exponential margins.
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4.1. Coefficient of tail dependence

The assumption of Ledford and Tawn [14] is given by (1.4). Supposing that κ is differentiable
then the results of Section 3 allow us to write

P
(
XP > nωx,YP > n1−ωy

)
(4.1)

= n−λ(ω)x−κ1(ω)y−κ2(ω)L(n;ω + logx/ logn,1 − ω + logy/ logn)

for x, y ≥ 1 as n → ∞. Setting ω = 1/2 in equation (4.1) returns the set-up of equation
(1.4). From this, we see that the representations are equivalent when c1 = κ1(1/2) = λ(1/2) +
λ′(1/2)/2, c2 = κ2(1/2) = λ(1/2) − λ′(1/2)/2 and L(nx,ny) ∼ L(n;1 + logx/ logn,1 +
logy/ logn), n → ∞.

Ramos and Ledford [19] introduced an expanded characterization of the Ledford and Tawn
[14] framework. Similarly to Section 3, they consider convergence of measures P(XF >

nx,YF > ny|XF > n,YF > n), with (XF ,YF ) marginally standard Fréchet, however without
the condition (3.2). This entails the possibility of more structure in the limit measure, and is a
more natural idea under equal marginal growth rates, where any non-constant limit in equation
(3.2) would be homogeneous of order 0. Equation (3.6) has the Ramos and Ledford [19] assump-
tion as a special case. However, their focus is on developing consequences of the multivariate
regular variation condition under common scaling of the margins, whilst our focus remains on
consequences of generalizing the scaling.

4.2. Conditioned limit theory

Heffernan and Tawn [10] generated a limit theory for the distribution of a variable X, suitably
normalized, conditional upon the concomitant variable, Y , being extreme. In standard Gumbel
margins, they considered non-degenerate limits of

P
({

XG − b(y)
}
/a(y) ≤ x|YG = y

)
(4.2)

as y → ∞. The normalizing functions a, b satisfy a(y) > 0, b(y) ≤ y, and give unique limit
distributions up to type (see Heffernan and Tawn [10], Theorem 1). Precise forms of a, b are
stated on the understanding that modifications which do not change the type of limit distribution
are allowable. In this limit theory, asymptotic dependence is once more a boundary case requiring
the normalizations a(y) = 1 and b(y) = y. Formulation (4.2) was elaborated on by Heffernan and
Resnick [9], who described limit theory for both

P
({

XE − b(logn)
}
/a(logn) ≤ x|YE > logn

)
(4.3)

P
({

XE − b(YE)
}
/a(YE) ≤ x|YE > logn

)
as n → ∞. The formulation of Heffernan and Resnick [9] is in fact slightly more general as
the marginal distribution of the X variable is left unspecified, however it is convenient here to
suppose a particular form.

It is possible to draw some modest links between our representation and the limits in (4.3).
However, the full structure of the function L in representation (2.1) across different β,γ is key
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in determining the limits of (4.3). By fixing (β, γ ) ∈ R
2+ \ {0}, and considering asymptotics in n,

then any slowly varying function L1(n;β,γ ) ∼ L(n;β,γ ), n → ∞, suffices for our calculations:
this highlights the difference between the theories.

Under assumption (2.1) and with γ = 1,

P(XE > β logn|YE > logn) = L(n;β,1)n1−κ(β,1)

(4.4)
= L(n;β,1) exp

[{
1 − κ(β,1)

}
logn

]
as n → ∞. If we view the logn in the first argument of the conditional probability (4.4) as being
part of the conditioning variable, then we want to find β = β(n, x) such that β(n, x) logn =
a(logn)x + b(logn) gives a non-degenerate limit in x of equation (4.4) as n → ∞. That is, we
are searching for the functions a, b, k such that

lim
n→∞ P

({
XE − b(logn)

}
/a(logn) > x|YE > logn

) = exp
{−k(x)

}
, (4.5)

defines a valid survivor function. Supposing that limn→∞ β(n, x) = 0, one can observe that the
only simple link between the two theories arises when L ≡ 1, since by the marginal condition
L(n;β,0) = L(n;0, γ ) = 1. In this case, equation (4.4) shows that the components required for
the limit (4.5) satisfy the relation that

κ
(
β(n, x),1

) − 1 ∼ k(x)/ logn (4.6)

as n → ∞. When L �≡ 1, then the first order theory for P(XE > β logn,YE > γ logn) that is the
focus of our work is insufficient to yield the full limit distribution of equation (4.5). Example 3
of the following section provides an illustration of this.

4.3. Examples

Below we provide examples to illustrate the theory developed and the links with existing rep-
resentations. In each case, we provide the copula, C(u, v), of the distribution (i.e., the joint
distribution function on standard uniform margins) and the asymptotic joint survivor function
(2.1) on exponential margins. Table 1 summarizes the previously defined quantities κ(β, γ ); η;
a(logn), b(logn); and exp{−k(x)}. Detailed derivations are provided for two interesting exam-
ples: the bivariate normal, and the inverted bivariate extreme value distribution. Other bivari-
ate examples are stated more briefly. We additionally present a trivariate example for which
χ({1,2,3}) = 0 but some χ({i, j}) > 0 to illustrate behaviour both across dimensions and ex-
tremal dependence classes.

Example 1 (Bivariate normal distribution).

C(u, v) = �2
(
�−1(u),�−1(v);ρ)

, ρ ∈ [−1,1],
with � the standard normal distribution function and �2(·, ·;ρ) the standard bivariate normal
distribution function. Denote also by φ2 the associated joint density. The survivor function in



Multivariate tail probabilities 2703

Table 1. Summary of important theoretical quantities for representations of Examples 1–5 under the theory
of the current paper, Ledford and Tawn [13] and Heffernan and Tawn [10]/Heffernan and Resnick [9]

Example κ(β, γ ) η a(logn) b(logn) exp{−k(x)}

1 (a) β+γ−2ρ(βγ )1/2

1−ρ2 ; (1 + ρ)/2 (2ρ2 logn)1/2† ρ2 logn† 1 − �
{

x
(1−ρ2)1/2

}
(b) max{β,γ }

2 V (1/β,1/γ ) 1/V (1,1) ∗ ∗ ∗
3 β + γ 1/2 1 0 e−x [1 + α(1 − e−x)]
4 max{β,γ } 1 1 logn e−x [1 + ex − V (1, e−x)]
5 max{β,γ } 1 1 logn [ex/α + 1]−α

∗Denotes that the explicit form depends upon V .
†Denotes for ρ > 0. Example 1(a): ρ2 < min{β/γ,γ /β} or ρ < 0 and min{β,γ } > 0; Example 1(b): all other ρ.

this case is defined only via an integral, however an asymptotic expansion yields κ and the
leading order term of L. Let (XN,YN) denote the vector on standard normal margins. Interest lies
in P(XE > β logn,YE > γ logn) = P{XN > �−1(1 − n−β), YN > �−1(1 − n−γ )}. Let xβ :=
�−1(1 − n−β); xγ := �−1(1 − n−γ ). Then as n → ∞

xβ = (2β logn)1/2 − (
log lognβ + log 4π

)
/
{
2(2β logn)1/2} + o

{
(logn)−1/2}

and similarly xγ , thus xβ ∼ (2β logn)1/2, xγ ∼ (2γ logn)1/2, and hence xβ ∼ (β/γ )1/2xγ as
n → ∞ for β,γ > 0. Bounds on the multivariate Mills’ ratio P(XN > xβ,YN > xγ )/φ2(xβ,

xγ ;ρ), obtained by Savage [24], or the asymptotic results of Ruben [23], see also Hashorva and
Hüsler [7], provide that for xβ > ρxγ and xγ > ρxβ ,

P(XN > xβ,YN > xγ ) ∼ L1(n;β,γ )n−{(β+γ−2ρ(βγ )1/2)/(1−ρ2)}

as n → ∞ with

L1(n;β,γ ) = (4π logn)(2ρ2−ρ{(β/γ )1/2+(γ /β)1/2})/(2(1−ρ2))

(4.7)

× β(1−ρ(γ /β)1/2)/(2(1−ρ2))γ (1−ρ(β/γ )1/2)/(2(1−ρ2))(1 − ρ2)3/2

(β1/2 − ργ 1/2)(γ 1/2 − ρβ1/2)
.

Note that L1 �= L, that is, higher order terms of L have been neglected, but L1/L → 1 as n →
∞. In terms of β,γ , if ρ > 0, ρ2 < min{β/γ,γ /β} implies ρ < min{xβ/xγ , xγ /xβ} for all
sufficiently large n, so that the above results hold. For ρ < 0, the above holds for any β > 0,
γ > 0. The necessity of the strict inequalities arises from the assumption that xβ and xγ are both
growing; indeed one may observe that setting, for example, β = 0, with ρ < 0, does not yield the
appropriate marginal distribution for this representation, and more careful analysis is required.
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When ρ > 0 and β ≤ ρ2γ or γ ≤ ρ2β , it is simple to derive the results directly. We have

P(XN > xβ,YN > xγ )

=
∫ ∞

xγ

{
1 − �

(
xβ − ρy

(1 − ρ2)1/2

)}
1

(2π)1/2
exp

{−y2/2
}

dy (4.8)

= φ(xγ )

xγ

∫ ∞

0

{
1 − �

(
xβ − ρxγ − ρz/xγ

(1 − ρ2)1/2

)}
exp

{−z − z2/2x2
γ

}
dz,

the second line following with a change of variables z = xγ (y − xγ ). It is clear that β < ρ2γ

ensures that the argument of � tends to −∞, so that by dominated convergence, the integral con-
verges to

∫ ∞
0 e−z dz = 1. If β = ρ2γ , then xβ − ρxγ = (ρ − ρ−1) log logn/{2(2γ logn)1/2} +

O{(logn)−1/2} as n → ∞. Consequently, the argument of � tends to 0, and the integral con-
verges to

∫ ∞
0 e−z/2 dz = 1/2. Overall therefore P(XN > xβ,YN > xγ ) ∼ L1(n;β,γ )n−κ(β,γ )

with

κ(β, γ ) =

⎧⎪⎪⎨
⎪⎪⎩

β + γ − 2ρ(βγ )1/2

1 − ρ2
, ρ2 < min{β/γ,γ /β} or ρ < 0

and min{β,γ } > 0,
max{β,γ }, otherwise,

(4.9)

L1(n;β,γ ) =

⎧⎪⎪⎨
⎪⎪⎩

(4.7), ρ2 < min{β/γ,γ /β} or ρ < 0
and min{β,γ } > 0,

1, ρ2 > γ/β or ρ2 > β/γ ,
1/2, ρ2 = β/γ or ρ2 = γ /β.

The function L1 is such that L(n;β,γ ) ∼ L1(n;β,γ ) in each case, and whilst the form of L1
may be written as discontinuous, higher order terms in L ensure that the joint survivor function
behaves smoothly across the quadrant. The function κ is both continuous and differentiable on
the lines ρ2 = β/γ , ρ2 = γ /β , and attains the expected limits max{β,γ } and β + γ as ρ → 1
and ρ → 0, respectively.

The normalizing functions a, b and limit distribution for the Heffernan and Tawn [10] rep-
resentation can be found through consideration of equation (4.8) in the case where ρ > 0. For
ρ = 0 the variables are independent thus the required normalization is trivially a(logn) = 1,
b(logn) = 0. For ρ < 0 the expansion used to find κ is not sufficient, since the variables were
assumed to be growing in both margins; in fact to get a non-degenerate conditional limit under
negative dependence, one needs to consider the case where the margins are not growing simulta-
neously. In exponential margins, equation (4.8) yields

P
(
XE > β(n,x) logn|YE > logn

)

∼
∫ ∞

0

{
1 − �

(
xβ(n,x) − ρx1 − ρz/x1

(1 − ρ2)1/2

)}
exp

{−z − z2/2x2
1

}
dz.

Non-degeneracy of this in the limit requires that β(n, x)1/2 − ρ � (logn)−1/2, n → ∞. The
precise normalization required is unique up to type only. Recalling β(n, x) = {a(logn)x +
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b(logn)}/ logn, one possibility is to solve

{
a(logn)

logn
x + b(logn)

logn

}1/2

− ρ ∼ x

(2 logn)1/2

as n → ∞. This provides b(logn) = ρ2 logn + o{(logn)1/2}, and a(logn) = ρ(2 logn)1/2 +
o{(logn)1/2}. Taking this choice of a, b leads to the limiting survivor function 1 − �{x/(1 −
ρ2)1/2}. This normalization and limit is the same as that stated in Heffernan and Resnick [9];
in Heffernan and Tawn [10] the normalization a(y) = y1/2, b(y) = ρ2y leads to the lim-
iting survivor function 1 − �{x/(2ρ2(1 − ρ2))1/2}. Note that taking specifically a(logn) =
ρ(2 logn)1/2 + 1 avoids the concerns raised in Heffernan and Tawn [10] of discontinuity in
normalization as ρ ↘ 0.

Example 2 (Inverted bivariate extreme value distribution).

C(u, v) = u + v − 1 + exp
[−V

{−1/ log(1 − u),−1/ log(1 − v)
}]

,

where V is as defined in Section 3.2, and termed the exponent function of a bivariate extreme
value distribution. This gives

P(XE > β logn,YE > γ logn) = exp
{−V (1/β logn,1/γ logn)

} = n−V (1/β,1/γ ).

General forms of the normalization functions and limit distribution cannot be expressed explic-
itly without knowledge of V . However, one can consider general classes of exponent functions
V and characterize the limits for these classes. The function V can be expressed as

V (x, y) =
∫ 1

0
max

{
w/x, (1 − w)/y

}
H(dw),

where H is a measure satisfying
∫ 1

0 wH(dw) = ∫ 1
0 (1 − w)H(dw) = 1 (e.g., Beirlant et al. [1]).

Suppose H has density h(w) with respect to Lebesgue measure on (0,1), such that h(w) ∼ swt

as w → 0, h(w) ∼ u(1 − w)v as w → 1, for s, u > 0, t, v > −1, with no mass at w = 0,w = 1.
Then

V (1/β,1) = β

∫ 1

(1+β)−1
wH(dw) + 1 −

∫ 1

(1+β)−1
(1 − w)H(dw).

As β → 0, this can be written

V (1/β,1) − 1 ∼ βu

∫ 1

(1+β)−1
w(1 − w)v dw − u

∫ 1

(1+β)−1
(1 − w)v+1 dw

= u

(v + 1)(v + 2)
βv+2 + o

(
βv+2).

Since L ≡ 1 we can now use equation (4.6) to obtain the normalizations and the limit:

u

(v + 1)(v + 2)
β(n, x)v+2 ∼ V

(
β(n, x)−1,1

) − 1 = κ
(
β(n, x),1

) − 1 ∼ k(x)/ logn,
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so that a(logn), b(logn) and k(x) solve

u

(v + 1)(v + 2)

{
a(logn)x + b(logn)

logn

}v+2

∼ k(x)/ logn

as n → ∞. From this, we can take a(logn) = (logn)(v+1)/(v+2), b(logn) ≡ 0 and k(x) =
uxv+2/{(v + 1)(v + 2)}, thus the limiting survivor function is exp[−uxv+2/{(v + 1)(v + 2)}].
Reversing the conditioning would lead to the analogous result with s, t in place of u,v.

A particular example of V is the logistic dependence structure (Tawn [25]), which has
V (x, y) = (x−1/α + y−1/α)α , for α ∈ (0,1], and thus κ(β, γ ) = (β1/α + γ 1/α)α . Either directly
or via the preceding calculations we find for this example that b(logn) ≡ 0, a(logn) = (logn)1−α

and k(x) = αx1/α . In this example, κ is given by the L1/α norm and provides any L-norm be-
tween the L1 and L∞ bounds given in Property 4.

Example 3 (Morgenstern).

C(u, v) = uv
{
1 + α(1 − u)(1 − v)

}; α ∈ [−1,1].

The expansion in exponential margins is

P(XE > β logn,YE > γ logn) = (1 + α)n−(β+γ ) − αn−(2β+γ )

− αn−(β+2γ ) + αn−(2β+2γ ).

This example highlights easily why the first order theory upon which we focus is insufficient to
make full connections to the conditional limit theory described in Section 4.2. Here, L(n;β,γ ) =
(1 + α) − αn−β − αn−γ + αn−(β+γ ), which collapses to 1 when β or γ → 0, but is in general
different from 1 in its leading order term.

Example 4 (Bivariate extreme value distribution).

C(u, v) = exp
[−V {−1/ logu,−1/ logv}],

where V is the exponent function. The joint survivor function in exponential margins is

P(XE > β logn,YE > γ logn)

= n−β + n−γ − 1

+ exp
[−V

{−1/ log
(
1 − n−β

)
,−1/ log

(
1 − n−γ

)}]
.

Example 5 (Lower joint tail of the Clayton distribution).

C(u, v) = u + v − 1 + {
(1 − u)−1/α + (1 − v)−1/α − 1

}−α; α > 0.
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For the expansion in exponential margins, without loss of generality assume γ = max{β,γ }, then
as n → ∞

P(XE > β logn,YE > γ logn) = {
nβ/α + nγ/α − 1

}−α

= n−γ
{
1 + n(β−γ )/α − n−γ /α

}−α

= n−γ + o
(
n−γ

)
.

Example 6 (Trivariate example). Let T ,U,V,W be mutually independent following standard
Pareto distributions, and define X = max{T ,U}, Y = max{U,V }, Z = max{V,W }. Then in the
obvious notation we have χ(X,Y,Z) = 0, χ(X,Y ) > 0, χ(Y,Z) > 0, χ(X,Z) = 0. The iden-
tical marginal distributions of X,Y,Z are P(X ≤ x) =: G(x) = (1 − 1/x)2 = 1 − 2/x + 1/x2.
Transforming to standard Pareto margins, XP = 1/{1 − G(X)}, so that as n → ∞, P(XP >

nβ) = P{X > G−1(1 − n−β)} = P{X > 2nβ + O(1)}. Thus for all sufficiently large n, we can
bound the joint survivor probability,

P
(
X > 3nβ,Y > 3nγ ,Z > 3nδ

) ≤ P
(
XP > nβ,YP > nγ ,ZP > nδ

)
≤ P

(
X > nβ,Y > nγ ,Z > nδ

)

and hence κ can be derived from the leading order term of P(X > knβ,Y > knγ ,Z > knδ),
k > 0. The expression for this probability may be found in Wadsworth [26], from which we can
derive

κ(β, γ, δ) =
{

γ + min{β,γ, δ}, γ = max{β,γ, δ},
β + δ, otherwise.

Note that this reduces to the correct two-dimensional κ functions when any of β,γ, δ are set to 0;
that is, max{γ, δ}, β + δ and max{β,γ }, respectively.

5. Statistical methodology

We propose one possible approach for performing statistical inference on extreme set probabil-
ities, motivated by the theory of preceding sections. The method builds upon the connections
between λ and Pickands’ dependence function, and is outlined in Section 5.1. Further method-
ological details and a comparison of new and existing methodology are presented in Section 5.2.
In the implementation, we assume that the data have been transformed into exponential mar-
gins. This can be achieved from arbitrary marginal distributions by a transformation such as that
described in Coles and Tawn [2].

5.1. Inferential approach

We assume a sample of m bivariate random vectors, and consider estimation of probabilities that
(XE,YE) lies in sets of the form (ω logn,∞) × ((1 − ω) logn,∞). By representation (2.1), for
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each ω ∈ [0,1],

P

(
min

{
XE

ω
,

YE

1 − ω

}
> logn + log t

)
= L∗(nt;ω)(nt)−λ(ω) (5.1)

as n → ∞, along with the conditional probability for t > 1,

P

(
min

{
XE

ω
,

YE

1 − ω

}
> logn + log t

∣∣∣min

{
XE

ω
,

YE

1 − ω

}
> logn

)
(5.2)

= L∗(nt;ω)

L∗(n;ω)
t−λ(ω) → t−λ(ω).

Since the expression in (5.2) has a regularly varying tail with positive index in Pareto margins,
one can use the Hill estimator of the tail index (Hill [11]) as an estimator for λ(ω). To tidy
notation, write un = logn and v = log t . Some consequences of the assumption on the ratio
of slowly varying functions are explored at the end of the section. Asymptotic consistency of
the Hill estimator requires that the number of exceedances, km,n, of the threshold un satisfies
km,n → ∞ as m → ∞, but that km,n/m → 0. Conditions for asymptotic normality are studied in
Haeusler and Teugels [5] and de Haan and Resnick [4], for example.

Similar estimation procedures have been exploited previously in methodology for extreme
value problems: for max-stable distributions, Pickands [18] proposed an analogous estimator for
the dependence function A when dealing with componentwise maxima data, see also Hall and
Tajvidi [6]. For the asymptotically independent case, Ledford and Tawn [13,14] used a similar
scheme on the diagonal ω = 1/2 to estimate the coefficient of tail dependence 1/η = 2λ(1/2).
Our methodology extends this in a natural way to any ray ω ∈ [0,1] in exponential margins.

5.2. Estimation and diagnostics

We use the Hill estimator of the rate parameter, which has the simple closed form of the re-
ciprocal mean excess of the structure variable min{XE/ω,YE/(1 − ω)} above the threshold un.
Letting λ̂(ω) denote the value of the estimate, the final estimate of the joint survivor probability
is constructed as

P̂
{
XE > ω(un + v),YE > (1 − ω)(un + v)

} = e−λ̂(ω)vP̃
{
XE > ωun,YE > (1 − ω)un

}

with P̃ representing the empirical exceedance probability. In this simple methodology, that we
employ in Section 5.3, there has been no attempt to impose any of the constraints that λ or κ can
satisfy, as identified in Properties 1–4 and Proposition 1. Imposition of some constraints could
represent a methodological extension if so desired. Figure 2(a) and (b) display true and estimated
λ(ω) functions under this methodology for the examples considered in Section 5.3; the figures
are discussed at the end of that section.

To detect applicability of the theory, standard techniques such as quantile–quantile plots can
be used to assess the suitability of the model. In addition, if the theory holds then for m the
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Figure 2. True (solid line) and estimated mean (dashed line) λ(ω), with 95% confidence intervals (dotted
lines) for (a) the bivariate normal and (b) the inverted extreme value logistic models. Mean and confidence
intervals are based upon output from 500 simulated datasets of size 5000, with estimation based upon 10%
of the sample.

sample size, assumed large, we can write for c > 0

mP
{
XE > cω logm,YE > c(1 − ω) logm

} = L∗(mc;ω)
m1−cλ(ω).

Since L∗(mc;ω) is still slowly varying, it follows that on any given ray ω, plots of log num-
ber of points in the set (cω logm,∞) × (c(1 − ω) logm,∞), for a variety of c, should exhibit
approximate linearity in c.

5.3. Comparison of methods

The following simulation study compares the methodology of Ledford and Tawn [14], Heffernan
and Tawn [10] and that of Section 5.1 for estimating joint survivor probabilities across a range
of rays in exponential margins. The intention of the comparison is to consider the properties of
the different procedures rather than to examine the evidence for an ‘optimal’ procedure, since we
consider only simple implementations.

We examine two types of data which show the most flexible range of tail behaviour amongst
identified asymptotically independent distributions: the bivariate normal distribution, and the
inverted bivariate extreme value distribution with logistic dependence structure, see Section 4.
For the results displayed below, the parameters of the distribution were set such that η = 0.75
in both cases. For each type of data, we generated 5000 pairs and used 10% of the data for
estimation purposes. This process was repeated 500 times. We wish to assess the performance
of the method across the whole of the positive quadrant and thus we consider joint survivor sets
defined by pseudo-angles ω = 0.5,0.45, . . . ,0.05, fixing the y coordinate at 1.5 log 5000 and
multiplying by ω/(1 −ω) to attain the x coordinate. Our results are displayed in Figure 3 as root
mean squared error (RMSE) of the non-zero log probabilities; proportion of estimates exceeding
the true value; and proportion of probabilities estimated as exactly zero, all versus ω.



2710 J.L. Wadsworth and J.A. Tawn

Figure 3. (a): RMSE of non-zero log probabilities, (b): proportion of estimates exceeding the true proba-
bility, and (c): proportion of zero probability estimates versus ω for the bivariate normal distribution with
ρ = 0.5; (d), (e), (f): as (a), (b), (c) but for the inverted bivariate extreme value distribution with logistic
dependence structure and dependence parameter α = − log 0.75/ log 2. Plot characters ‘H’, ‘L’, ‘W’ refer to
the methodology of Heffernan and Tawn [10], Ledford and Tawn [14] and the current authors, respectively.

Overall, the methodology, similarly to the theory, provides something of a compromise be-
tween that of Ledford and Tawn [14] and of Heffernan and Tawn [10]. One advantage of the new
results is that one should rarely be in a position where a probability is estimated as identically
zero, which we have argued can be a drawback to the existing nonparametric methodology.

For ω = 0.5, using the Hill estimator for η, the results from the methodology of Ledford
and Tawn [14] and the current paper are the same, since we have 1/η = κ(1,1) = 2λ(1/2).
Away from the diagonal however, the results of the Ledford and Tawn [14] model, which rely
on estimating empirical probabilities through (1.5) with v + logn + A = (1.5 log 5000,∞) ×
({ω/(1−ω)}1.5 log 5000,∞), deteriorate greatly. This reflects the fact that the theory underlying
the methodology is designed for joint tails, where both variables grow at the same rate. For angles
ω < 0.3 in this example, we observe a rapid rise in the number of zero probability estimates, see
Figure 3(c) and (f). In any real application, this could be a serious problem as only a single
sample is available. The problem of having an empirical probability of zero in a joint survivor set
could in theory be partially solved by noting that for any angle ω1 < ω2 the latter set is nested in
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the former, and one could sum the zero and non-zero component. This however provides rather
poor estimates, and so we do not adopt this strategy for the reported results.

The methodology of Heffernan and Tawn [10] shows steady improvements in RMSE as the
angle ω decreases, and the joint survivor set moves closer to being a marginal probability. This is
owing to the form of the limit theory involved. Recall equations (4.2) and (4.3). Let â, b̂ denote
the estimates of the normalizing functions, and define the ith component of a residual vector
by Zi := {XE,i − b̂(YE,i)}/â(YE,i). Making j = 1, . . . , r new draws Y ∗

E,j from the exponential
distribution, conditionally upon being larger than (1 − ω)un, and r draws from the empirical
distribution function of the residuals, the required probability can be estimated by

P
{
YE > (1 − ω)un

}1

r

r∑
j=1

I
{
â
(
Y ∗

E,j

)
Zj + b̂

(
Y ∗

E,j

)
> ωun|Y ∗

E,j > (1 − ω)un

}
. (5.3)

When (1 − ω)un is large but ωun small, it is the marginal probability P{YE > (1 − ω)un} which
is important for accurate estimation. This ensures increasing precision of estimation near the
axes. The reliance of the estimator (5.3) upon an empirical residual vector highlights how zero
probability estimates are a potential problem, since only certain trajectories of the new variable
â(Y ∗

E,j )Zj + b̂(Y ∗
E,j ) are possible. This problem occurs only rarely here, though some evidence

of it for angles ω near 0.5 is apparent from Figure 3(c) and (f), but the issue intensifies as the
sample size decreases or dimension increases. For an additional discussion, see Peng and Qi [17].

The simple estimator we propose provides consistently reasonable estimates across the whole
range of angles ω. In further simulation results, not reported, we found that the RMSE can be
improved close to the axes (ω near 0 or 1), to a level similar to the Heffernan and Tawn [10]
methodology, by replacing the random exponential sample with rank-transformed data; that is,
the ith largest value XE,(i) is replaced by − log{i/(n + 1)}.

Figure 2, along with Figure 3(b) and (e) illustrate the effect that the non-constant slowly vary-
ing function of the normal distribution has in comparison to the unit slowly varying function of
the inverted bivariate extreme value distribution. Figure 3(b) shows a small bias on the diagonal
ω = 0.5 under the proposed estimation method, which gradually decreases as the angle moves
towards the axes. The true conditional excess probability is

L∗(nt;ω)

L∗(n;ω)
t−λ(ω) = t−[λ(ω)−{logL∗(nt;ω)−logL∗(n;ω)}/ log t].

For the normal distribution, estimation of λ will therefore exhibit some bias which is more pro-
nounced in the range of ω such that L1(n;ω,1 − ω), as identified in equation (4.9), is non-
constant; this is observed in Figure 2(a). This bias can be seen to decay at rate O(1/ logn), and
thus will persist for nearly all practical sample sizes. However, this fact ensures that the theo-
retical bias in λ estimation is not as severe from a practical perspective, since it remains largely
unchanged over the range for which we are likely to be interested in extrapolation. Figures 2(b)
and 3(e) show that the estimation of λ for the inverted bivariate extreme value distribution is
unbiased for all angles, as should be expected given that L ≡ 1.
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6. Discussion

The theory presented has provided a characterization of tail probability decay rates for a wide
variety of multivariate distributions. The results apply both in the case of asymptotically inde-
pendent and dependent random vectors. However, richer theoretical representations are gained
in the case of asymptotic independence in two dimensions, or an analogous notion of weak joint
tail dependence in three or more dimensions, as defined in Section 2.4. The theory developed
strongly mirrors the existing representation for asymptotically dependent distributions, however
it is exploited in the characterization of tail probability decay rates rather than the characteriza-
tion of limit distributions. In particular, we find that the homogeneous function κ and angular
dependence function λ play roles under weak joint tail dependence which are very similar to the
roles of the exponent function V and Pickands’ dependence function A of the classical theory
for asymptotic dependence. Multivariate extreme value theory is most often approached from a
perspective of multivariate regular variation. We have demonstrated how generalizing multivari-
ate regular variation of (XP ,YP ) to that of (X

1/ω
P ,Y

1/(1−ω)
P ) provides a representation which

encodes dependence information under both asymptotic dependence and asymptotic indepen-
dence.

From a statistical perspective, we have demonstrated that a simple methodological proce-
dure can provide very reasonable estimates of bivariate joint survivor probabilities across the
whole of the positive quadrant. In addition, we have argued that in providing a theoretical and
methodological compromise between the approaches of Ledford and Tawn [14] and Heffernan
and Tawn [10], we can overcome some of the methodological difficulties which can surface in
either of these two cases. In statistical applications, it is difficult to be certain whether data are
asymptotically independent or dependent, and to apply the proposed methodology we need make
no distinction.

The theory upon which we have focused is particularly suited to the extrapolation of joint
survivor sets, where only a single ray ω is implicated. Estimation of probabilities of more general
sets can be achieved in theory through exploitation of limit (3.6). However, rates of convergence
to such limits may be slow. There is clearly also a choice of limit distributions in this case, and
investigations into the most suitable trajectory of extrapolation for a given set of interest, in terms
of optimizing the rate of convergence to the limit, remains an open avenue for further research.
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