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A new Representation of FFT Algorithms using

Triangular Matrices
Mario Garrido, Member, IEEE

Abstract—In this paper we propose a new representation for
FFT algorithms called the triangular matrix representation. This
representation is more general than the binary tree representa-
tion and, therefore, it introduces new FFT algorithms that were
not discovered before. Furthermore, the new representation has
the advantage that it is simple and easy to understand, as each
FFT algorithm only consists of a triangular matrix. Besides,
the new representation allows for obtaining the exact twiddle
factor values in the FFT flow graph easily. This facilitates the
design of FFT hardware architectures. As a result, the triangular
matrix representation is an excellent alternative to represent FFT
algorithms and it opens new possibilities in the exploration and
understanding of the FFT.

Index Terms—Binary tree, Cooley-Tukey, fast Fourier trans-
form (FFT)

I. INTRODUCTION

It was 50 years ago when Cooley and Tukey proposed the

fast Fourier transform (FFT) algorithm [1]. The FFT is a way

to compute the discrete Fourier transform (DCT) that reduces

the amount of computations from O(N2) to O(N logN) [2].

The Cooley-Tukey algorithm led to two main algorithms:

Radix-2 decimation in frequency (DIF) and radix-2 decimation

in time (DIT). The radix-2 DIF FFT is a decomposition in

which the output sequence is separated into even and odd sam-

ples iteratively. Analogously, the radix-2 DIT FFT separates

the input sequence into even and odd samples iteratively.

After the Cooley-Tukey algorithm, new FFT algorithms

were presented. The radix-4 FFT algorithm [3] reduces the

rotations of the radix-2 algorithm. The same occurs with radix-

8 and higher radices. For further information about the first

FFT algorithms, [4] provides historical notes on the first FFT

algorithms.

Later, the radices were combined in mixed radix algo-

rithms [5], [6]. Mixed radix is generally used when the number

of points of the FFT, N , is not a power of the radix. For

instance, N = 128 is not a power of 4 and, therefore, it

cannot be implemented using radix-4. However, it can be

implemented with mixed radix-4 and 2, being all the stages

of radix-4 except the last one.

An evolution of the FFT algorithms happened with radix-22

FFT [7], [8]. This radix led to new FFT architectures with less

rotators than the radix-2 ones and less adders than the radix-4
ones. Later, radix-23 [9], [10], radix-24 [11] and in general

radix-2k [9], [12], [13] algorithms were proposed.

Nowadays we can talk about a large number of FFT algo-

rithms. This is thanks to the binary tree representation [14],
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[15]. This representation is a generalization of the Cooley-

Tukey algorithm, which allows for decimating an FFT at

any stage in each iteration of the decimation. The binary

tree representation can represent all the algorithms mentioned

previously. A comparison of FFT algorithms can be found

in [16].

In this paper we propose a new representation of the FFT

algorithms. It is called triangular matrix, as the FFT algorithms

are represented by a triangular matrix. The triangular matrix

representation has four main advantages. First, the representa-

tion is simple and easy to understand. Second, it support any

radix, including mixed radix algorithms. Third, it is a more

general representation and allows for representing significantly

more algorithms than the binary tree one. Third, it allows for

generating the twiddle factors at each stage of the FFT easily.

As a result, the triangular matrix representation opens new

possibilities in the research of the FFT.

The paper is organized as follows. Section II reviews

previous FFT representations. Section III explains how to

move rotations among FFT stages. This section also refutes

some common beliefs related to the FFT that are shown to be

wrong. Section IV presents the triangular matrix representa-

tion, relates it to the binary tree representation and shows how

to obtain the twiddle factors. Section V shows the application

to FFT implementation. Finally, Section VI provides the main

conclusions of the paper.

II. REVIEW OF PREVIOUS FFT REPRESENTATIONS

A. The Cooley-Tukey algorithm

The Cooley-Tukey algorithm [17], [18] is based on the

observation that multiple operations can be shared when

calculating the output frequencies of the FFT. This is done

by decomposing the equation of the DFT:

X[k] =

N−1∑

n=0

x[n]e−j 2π
N

nk (1)

The most common decompositions are decimation in time

(DIT) and decimation in frequency (DIF) [18]. The DIT

decomposition separates the sequence x[n] into its even and

odd samples, whereas the DIF decomposition is applied on

the output sequence X[k].

In both decompositions, the N -point DFT is transformed

into two N/2-point DFTs. By applying the procedure itera-

tively, each step halves the number of points of the DFTs,

which finally leads to 2-point DFTs.
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Fig. 1. 16-point radix-2 DIF FFT flow graph.

B. FFT representation using flow graphs

In order to understand the operations performed by an FFT,

the FFT is represented most times by its flow graph. An

example of an FFT flow graph is shown in Fig. 1. The numbers

at the input represent the indexes of the input sequence, x[n],
whereas those at the output are the frequencies, k, of the

output signal X[k]. It can be observed that the inputs are

ordered, and the outputs are provided in the so-called bit-

reversed order [19].

The flow graph consists of a series of n stages, s ∈
{1 . . . n}, where additions, subtractions and complex rotations

are calculated. Additions and subtractions come in pairs,

forming a structure called butterfly. The flow graph in Fig. 1

assumes that the lower edge of each butterfly is always

multiplied by −1. These −1 are usually not depicted in order

to simplify the graphs.

The rotations are represented by the numbers between the

stages, φ. Each of these values corresponds to a rotation by

the twiddle factor:

Wφ
N = e−j 2π

N
φ (2)

As general criterion, throughout the paper, it is considered that

the rotations of each stage s are those placed to the right of

the butterflies of that stage.

Whereas Wφ
N represents a single rotation value, WL (with-

out exponent) represents a set of rotations, where

WL = W k
L, k = 0, . . . , L− 1 (3)

Rotations by the angles 0◦, 90◦, 180◦ and 270◦, are called

trivial rotations. These rotations correspond to multiplications

by 1, j, −1 and −j, respectively. They are called trivial rota-

tions because they can be easily implemented by interchanging

the real and imaginary parts and/or changing the sign of the

data. Note that the twiddle factor W4 = W k
4 = W

kN/4
N ,

k ∈ {0, . . . , 3} only includes trivial rotations, whereas larger

twiddle factor include other rotations as well.

Fig. 2. Binary tree diagram of all possible algorithm for N = 16.

C. Binary-tree representation

The binary tree representation [14], [15] is a generalization

of the Cooley-Tukey algorithm. The difference among them

lies in the fact that the binary tree representation allows for

decimating an FFT of any size at each of the iterations in the

decomposition, not only a 2-point DFT.

A binary tree diagram is an effective way to represent

various FFT algorithms [14]. Fig. 2 shows all the possible

binary tree diagrams for N = 16. In binary tree representation,

each node is assigned a value m to represent a 2m-point DFT.

Each node has at most two leaves which represent the inner

and outer DFTs.

Mathematically, the binary tree decomposition is described

as

X [k1 + Pk2] =

=
∑Q−1

t2=0

[(
∑P−1

t1=0 x [Qt1 + t2]W
t1k1

P

)

W t2k1

N

]

W t2k2

Q ,

(4)

where 0 ≤ k1 ≤ P − 1 and 0 ≤ k2 ≤ Q− 1.

Here, an N -point DFT is decomposed into Q DFTs of P -

point and P DFTs of Q-point. These are named as inner and

outer DFTs, respectively. Each output of the inner DFT is

multiplied by a twiddle factor, which has a resolution N =
2p+q and index t2k1.

The decimation of an N point DFT is done by choosing the

values P and Q. Here, it is important to realized that N =
P ·Q. Thus, the first iteration of the binary tree decomposition

allows for splitting an N -point DFT in multiple different ways,

which correspond to the possible combinations of P and Q
whose product is equal to N .

After the first iteration, the remaining P and Q-point DFTs

are again divided into smaller DFTs by using the same proce-

dure. Again, these DFTs can be divided arbitrarily by factors

whose product is equal to the corresponding DFT size. The

procedure continues until all the branches have been reduced to

radix-2 DFTs. When the binary tree is finalized, all leaf nodes

correspond to the required radix and internal nodes correspond

to twiddle factor multiplication stages, which connect the two

decomposed DFTs.

The number of radix-2 2n-point FFT algorithms generated

using binary trees is [15]

(2(n− 1))!

n!(n− 1)!
. (5)

This number comes from all the possible selections that

can be done at each iteration. For instance, for N = 16,
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n = log2 N = 4. According to (5) this leads to 5 different

algorithms, as shown in Fig. 2.

The twiddle factors at each stages are directly obtained

from the binary tree. This is done by going across the binary

tree from left to right. In this process, the final leafs of the

tree, represented by 1, correspond to radix-2 DFT operations.

For example, the sequence of numbers in the binary tree in

Fig. 2(a) is 2, 3, 4. Given this sequence, the number of angles

of the corresponding twiddle factors is the power of these

numbers. Thus, for this example the twiddle factors are W4,

W8 and W16. This corresponds to the DIT decomposition.

D. Matrix factorization

Another way to represent the FFT is by using the matrix

factorization [12], [20]. This method represents the FFT in

an algebraic way as a product of matrices. For instance, the

equation

TN = P
(r)
N · [Ir ⊗ Tn/r] ·D

(r)
N · [Tr ⊗ IN/r], (6)

is a matricial representation of the recursion used in the

Cooley-Tukey algorithm [12]. In the equation, ⊗ represents a

tensor product or Kronecker product and the matrices represent

permutations and twiddle factor multiplications.

E. Comparison of representations

Each FFT representation has its utility. The Cooley-Tukey

algorithm and the matrix factorization approaches represent

the FFT algorithm algebraically. The matrix factorization is a

powerful mathematical and computational tool to represent not

only the FFT algorithms but also the permutations involved

in FFT architectures. Although they are useful approaches

for the generation of FFTs, in terms of visualization and

representation the Cooley-Tukey algorithm and the matrix

factorization are difficult to visualize and understand. This

makes it difficult to observe different algorithms and draw

conclusions about them.

If we look for a representation of FFT algorithms we

want to get an idea of the algorithm from its visualization.

From this perspective, the representation using flow graphs

provides more clarity than the Cooley-Tukey and the matrix

factorization approaches. The representation using flow graphs

is excellent for FFTs of small sizes. However, for large FFTs

the size of the graph increases drastically and it becomes

cumbersome.

Finally, the binary tree representation is clear, intuitive,

compact and can represent small and large FFTs easily. If

the purpose is to represent and compare FFT algorithms, the

binary tree representation is the most attractive representation

so far.

III. MOVING FFT ROTATIONS

A. Basic movement of twiddle factors

In an FFT, rotations can be moved among various stages.

Fig. 3 shows how rotations are moved in a flow graph. Fig. 3(a)

considers the rotations previous to a butterfly, φx = a and

(a) (b)

Fig. 3. Movement of rotations in the FFT. (a) Original structure. (b) Structure
after movement.

Fig. 4. 16-point radix-22 DIF FFT flow graph.

φy = b, and those after the butterfly, φX = c and φY = d.

The equation of this structure is:

X = W c
N · (x ·W a

N + y ·W b
N )

Y = W d
N · (x ·W a

N − y ·W b
N )

(7)

If we divide the inputs by the factor W q
N , we can pass this

factor to the outputs, leading to the equation:

X = W c+q
N · (x ·W a−q

N + y ·W b−q
N )

Y = W d+q
N · (x ·W a−q

N − y ·W b−q
N )

(8)

This equation is represented in Fig. 3(b). As a result, q is

subtracted from the φ values at the input and is added to the

φ values at the output.

B. Moving rotations in the FFT flow graph

If we apply the movement of rotations to the flow graph

in Fig. 1, we obtain new flow graphs. The flow graph in

Fig. 4 represents a 16-point radix-22 FFT. If we compare

Figs. 1 and 4, we observe that the radix-22 FFT is the result of

moving the factor W 1
N from stage 1 to stage 2 in the butterflies

with odd twiddle factors. In general for any N , the radix-22

FFT algorithm is the result of moving all the factors except

W
N/4
N from each odd stage to the next even stage in a radix-2

flow graph. The twiddle factor W
N/4
N is a trivial rotation that

remains in odd stages.

If we move twiddle factors in Fig. 4 from stage 2 to stage

3, we obtain the flow graph in Fig. 5. This flow graph is

a 16-point radix-2 DIT FFT. Therefore, by moving twiddle
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Fig. 5. 16-point radix-2 DIT FFT flow graph with inputs in natural order.

Fig. 6. 16-point radix-2 DIT FFT flow graph.

factors we can obtain different FFT algorithms. Indeed, the

FFT algorithms only differ on the values of the twiddle factors.

A more usual representation of the 16-point radix-2 DIT

FFT is shown in Fig. 6. In this case, the inputs are depicted

in bit-reversed order and the outputs in natural order [18],

whereas in Fig. 5 the inputs are in natural order and the outputs

are in bit-reversed order. It can be easily checked that both

figures are the same algorithm, i.e., the operations in both of

them are exactly the same. This refutes the common belief that

the inputs of the DIF decomposition are in natural order and

those of the DIT decomposition are in bit-reversed order. In

fact, the order of the inputs and outputs is always independent

of the FFT algorithm: Each FFT algorithm can be represented

with any input and output orders.

Fig. 7. 16-point radix-4 DIT FFT flow graph.

Fig. 8. Radix-4 butterfly.

C. Radix-4, radix-8, etc. algorithms

Fig. 7 shows the 16-point radix-4 DIF FFT flow graph.

Each dot in the middle of the stages with four inputs and four

outputs represents a radix-4 butterfly, like the one shown in

Fig. 8. If we substitute the dots by the corresponding butterfly,

we obtain the flow graph shown in Fig. 9. By comparing it to

the 16-point radix-22 DIF FFT flow graph in Fig. 4 we observe

that the radix-22 and radix-4 algorithms are indeed the same

algorithm, i.e., the operations in both of them are exactly the

same. The same holds for radix-8 and radix-23, for radix-16

and radix-24, etc.

IV. THE TRIANGULAR MATRIX REPRESENTATION

A. Rotations in an FFT flow graph

The movements presented in previous section can be clas-

sified into sets. In any FFT algorithm there is one set of W 1
N

rotations that can be move in all stages except the last one.

There are also two set of W 2
N . One of them can be moved

between stages 1 and n− 2, and the other one between stages

2 and n−1. And in general, there are m sets of W 2m−1

N . Each

set p, p = 0 . . .m−1 can be moved between stages 1+p and

n−m+ p. This is shown in Fig. 10 for the case of N = 16
points.

In case of the 16-point FFT flow graph, Fig. 11 shows

the flow graph of the FFT with decomposed rotations. The

algorithm represented in the figure is the radix-2 DIF FFT.

Note that the first stage includes the set of W 1
N , one of the 2

sets of W 2
N and one of the 3 sets of W 4

N . The second stage
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Fig. 9. 16-point radix-4 DIT FFT flow graph with detailed butterflies.

Fig. 10. Rotations in a 16-point FFT.

Fig. 11. 16-point radix-2 DIF FFT flow graph with decomposed twiddle
factors.

includes the second set of W 2
N and one set of W 4

N . And the

third stage includes one set of W 4
N .

It can be observed that the set of W 1
N can be placed in

the first three stages of the FFT by just moving it through the

butterflies. The set W 2
N in the first stage can be placed in stages

1 and 2, but not in stage 3. The set W 2
N in the second stage

can be placed in stages 2 and 3. And the sets W 4
N cannot be

Fig. 12. Triangular matrix representation for FFT algorithms.

moved. Note that these sets of rotations are formed according

to their movement possibilities.

Note also that the radix-2 DIF FFT algorithm is the case in

which the sets of rotations are placed at the earliest possible

stage. If we move the rotations to the most left stage we obtain

the radix-2 DIT FFT algorithm, as shown in Fig. 5. And if we

move the rotations by W 1
N and W 2

N in the first stage to the

second one, we obtain the radix-22 FFT, as shown in Fig. 4.

Apart from the radix-2 DIF, radix-2 DIT and radix-22

algorithms, we can perform other movements in the flow graph

to obtain new FFT algorithms. For instance, a new algorithm

is obtained when we move the set of W 2
N in the first stage to

the second one and keep the set of W 1
N in the first stage.

As a result, the number of FFT algorithms that can be

represented is large and we need a representation that includes

all of them. This representation is presented in the next section.

B. The Triangular Matrix Representation

The triangular matrix representation for FFT algorithms is

shown in Fig. 12 for the case of N = 16 points. For any N ,

the triangular matrix representation has a number of rows and

columns equal to n− 1. The upper right corner is the rotation

W 1
N , which represents the smallest rotation angle. Starting

from the corner, each diagonal corresponds to a twiddle factor.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 6

(a) (b)

(c)

Fig. 13. Triangular matrix representation of typical 16-point FFT algorithms.
(a) Radix-2 DIF. (b) Radix-2 DIT. (c) Radix-22 DIF.

The second diagonal is the factor W 2
N . The third diagonal is

the factor W 4
N and so on. The last diagonal is the lowest one

and corresponds to the trivial rotations W
N/4
N .

The number of the column represents the highest FFT stage

where the rotation can be moved, whereas the number of the

row indicates the lowest FFT stage where the rotation can be

moved. According to this, W 1
N can be placed between stages

1 and n− 1. There is one set of rotations by W 2
N that can be

placed in stages 1 and 2, and another set that can be placed

in stages 2 and 3. Finally, for the trivial rotations in the main

diagonal the number of the column and the number of the row

are the same. This means that each set of trivial rotations is

placed in an specific stage and cannot be moved. All of this

agrees with the explanation in Section IV-A.

The radix-2 DIF FFT is the case where all the rotations are

in the lowest possible stage. This means that the values inside

the matrix are equal to the row in which they are. This is

shown in Fig. 13(a). Analogously, the radix-2 DIT FFT is the

case where all the rotations are in the highest possible stage.

This means that the values inside the matrix are equal to the

column in which they are. This is shown in Fig. 13(b). Finally,

The radix-22 DIF FFT is the case in which the rotations of

the radix-2 DIF algorithm in odd stages are moved to the next

even stage. This is shown in Fig. 13(c).

C. Number of representations

The number of algorithm of the triangular matrix represen-

tation can be calculated easily. As we know the number of

alternatives for each element in the matrix, the total number

of algorithms as a function of n is obtained as

Number of algorithms =

n−1∏

k=1

(n− k)k (9)

The total number of algorithms as a function of the FFT size

is shown in Table I. Note that the number grows extremely fast,

achieving more than 34 thousands for N = 64 and more than

24 million for N = 128.

TABLE I
NUMBER OF FFT ALGORITHMS OF THE TRIANGULAR MATRIX

REPRESENTATION.

N Number of algorithms

2 1

4 1

8 2

16 12

32 288

64 34560

128 24883200

256 1.2541 · 10
11

512 5.0566 · 10
15

1024 1.8349 · 10
21

2048 6.6586 · 10
27

4096 2.6579 · 10
35

8192 1.2731 · 10
44

16384 7.9279 · 10
53
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Fig. 14. Number of FFT algorithm as a function of the number of FFT
stages.

Fig. 14 compares the number of algorithms representable

by binary trees as shown in equation (5) with the number

of algorithms representable by triangular matrix as shown in

equation (9). Fig. 14 shows that the number of algorithms

representable by triangular matrix is significantly larger than

that of binary tree. In fact, the binary tree representation is a

subset of the triangular matrix representation. This is explained

more in detail in the next section.

D. Equivalence to the binary tree representation

Fig. 15 shows various 256-point FFT algorithms in the

triangular matrix representation, as well as its equivalent

binary tree. Fig. 15(a) is the 256-point radix-2 DIF FFT. As

mentioned before, it is characterized by the fact that each

element of the matrix is equal to its row. Fig. 15(b) is the

256-point radix-2 DIT FFT. It is characterized by the fact that

each element of the matrix is equal to its column. Fig. 15(c) is

the 256-point radix-22 DIF FFT. It is characterized by the fact

that elements in even rows are equal to the row number and

elements in odd rows are equal to the next row, except for the

trivial twiddle factors W
N/4
N . Fig 15(d) is the 256-point mixed

radix-25-23 DIF FFT. Fig. 15(e) is the 256-point radix-24 FFT.

For a 256-point FFT, radix-24 forms a balanced binary tree.

In a balanced binary tree the DIF and DIT decompositions are
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(a) (b) (c)

(d) (e) (f)

Fig. 15. (a) 256-point radix-2 DIF FFT. (b) 256-point radix-2 DIT FFT. (c) 256-point radix-22 DIF FFT. (d) 256-point mixed radix-25-23 DIF FFT. (e)
256-point radix-24 FFT (balanced binary tree). (f) 256-point FFT algorithm not representable with a binary tree.

the same algorithm. The balanced binary tree is characterized

by the fact that it is formed by squares of numbers. It includes

a big square of n/2×n/2 elements for the stage n/2, a square

of n/4 × n/4 elements for stages n/4 and 3n/4, and so on.

And it ends with squares of 1 elements for odd stages.

Finally, Fig. 15(f) shows an algorithm that is not repre-

sentable by a binary tree. The criterion to know if a triangular

matrix representation can also be represented by a binary tree

is simple: A binary tree is an algorithm in which the triangular

matrix representation consists of n − 1 rectangles or squares

of numbers, one for each stage. If a shape in the triangular

matrix representation is not a rectangle or a square, or if the

number of them is larger than n− 1, then this representation

cannot be represented as a binary tree. Note that, indeed,

most algorithms cannot be represented as a binary tree. This

highlights the fact that the triangular matrix representation can

represent significantly more algorithms than the binary tree

representation.

E. Obtaining the twiddle factor values

Fig. 16 shows the flow graph of a 16-point radix-2 DIF

FFT that includes the index I ≡ bn−1bn−2 . . . b1b0, where (≡)

relates the decimal and binary representations of the index. To

define the index we always consider the inputs in natural order

and the outputs in bit-reversed order. According to this, φs(I)
is the value of the rotation at stage s and index I . For instance,

in Fig. 16 φ1(9) = 1 and φ2(15) = 6.

The values of φs(I) can be obtained directly from the bits

of the index bn−1bn−2 . . . b1b0. For this purpose, we include

the bits of the index in the triangular matrix representation, as

shown in Fig. 17.

Fig. 16. 16-point radix-2 DIF FFT flow graph with the bits of the index
depicted.

According to this, the values of the twiddle factor are

obtained from the triangular matrix representation as

φs(I) =
∑

xij=s

b(i) · 2n−1−i · b(j) · 2j (10)

where the sum is for all the elements of the matrix xij whose

stage is equal to s, b(i) is the bit in row i and b(j) is the bit

in column j. We can also represent equation (10) in binary as

φs(I) ≡
∑

xij=s

[b(i) 0 . . . 0
︸ ︷︷ ︸

n−1−i

] · [b(j) 0 . . . 0
︸ ︷︷ ︸

j

] (11)
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Fig. 17. Triangular matrix representation of the 16-point radix-2 DIF FFT
algorithm with the bits of the index.

For the triangular matrix representation in Fig. 17 this leads

to

φ1(I) ≡ b3 · [b200] + b3 · [b10] + b3 · b0 = b3 · [b2b1b0]
φ2(I) ≡ [b20] · [b10] + [b20] · [b0] = [b20] · [b1b0]
φ3(I) ≡ [b100] · [b0]

(12)

It can be checked that the values of φs(I) correspond to the

twiddle factors in Fig. 16. For instance φ1(9) ≡ b3 · [b2b1b0] =
1·[001] ≡ 1 and φ2(15) ≡ [b20]·[b1b0] = [10]·[11] = 110 ≡ 6.

In the same way, the twiddle factors for the balanced binary

tree in Fig. 15(e) are

φ1(I) ≡ b7 · [b6000000]
φ2(I) ≡ [b6b7] · [b5b40000]
φ3(I) ≡ [b500] · [b40000]
φ4(I) ≡ [b4b5b6b7] · [b3b2b1b0]
φ5(I) ≡ [b30000] · [b200]
φ6(I) ≡ [b2b30000] · [b1b0]
φ7(I) ≡ [b1000000] · b0

(13)

Note that stages 1, 3, 5 and 7 only take the values 0 and 64,

where W
N/4
N = W 64

N is a trivial rotation. And stage 4 is the

stage where most rotation sets are allocated.

In this way it is very easy to obtain the twiddle factors of

any FFT algorithm.

F. Twiddle factors of common algorithms

Based on the procedure in previous sections, we can cal-

culate the twiddle factors of different FFT algorithms. For

some common radices, the twiddle factor calculations can be

represented by simple equations. For radix-2 DIF, the twiddle

factors at any stage s and for any n are

φs(I) ≡ bn−s · 2
s−1 · [bn−s−1 . . . b0] (14)

Thus, a single equation defines all the twiddle factors of the

FFT.

Analogously, for the radix-2 DIT, the twiddle factors are

obtained by

φs(I) ≡ bn−s−1 · 2
n−s−1[bn−s . . . bn−1] (15)

For radix-22 the twiddle factor calculation is reduced to

two equations, one for odd stages and one for even stages.

For radix-22 DIF the twiddle factors at odd stages are

φs(I) ≡ bn−s · bn−s−1 · 2
n−2 (16)

and those at even stages are

φs(I) ≡ [bn−sbn−s+1] · [bn−s−1 . . . b0] · 2
s−2 (17)

TABLE II
ALGORITHMS WITH THE MINIMUM NUMBER OF NON-TRIVIAL ROTATIONS.

N Algorithm Non-trivial rotations

16 Radix 2
2 (Fig. 13(c)) 8

32 Mixed radix 2
3-22 (in its four variants) 28

64 Radix-22 DIF and radix-22 DIT 76

128 Mixed radix-24-23 200

256 Balanced binary tree (Fig. 15(e)) 480

Finally, for the radix-22 DIT algorithm, twiddle factors at

odd stages are

φs(I) ≡ bn−s · bn−s−1 · 2
n−2 (18)

and twiddle factors at even stages are

φs(I) ≡ [bn−s−1bn−s−2] · [bn−s . . . bn−1] · 2
n−s−2 (19)

V. APPLICATION TO FFT IMPLEMENTATION

A. Minimum number of non-trivial rotations

The algorithms with the minimum number of non-trivial

rotations are relevant for both software implementation and di-

rect implementation in hardware. In software, these algorithms

lead to the smallest number of operations. In a direct hardware

implementation these algorithms lead to the implementation

with the smallest number of rotators.

The algorithms with the minimum number of non-trivial

rotations are shown in Table II for FFT sizes from 16 to 256.

For even powers of two the best alternative is to decompose

the FFT in groups of radix-22 FFTs, while trying to make the

tree as balanced as possible. For odd powers of two, mixed

radix is used, where one of the radices is 23 and the other radix

includes the rest of stages. These stages are then decomposed

as in the case of even powers of two.

B. SDF FFTs

The proposed triangular matrix representation has direct

application to the design of FFT hardware architectures. In

this section we present the example of a single-delay feedback

(SDF) architecture, shown in Fig. 18(a). This architecture

receives input samples in natural order and provides the

outputs in bit-reversed order. The architecture is the same for

any FFT algorithm. The only difference among algorithms is

the content of the memories M1, M2 and M3. The memory

at each stage, s, includes the rotations by φs(I), as obtained

in the previous section. For instance, in order to implement

the radix-2 DIT FFT the twiddle factors in the memories

will be those defined by equation (15), and for a radix-22

DIF the memories must store the twiddle factors according to

equations (16) and (17).

In general, the order of the twiddle factors in memory must

respect the order of the data input to the multiplier. In a second

example, we may want an architecture in which inputs are in

bit-reversed order and outputs in natural order, as shown in

Fig. 18(b). In this architecture, the inputs to the multipliers

are in bit-reversed order. According to this, the twiddle factors

in the memories must be stored in the memories or read

from the memories in bit-reversed order. Again, any FFT
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(a)

(b)

Fig. 18. Single delay feedback FFT architectures. (a) For inputs in natural
order and outputs in bit-reversed order. (b) For inputs in bit-reversed order
and outputs in natural order.

algorithm representable by triangular matrices can be mapped

to the architecture, being the only difference the content of the

memories.

In order to achieve optimized FFT architectures, several

previous works [21], [22] show how to proceed. The main

idea behind the design is to combine the algorithm selection

and the rotator implementation. This leads to simpler rotators

at different FFT stages.

VI. CONCLUSIONS

This paper has presented the triangular matrix representa-

tion. It is based on considering groups of rotations and moving

them among FFT stages. As the name of the representation

suggests, FFT algorithms are represented by a triangular

matrix, where the elements of the matrix indicate in which

FFT stage the rotations are allocated. The triangular matrix

representation adds degrees of freedom with respect to the

binary tree representation. As a result, it can represent sig-

nificantly more algorithms than the binary tree representation.

The triangular matrix representation has direct application to

the implementation of the FFT in software and hardware.

The algorithms with the minimum number of operations are

highlighted in the paper. And in order to obtain optimized

hardware designs, the triangular matrix representation can be

combined with the rotator implementation.
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